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Abstract

Choice rules based on probability thresholds are common in several disciplines. The most well-
known application of such a threshold rule is the standard of reasonable doubt. Accordingly, a
rational juror prefers to convict a defendant if and only if the probability that she attaches to the
defendant being guilty is above a given threshold. In this paper we prove that generically such a
threshold exists if and only if the juror reasons only about two events, viz., the defendant’s guilt
and innocence. This result implies that threshold rules are usually inconsistent with individual
rationality. Thus, if we insist on using a threshold choice rule, we will have to accept some
irrational convictions (false negatives) or some irrational acquittals (false positives) or both. We
subsequently characterize each probability threshold in terms of the irrationalities that it induces.
Finally, we discuss the empirical implications of our theory.

1. Introduction

Choice rules based on probability thresholds are widely used in various disciplines, including law
(e.g., Kaplan, 1968; Tribe, 1971; Schauer and Zeckhauser, 1996; Kaplow, 2012; Talley, 2013), medicine
(e.g., Pauker and Kassirer, 1975, 1980), economics (e.g., Shavell, 1985; Andreoni, 1991; Kaplow, 2011),
statistics (e.g., Neyman and Pearson, 1933) and finance (e.g., Roy, 1952; Telser, 1955-56).1 For example
in law, a juror should convict the defendant if and only if the probability that she assigns to him being
guilty is above a certain threshold (Kaplan, 1968); in medicine, a doctor administers a treatment to
the patient if and only if the probability that she attaches to him suffering from a specific disease is
above a given threshold (Pauker and Kassirer, 1975); in finance, an investment is admissible if and
only if the probability of the returns being below some fixed level (e.g., the bankruptcy level) does not
exceed a certain threshold (Telser, 1955-56). A natural question arises then in each of the previous
contexts: how do we choose the threshold?

In this paper, we address this question within the context of law. The reason for focusing primarily
on legal decisions is twofold. Firstly, the foundations of probability thresholds have been mostly

∗I am indebted to Jing Chen, Judge Georgios Alexopoulos, Franz Dietrich, Frederik Herzberg, Bram van Hofstraeten,
Anqi Li, Arkadi Predtetchinski, Philipp Strack, Peter Wakker, Chris Woolnough, Dimitrios Xefteris and the seminar
participants in the University of Amsterdam, UC Berkeley, University of Cyprus and Maastricht University for valuable
comments and helpful discussions.
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discussed within the law literature.2 Secondly, in law the use of probability thresholds is normatively
postulated – by the lawmaker – contrary to other disciplines where threshold rules are simply strategies
willingly chosen by the decision maker. In this sense, answering the previous question has important
practical implications for the interpretation of the law.3 In either case, our conclusions hold across the
aforementioned fields, thus constituting a general theory of threshold choice rules.

Let us begin by noticing that while the law suggests the use of some probability threshold, it does
not specify a precise value and instead leaves it to the juror’s discretion. That is, the law implicitly
postulates a threshold rule which is consistent with the juror’s individual rationality, i.e., ideally, the
juror prefers to convict the defendant if and only if the probability she attaches to guilt is above this
threshold. Such a threshold is called the standard of reasonable doubt (e.g., Kaplan, 1968). Obviously,
if it exists, the standard of reasonable doubt is the answer to our previous question.

Thus, we now ask: does the standard of reasonable doubt always exist? In other words, is there
always a rational threshold rule? As it turns out, this is the case only under very stringent conditions.
In particular, we prove that generically the standard of reasonable doubt exists if and only if the only
event that the juror reasons about is the defendant’s guilt (Theorem 1).4 That is, if the juror reasons
about the circumstances under which the crime was committed – and not just about whether the
defendant committed it or not – her preferred verdict will in fact also depend on her beliefs about
these circumstances, rather than solely on the probability she attaches to the defendant being guilty.
Therefore, threshold choice rules are in general not rational.

Before moving forward, let us first elaborate on the main idea behind the previous result. We
consider an underlying set of states, each corresponding to a different configuration of the world.
An event is identified by a subset of the state space, and the juror reasons about certain events
while ignoring the remaining ones, either because she is unaware of them or because she consciously
disregards them. Mathematically, the events that the juror reasons about form an algebra, called the
juror’s frame. Naturally, the juror assigns probabilities only to events in her frame. Thus, her set
of all possible beliefs is represented by an n-dimensional simplex, with n being the cardinality of the
partition that generates her frame. Notice that the set of beliefs that make the juror prefer a conviction
are identified by a half-space, and therefore the only way a rational choice can be determined by the
probability attached to a single event (viz., “guilt”) is if the dimension of the aforementioned simplex
is n = 2, i.e., if the juror’s frame contains only two events (viz., “guilt” and “innocence”).

The previous impossibility result has important implications for all fields where probability thresh-
olds are employed. In disciplines where threshold choice rules are simply strategies willingly chosen by
the decision maker – e.g., in medicine or statistics or finance – new, more complicated, strategies need
to be introduced, if our priority is to maintain rationality on the decision-maker’s part. On the other
hand, in disciplines where the use of a probability threshold is normatively postulated – e.g., in law –
we will have to accept the possibility of some irrationalities. In particular, every threshold will lead
either to some irrational convictions (false negatives), or to some irrational acquittals (false positives),
or to both.5 Hence, the selection of a probability threshold essentially depends on our attitude towards
irrationalities, e.g., extreme aversion to irrational acquittals would prompt us to choose a low threshold,

2The study of probability thresholds within the law theory and practice dates all the way back to Locke (1690)
(for an overview see Hemmens et al., 1997). To the best of our knowledge, the first one to formalize this idea using
decision-theoretic tools was Professor Kaplan (1968).

3The practical importance of understanding probability thresholds in law is illustrated by the fact that approximately
29% of adult Americans have served as trial jurors at least once in their lifetime, while 71% of the criminal defendants
in the U.S. are convicted by a jury trial (U.S. Department of State, 2009).

4Later in the paper we become more precise on the notion of genericity that we employ. In fact, we prove a slightly
stronger version of the result, which provides necessary and sufficient conditions for the existence of the standard of
reasonable doubt also non-generically.

5Notice that our definition of false positives and false negatives is in expectation (see Remark 2).
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whereas extreme aversion to irrational convictions would prompt us to choose a high standard. While
in this paper we do not formally model such preferences, we nonetheless informally assume aversion for
irrationalities in general. That is, if one threshold leads to strictly fewer irrationalities than another
one, we say that the former dominates the latter.6 Then, aversion to irrationalities implies that the
juror will never pick a dominated threshold, and the thresholds that are not dominated are called weak
standards of reasonable doubt.

Subsequently, we characterize the weak standards of reasonable doubt, showing that they form a
specific subinterval in [0, 1] (Theorem 2). The lower bound of the interval (lower standard of reasonable
doubt) is always strictly larger than 0, and corresponds to the only undominated threshold inducing
extreme aversion to irrational acquittals (see Proposition 2). On the other hand, an undeominated
threshold inducing extreme aversion to irrational convictions exists if and only if the juror prefers to
convict the defendant at all states where the defendant is guilty, irrespective of the circumstances under
which the crime was committed. This is the case when the upper bound of the interval (upper standard
of reasonable doubt) is lower than 1 (see Proposition 3). In fact, the interval collapses to a single point
– with the upper and the lower standard coinciding – if and only if the standard of reasonable doubt
exists, i.e., if and only if the juror reasons only about the defendant’s guilt/innocence, in which case
no irrationalities are induced (see Proposition 1).

The main idea behind introducing two distinct standards – an upper and a lower one – resembles one
that first appeared in medicine (Pauker and Kassirer, 1980). Accordingly, there are two probability
thresholds: the doctor administers the treatment if the probability of the patient suffering from a
certain disease is above the upper threshold, she does not administer it if the probability is below the
lower threshold, and she runs additional tests if the probability is in between. While the interpretation
of the respective extreme thresholds is different, the common denominator of the two models is that
the upper standard yields strong aversion to false negatives whereas the lower standard yields strong
aversion to false positives (see Remark 3).

Overall in the light of our results, the notion of certainty beyond reasonable doubt can now be
reinterpreted. In particular, one can replace certainty in the defendant’s guilt (viz., ex post extreme
aversion to false negatives) with certainty of avoiding irrational convictions (viz., ex ante extreme
aversion to false negatives), i.e., formally instead of setting the probability threshold to 1, we set
it equal to the upper standard of reasonable doubt. This interpretation maintains the conventional
wisdom that the burden of proof is high without requiring absolute certainty of guilt (for an overview
of this discussion, see Hemmens et al., 1997, and references therein). At the same time, our new
interpretation is consistent empirical evidence (see discussion in Section 5).

The paper is structured as follows: In Section 2 we introduce our framework and define the standard
of reasonable doubt. Section 3 contains our main impossibility result. In Section 4 we define the weak
standards of reasonable doubt and we prove our positive results. In Section 5 we discuss the empirical
implications of our theory. Section 6 contains a concluding discussion. All proofs are relegated to the
Appendix.

2. The standard of reasonable doubt

There are two agents, a (female) juror and a (male) defendant. Let Ω be a finite state space.7 Each
state ω ∈ Ω is a full description of all the relevant aspects of the world. Let G ⊆ Ω be the event
that the defendant is guilty of the crime he is accused for, with the complement I := ¬G denoting
the event that he is innocent. Note that G is a coarse description of the world, in the sense that it

6In Section 4 we precisely define what it means for a threshold to induce “fewer irrationalities” than another one.
7Our analysis can be directly extended to any measurable state space.
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contains different specifications of how the crime could have taken place, e.g., there are different ways
of committing a crime, differing for instance in the defendant’s intentions or in the degree of cruelty
involved. In either case, we assume that the law is detailed enough to clearly specify at which states
the defendant is considered guilty (resp., innocent). Thus, the events G and I have a well-defined
interpretation in the natural language.

An algebra R of subsets of Ω is called a (reasoning) frame, and contains the events that the juror
reasons about at the time of her decision.8 Events outside R are not even considered by the juror,
either because she is unaware of them or because she consciously disregards them. In this sense, the
frame R can also be seen as the juror’s working language. We naturally assume that G is always R-
measurable, and a fortiori so is I, i.e., the juror always reasons about the defendant’s guilt/innocence.
In fact, if G and I are the only events that she reasons about, her frame R collapses to the coarsest
possible frame G := {Ω, G, I, ∅}, henceforth called the trivial frame.9

Example 1. Let Ω = {ω1, ω2, ω3} and G = {ω1, ω2}. Assume that the juror reasons only about the
defendant’s guilt/innocence, i.e., R = G = {Ω, {ω1, ω2}, {ω3}, ∅}. In particular, the two states in G
differ in the defendant’s intention to commit the crime, viz., at ω1 the defendant committed the crime
unintentionally, whereas at ω2 he did it intentionally. However, the juror does not reason about the
defendant’s intentions, i.e., {ω1} /∈ R and {ω2} /∈ R. This is exactly the framework considered by
most papers in the literature (e.g., Kaplan, 1968; Andreoni, 1991). /

Let X be the set of all possible verdicts that are allowed by the law. For convenience and without
loss of generality we take a finite X ⊆ [0,∞], with 0 ∈ X being the verdict that acquits the defendant
and X+ := X \{0} being the set of verdicts that convict him. In fact each verdict in X can be formally
viewed as a constant degenerate act in F := (∆(X))Ω.

Given a frame R, we let UR : X × Ω → R be the juror’s state-dependent utility function, where
the random variable URx := UR(x, ·) is assumed to be R-measurable for every x ∈ X. Throughout the
paper, for notation simplicity, we omit the superscript R, thus simply writing U and Ux, respectively.
Moreover, the juror forms a subjective belief π ∈ ∆(Ω,R), where as usual ∆(Ω,R) denotes the set of
all probability measures over the measurable space (Ω,R). Then, her preferences over X (given her
frame R) are represented by the state-dependent expected utility (SDEU) function,

EπUx =

∫
Ω

Uxdπ. (1)

There are various axiomatizations of SDEU functions in the literature, both within the Savage and
the Anscombe-Aumann framework (Fishburn, 1973; Karni et al., 1983; Karni, 1993a,b).10

For an arbitrary x ∈ X+, we introduce the auxiliary R-measurable random variable

Vx := Ux − U0, (2)

and we impose the following natural assumption:

(A0) For every x ∈ X+, we let Vx(ω) < 0 for every ω ∈ I.

8In this paper we are not interested in the juror’s reasoning process, and therefore we do not model how her frame
evolves throughout the trial before eventually converging to R.

9Our concept of the trivial frame should not be confused with the trivial algebra {Ω, ∅}.
10In general, in SDEU models, the beliefs are not identified uniquely from the preferences over F . Thus, some

additional structure needs to be imposed in order to be able to identify the beliefs. In fact, the different axiomatizations
in the literature differ from each other in the additional structure they impose.

4



The interpretation is straightforward, viz., the juror prefers acquitting an innocent defendant over
convicting him, irrespective of the circumstances or the magnitude of the sentence. Notice that we do
not require the juror to necessarily prefer to convict a guilty defendant, as this may depend on the
precise circumstances or on the magnitude of x. The sentence x ∈ X+ is said to be trivial if either
Vx ≥ 0 or Vx ≤ 0.11 It is nontrivial otherwise. Obviously, by (A0), it cannot be the case that Vx ≥ 0,
and therefore x ∈ X+ is nontrivial if and only if there exists some ω ∈ G such that Vx(ω) > 0. We
find it uninteresting to study trivial sentences and thus we focus exclusively on nontrivial ones.

Remark 1. While our work is related to several papers on frame-dependent preferences (e.g., Ahn and
Ergin, 2010; Karni and Vierø, 2013; Schipper, 2013), it should not be seen as part of this literature.
The reason is that these representations simultaneously look at the juror’s preferences across the
different frames (ex ante stage) as well as given some fixed frame (interim stage), whereas we only
look at the interim stage.12,13 Indeed, as we have already mentioned, we do not formally model the
frame-formation process, but rather we fix the juror’s frame to be the one she has at the time of the
decision. In this sense a standard SDEU model suffices to represent the underlying preferences given
the fixed frame R. /

A decision problem is a nonempty set of verdicts Γ ⊆ X with 0 ∈ Γ, among which the juror
chooses one. Throughout this paper we mostly focus on binary decision problems, thus implicitly
assuming that – in case of a guilty verdict – the sentence has been determined exogenously, e.g., by
the lawmaker.14 A choice rule in the decision problem Γ ⊆ X is a strategy σ : ∆(Ω,R) → Γ that
prescribes a choice for each of the juror’s beliefs.

For a binary decision problem Γ = {0, x} and an arbitrary probability threshold p ∈ [0, 1], the
threshold (choice) rule σp : ∆(Ω,R)→ Γ prescribes conviction if the juror’s belief belongs to

Dp := {π ∈ ∆(Ω,R) : π(G) ≥ p}, (3)

and prescribes acquittal otherwise. That is formally, σp is defined by

σp(π) :=

{
x if π(G) ≥ p,

0 if π(G) < p.
(4)

As we have already mentioned, threshold rules have been extensively studied in the context of law (e.g.,
Kaplan, 1968; Kaplow, 2012), economics (e.g., Andreoni, 1991; Kaplow, 2011), statistics (e.g., Neyman
and Pearson, 1933), medicine (e.g., Pauker and Kassirer, 1975, 1980) and finance (e.g., Roy, 1952;
Telser, 1955-56). Moreover, they have been used as an auxiliary tool in applications and examples
within elsewhere-focused papers (e.g., Feddersen and Pesendorfer, 1998; Kamenica and Gentzkow,
2011). Sometimes a threshold rule is viewed as a suggestion postulated by an institution (e.g., by the
law), whereas in other cases it is merely a strategy consciously chosen by the decision maker (e.g.,
in medicine or in finance). Here we should stress that whenever we say that the use of a probability
threshold is postulated by the law, we do not mean that the lawmaker necessarily pins down a threshold,
but rather that the lawmaker requires a threshold to be specified (e.g., by the juror herself).

11As usual, for an arbitrary random variable Y : Ω→ R, we write Y ≥ 0 whenever Y (ω) ≥ 0 for all ω ∈ Ω.
12All these papers start from a collection of preference relations, one for each frame R, and they first obtain an

expected utility representation conditional on each given frame. Subsequently, they study the relationship between the
different frame-dependent representations.

13A second difference – of relatively minor importance – between our setting the ones in all the aforementioned papers
is that, we allow for a state-dependent utility function (given each frame).

14This last assumption is removed in Section 6.2, where we consider decision problems Γ with |Γ| > 2.
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A choice rule is said to be rational if it prescribes a rational choice to every belief, i.e., formally
σ is rational in Γ, if σ(π) ∈ arg maxy∈Γ EπUy for all π ∈ ∆(Ω,R). Specifically in a binary decision
problem Γ = {0, x}, the threshold rule σp is rational if it prescribes conviction to every belief in

Cx := {π ∈ ∆(Ω,R) : EπVx ≥ 0}, (5)

and prescribes acquittal otherwise, i.e., formally σp(π) = x if and only if π ∈ Cx.

Definition 1. We say that px ∈ [0, 1] is the standard of reasonable doubt for x ∈ X+, if

Cx = Dpx . (6)

Notice that the standard of reasonable doubt is not a choice rule, but rather a probability threshold
such that, the juror prefers to convict the defendant (EπVx ≥ 0) if and only if the probability that she
attaches to him being guilty is above this threshold (π(G) ≥ px).

Example 1 (continued). Recall our example with Ω = {ω1, ω2, ω3}, G = {ω1, ω2} and R = G.
Moreover, let the decision problem be Γ = {0, 1} and the utility function be

Ux(ω) =

{
−x2 + 2x− 1 if ω ∈ G,
−x+ 1 if ω ∈ I,

which is obviously R-measurable. Then, observe that C1 = D1/2, thus implying that p1 = 1/2 is the
standard of reasonable doubt for x = 1. Hence, if the juror follows the threshold rule σ1/2, her choice
will always be rational, irrespective of her belief. /

Obviously, if the standard of reasonable doubt exists, then it is unique.15 On the other hand, if it
does not exist, no threshold rule is consistent with rationality. This last case is particularly interesting
when the use of a probability threshold is postulated by some institution, e.g., by the law. Then, non-
existence of the standard of reasonable doubt directly implies that the juror’s choice will definitely be
irrational, at least for some beliefs.

3. Existence of the standard of reasonable doubt

So far, we have defined the standard of reasonable doubt and we have introduced the corresponding
choice rule on the basis of it, but we have not answered the most fundamental question, viz., does px
always exist? In other words, is there some threshold p so that the choice rule σp is rational? As it
turns out, such threshold exists only under very stringent conditions.

Theorem 1. The standard of reasonable doubt px exists if and only if Vx is G-measurable.

Let us now discuss the implications of the previous theorem, focusing on two fundamental questions
that our result answers. First, when does the standard of reasonable doubt actually exist? And second,
when it does not exist, what happens if we still use a threshold choice rule?

We begin with the first question. Notice that Theorem 1 essentially says that the standard of reason-
able doubt does not exist, unless either (i) the juror reasons only about the defendant’s guilt/innocence
and nothing else, or (ii) she reasons about additional events which however she finds irrelevant for her

15Moreover, it is straightforward to show that, if px exists then it is necessarily the case that px ∈ (0, 1) (see bottom
of the proof of Theorem 1 in the Appendix).
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decision. In fact, the previous two conditions cannot be identified from the juror’s preferences (Schip-
per, 2013).16 In either case, when the first condition is violated (i.e., when the juror reasons about
events outside the trivial frame G), the second condition is non-generic (i.e., the set of utility functions
that yield a G-measurable Vx is Lebesgue-null). Therefore, generically, the standard of reasonable
doubt exists if and only if the juror reasons only about events in G. In this sense – and given that in
real life we expect most jurors to reason about events outside G – it is justified to call Theorem 1 an
impossibility result.

Now, let us turn to our second question. Recall from the previous section that, when the standard
of reasonable doubt does not exist, every threshold rule is irrational for at least some beliefs. Thus,
one of the following three scenarios necessarily holds: the defendant is irrationally acquitted for some
beliefs (false positive), or the defendant is irrationally convicted for some beliefs (false negative), or
both. Which is the case, depends on the choice of the threshold. In either case, the bottom line is
that the juror will probably find herself in a difficult situation, where her own preferences will be in
conflict with the threshold rule.

Remark 2. Our notions of “false positive” and “false negative” are slightly different from the usual
type I and type II errors. In particular, our terms refer to (ex ante) mistakes made by the juror in
expectation, and not to mistakes in the sense of (ex post) wrongful choices. /

Example 2. Let Ω = {ω1, ω2, ω3}, with G = {ω1, ω2} and F = {ω2} denoting the event that the
defendant is guilty and the event that he intended to commit the crime, respectively. Furthermore,
assume that the juror reasons about every event in the power set of Ω, i.e., R = σ({F,G}) = 2Ω.
Moreover, let the decision problem be Γ = {0, 4} and the utility function be

Ux(ω) =


−2x2 + 10x if ω ∈ {ω1},
10x2 − 2x if ω ∈ {ω2},
−x if ω ∈ {ω3},

(7)

Then, observe that C4 6= Dp for every p ∈ [0, 1], thus implying that there is no standard of reasonable
doubt. Of course, this is obvious given our Theorem 1, as it is straightforward to verify that V4 is
not G-measurable. Let us also illustrate it graphically (on Figure 1). First, note that the shaded area
contains the beliefs in C4, whereas the area above the dashed line contains the beliefs in Dp, for each
p ∈ [0, 1]. Now, observe that the straight lines that are associated with C4 and Dp are not parallel
to each other and therefore the two areas will not coincide for any p ∈ [0, 1]. As a consequence,
the juror prefers to convict the defendant under the belief π1 and acquit him under π2, even though
π2(G) > π1(G).17 Hence, there is no threshold rule which is always rational. Indeed, for every p ∈ [0, 1]
the threshold rule σp will either induce an irrational acquittal (e.g., under π1 ∈ C4\Dp when p = 0.87),
or an irrational conviction (e.g., under π2 ∈ Dp \C4 when p = 0.21), or even both (under π1 ∈ C4 \Dp

and under π2 ∈ Dp \C4 when p = 0.50). That is, high thresholds lead to false positives, low thresholds
to false negatives, and intermediate thresholds to both. /

16Of course, Schipper (2013) considers a framework with state-independent preferences, but nevertheless the idea is
the same, i.e., the preferences over acts would be the same in the two aforementioned cases, and therefore by simply
looking at the juror’s choices we cannot tell which of the two holds when the standard of reasonable doubt exists, while
if the standard does not exist both are violated.

17Intuitively, this is because under π1 she deems much more likely (than under π2) that the defendant committed the
crime intentionally, conditional on him being guilty, i.e., π1(ω2|G) is much larger than π2(ω2|G).
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Figure 1: Nonexistence of the standard of reasonable doubt.

4. Towards resolving the impossibility result

The main implication of our Theorem 1 is that, generically, if the juror reasons about events outside
G, no threshold rule is rational. Thus, the obvious problem arises in cases where the use of probability
thresholds is postulated by an institution, like it is for instance the case in legal systems. Namely, we
ask: if we must pick one of the irrational threshold rules, which one shall we choose? 18

4.1. Weak standards of reasonable doubt

The answer to the previous question is far from obvious, as it depends on the society’s preferences
for irrationalities (i.e., for false positives and false negatives), which is not modelled in our case.
Nevertheless, even without explicitly introducing such a preference relation, if we simply assume that
the society has aversion to irrationalities, we can rule out some clearly undesirable and counter-
intuitive thresholds, using a dominance type of argument. Intuitively, if one threshold rule leads
to fewer irrationalities than another one, then the former rule dominates the latter, which is then
eliminated. The thresholds that survive elimination are henceforth called weak standards of reasonable
doubt and are formally defined below.

Definition 2. We say that pwx ∈ [0, 1] is a weak standard of reasonable doubt for x ∈ X+, if

max{0, p`x} ≥ pwx ≥ min{pux, 1}, (8)

where
pux := min{p ∈ [0, 1] : Cx ⊇ Dp} (9)

is the upper (weak) standard of reasonable doubt and

p`x := max{p ∈ [0, 1] : Cx ⊆ Dp} (10)

is the lower (weak) standard of reasonable doubt .19

18No such question arises when we are not restricted to using threshold rules. In such case, we can replace threshold
rules with more complicated choice rules, designed to minimize – or even avoid – irrationalities.

19The reason we use the minimum (resp., maximum) instead of the infimum (resp., supremum) is that in our case the
two coincide, due to the fact that {p ∈ [0, 1] : Cx ⊇ Dp} (resp., {p ∈ [0, 1] : Cx ⊆ Dp}) is closed.
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Before moving forward, let us first point out that whenever the upper standard and the lower
standard exist, it will always be the case that pux ≥ p`x, with equality holding if and only if px exists
(see Proposition 1 below). Later in the paper, we also provide necessary and sufficient conditions for
the existence of our two extreme standards, p`x and pux (see Propositions 2 and 3 respectively).

Now, the first obvious task is to formally describe the – so far informally stated – dominance
concept, and to show that our weak standards are indeed exactly those that survive elimination. For
an arbitrary x ∈ X+ and an arbitrary p ∈ [0, 1] we define the set of beliefs for which the threshold rule
σp prescribes a rational choice, by

Rp
x := {π ∈ ∆(Ω,R) : σp(π) ∈ arg max

y∈{0,x}
EπUy}. (11)

Obviously, the set of beliefs in ¬Rp
x, for which σp prescribes an irrational choice, can be partitioned

into those inducing a false positive P p
x := Cx \Dp and those inducing a false negative Np

x := Dp \ Cx
(e.g., see Example 2 in the previous section).

We say that the threshold rule σp dominates the threshold rule σp′ (or simply, p dominates p′)
whenever Rp

x ) Rp′
x , i.e., whenever σp induces fewer irrationalities than σp′ . In these cases σp′ is called

dominated, and it is therefore eliminated.

Theorem 2. The threshold p is a weak standard of reasonable doubt if and only if σp is not dominated.

Now, let us provide some additional intuition for our weak standards. The upper standard of
reasonable doubt is the only undominated threshold that never induces irrational convictions but may
induce irrational acquittals. In this sense, pux implicitly postulates extreme aversion to false negatives.
On the other hand, the lower standard of reasonable doubt is the only undominated threshold that
never induces irrational acquittals but may induce irrational convictions. Thus, p`x implicitly postulates
extreme aversion to false positives. All other weak standards will induce both false negatives and false
positives. In fact, while moving our probability threshold upwards along the interval (p`x, p

u
x), we will

obtain fewer irrational convictions and more irrational acquittals. Thus, in order to choose one of the
weak standards of reasonable doubt, we need to impose additional structure on the society’s preferences
for irrationalities, i.e., we need to make the trade-off between false positives and false negatives explicit,
which we do not formally do in this paper.

Example 2 (continued). Recall the example from the previous section, now depicted on Figure 2. As
we have already discussed, the standard of reasonable doubt does not exist, and therefore no threshold
rule is rational. It is rather straightforward to see that pu4 = 0.83 and p`4 = 0.21 are the upper and
the lower standard of reasonable doubt respectively. Indeed, σpu4 induces irrational acquittals (viz., for
beliefs in the shaded area below the upper dashed line), but no irrational convictions (viz., all beliefs in
the blank area lead to an acquittal). Likewise, σp`4 induces irrational convictions (viz., for beliefs in the
blank area above the lower dashed line), but no irrational acquittals (viz., all beliefs in the shaded area
lead to a conviction). Obviously, probability thresholds p > pu4 still lead to no irrational convictions,
but lead to strictly more irrational acquittals, and therefore p is dominated by pu4 . Likewise, probability
thresholds p < p`4 still lead to no irrational acquittals, but lead to strictly more irrational convictions,
and therefore p is dominated by p`4. On the other hand, every pw4 ∈ (p`4, p

u
4) (e.g., pw4 = 0.50) leads to

fewer irrational acquittals and more irrational convictions than pu4 , and it also leads to fewer irrational
convictions and more irrational acquittals than p`4, thus illustrating the trade-off between false positives
and false negatives that emerges when we compare undominated probability thresholds. /

Remark 3. The underlying idea behind introducing our weak standards is similar to one that first
appeared in medicine (Pauker and Kassirer, 1980). Accordingly, instead of defining a single probability
threshold, Pauker and Kassirer (1980) define two distinct thresholds, a lower one and an upper one.
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π(ω1)

π(ω2)

1

1

pw4

0.50

pu4

0.83

p`4

0.21

Figure 2: Weak standards of reasonable doubt.

Then, the treatment is administered if the probability of the patient suffering from the disease is above
the upper threshold, it is not administered if the probability is below the lower threshold, while further
tests are ran if it lies between the two. Of course, the precise interpretation of our upper and lower
standard is different in the context of law, where there is no possibility of the juror requesting additional
evidence once the trial process has been completed, but nevertheless the main idea is strikingly similar.
In particular, Pauker and Kassirer’s (1980) upper threshold exhibits strong aversion to false negatives
(similarly to our pux), while their lower threshold induces strong aversion to false positives (similarly
to our p`x). Thus “running further tests” in their framework can be seen as a process of evaluating the
trade-off between false positives and false negatives. /

Now, going back to our original motivation for introducing the weak standards, the main idea was
to identify an irrational threshold rule when the standard of reasonable doubt does not exist. However,
our definition of the weak standards is also valid when the standard of reasonable doubt does exist. In
this last case, it is natural to ask what the relationship between the different standards of reasonable
doubt is. Indeed, the following result shows that in this case all standards coincide, i.e., pux = p`x = px.

Proposition 1. The standard of reasonable doubt px exists if and only if pux = p`x.

Remark 4. The previous analysis provides an answer to a long-standing debate within the law liter-
ature, between those in favor of explicitly specifying the standard of reasonable doubt (Kaplan, 1968)
and those against it (Tribe, 1971).20 In particular, according to the previous proposition, there exist
multiple (undominated) thresholds, whenever the juror reasons about events outside G. Thus, it is un-
clear which one the lawmaker had in mind, thus making it virtually impossible to pin down a unique
threshold. The irony in our proposed resolution is that we reach the same conclusion as Professor
Tribe using decision-theoretic tools, even though his argument (against specifying the standard) is
partly based on the overall non-suitability of decision theory for court decisions. /

4.2. Existence of the weak standards of reasonable doubt

Finally, let us turn our attention to existence, focusing on the two extreme standards. Starting with the
lower standard, the following result proves that it always exists, i.e., we can always find an undominated
threshold rule that postulates extreme aversion to irrational acquittals (false positives).

20For a detailed comparative analysis of the two views, see Milanich (1981). For a more recent discussion on whether
and how the standard of reasonable doubt should be quantified, see Newman (2006) and references therein.
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Proposition 2. The lower standard of reasonable doubt p`x always exists.

Now let us turn our attention to the upper standard. The following result shows that the upper
standard exists if and only if the juror prefers to always convict a guilty defendant, irrespective of the
circumstances under which the crime could have been committed, i.e., in order for an undominated
threshold rule that postulates extreme aversion to irrational convictions (false negatives) to exist, it
must necessarily be the case that the juror always prefers to convict a guilty defendant (e.g., see
Example 2 in the previous section).

Proposition 3. The upper standard of reasonable doubt pux exists if and only if Vx(ω) ≥ 0 for all
ω ∈ G.

Example 2 (continued). Recall the example from the previous section, now letting the underlying
decision problem be Γ = {0, 6} instead (henceforth see Figure 3). Notice that there exists some ω ∈ G
such that V6(ω) < 0. Indeed, for severe sentences the juror prefers to acquit a guilty defendant if he
committed the crime unintentionally, i.e., V6(ω1) = −1. For starters, it is easy to see that p`6 = 0.15 is

π(ω1)

π(ω2)

1

1

p`6

0.15

π0

Figure 3: Nonexistence of the upper standard of reasonable doubt.

the lower standard of reasonable doubt. However, notice that there is no upper standard of reasonable
doubt, i.e., there is no p ∈ [0, 1] such that C6 ⊇ Dp. Indeed, even if we set p = 1, the juror may still
prefer to acquit the defendant, viz., π0 attaches probability 1 to G, and still Eπ0V6 < 0. This is because
π0 assigns sufficiently high probability to the defendant having committed the crime unintentionally,
conditionally on him being guilty, in which case she prefers to acquit him. Finally, observe that – even
though pu6 does not exist – every pw6 ∈ [p`6, 1] is a weak standard. /

5. Empirical implications

There is a large volume of applied research on the standard of reasonable doubt (e.g., see Simon and
Mahan, 1971; Nagel, 1979; Dane, 1985; Connolly, 1987; Dhami, 2008, and references therein). One
striking finding is that the estimates of the standard of reasonable doubt induced by the different
elicitation approaches significantly differ from each other.21 In particular, direct questioning relies on
explicitly asking subjects – e.g., students or mock jurors or actual judges – to state their probability
threshold for convicting a defendant, and it typically yields an estimate of approximately 0.90 (e.g., see
Simon and Mahan, 1971). On the other hand, the decision-theoretic approach relies on asking subjects

21For an early overview of the different elicitation methods, see Dane (1985).
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– from similar pools as above – to evaluate the four basic scenarios, i.e., “convict the guilty”, “convict
the innocent”, “acquit the guilty” and “acquit the innocent”. Then, using these values as utilities,
the respective probability threshold is computed, which typically falls in the range of 0.50 − 0.60
(e.g., see Nagel, 1979; Dane, 1985). Furthermore, while the decision-theoretic approach does better at
predicting actual behavior than direct questioning, none of the two is a particularly good predictor (e.g.,
Dane, 1985; Connolly, 1987). There are different proposed explanations for this discrepancy, based on
either operational or conceptual or psychological arguments, such as for instance the vagueness of the
instructions or the framing of the questions (for an overview, see Connolly, 1987, pp. 110–111). Here,
using our theory, we propose a new one.

For starters observe that the decision-theoretic approach essentially restricts the experimental sub-
jects to reason only about the events in G. Thus, the standard of reasonable doubt px always exists,
which is probably what we (indirectly) elicit with this method.

On the other hand, direct questioning is not as explicit in specifying the subject’s frame R, which
could very well be finer than G, especially when the question is based on a specific – actual or simulated
– case, like for instance in Dane (1985). In this case, the standard of reasonable doubt does not exist,
meaning that we probably elicit some weak standard of reasonable doubt pwx ∈ [p`x, p

u
x]. Of course

in this case, the elicited threshold should be interpreted as the subject’s most preferred threshold
among the irrational ones that are available, i.e., it would reflect not only the subject’s preference over
outcomes, but also the subject’s preference for rationality from a normative point of view. This may
also explain the low predictive capacity of direct questioning, in the sense that the subjects report
an irrational threshold rule – either their most preferred one or perhaps the one that they think that
society postulates – but in the end they choose rationally when the actual decision needs to be taken,
and therefore their actual choice may easily contradict their stated threshold (e.g., see Dane, 1985;
Connolly, 1987). In fact, since direct questioning yields consistently high estimates, we conjecture
that the subjects report a threshold closer to the upper standard. This would suggest that subjects
prefer irrational acquittals (false positives) over irrational convictions (false negative). The latter is
also consistent with the conventional wisdom that the threshold postulated by the law is quite high.

In either case, our previous analysis is quite informal. While our theory provides a plausible
explanation for the aforementioned discrepancy between the different elicitation methods, it still needs
to be formally tested, both normatively (i.e., in terms of whether it captures the jurors’ interpretation
of the law) and descriptively (i.e., in terms of whether it predicts well the jurors’ actual decision).

6. Discussion

6.1. Belief restrictions

Throughout the paper, we have followed a belief-free approach in the sense that a choice rule is deemed
rational if it prescribes a rational choice for every belief in ∆(Ω,R). However, it is often the case that
during the trial some beliefs are ruled out based on the evidence presented to the court. For instance,
if the defendant admits that he killed the victim, the juror rules out all the beliefs that put positive
probability to the defendant not having done it. Thus we ask the following natural question: how
should we adapt our theory when such an exogenous restriction is imposed on the juror’s beliefs?

Let us focus on cases where the belief restriction captures the idea that an event in R has been
proven in court, like for instance in the example above. In particular, let K ∈ R be the event that the
defendant killed the victim, thus implying that only beliefs in ∆(K,R) := {π ∈ ∆(Ω,R) : π(K) = 1}
are considered by the juror. In this case, all our definitions should be adjusted conditional on the
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beliefs in ∆(K,R). In particular, Cx and Dp are respectively replaced by

CK
x := {π ∈ ∆(K,R) : EπVx ≥ 0} ⊆ Cx,

DK
p := {π ∈ ∆(K,R) : π(G) ≥ p} ⊆ Dp,

and all our results hold verbatim.
Indeed, the conditional standard of reasonable doubt exists if CK

x = DK
p for some p ∈ [0, 1]. It is

quite straightforward to verify that if the standard of reasonable doubt exists unconditionally, then
it also exists conditional on any K ∈ R. The converse is not necessarily true, e.g., in Example 1 the
standard of reasonable doubt exists conditionally on E = {ω2, ω3}, but not unconditionally. Likewise,
the conditional upper standard of reasonable doubt exists if and only if K ∩ {ω ∈ G : Vx(ω) < 0} = ∅,
i.e., if and only if the prosecution has proven that states of the world where the juror prefer to acquit a
guilty defendant have not occurred. In fact, if the juror actually uses the upper standard of reasonable
doubt as her threshold for conviction (as suggested in Section 5), it is not even enough for the prosecutor
to prove that π(G) = 1, unless he has also proven that π({ω ∈ G : Vx(ω) < 0}) = 0. In this sense, the
burden of proof may become quite heavy.

6.2. Multinomial choice

So far throughout the paper, our analysis has focused exclusively on binary decision problems Γ =
{0, x}. Now suppose instead that the juror does not just choose whether to acquit or convict the
defendant, but also picks the sentence to be issued in case she convicts him, i.e., formally, |Γ| > 2 (e.g.,
see Lundberg, 2016). This case also resembles the one in the safety-first principle from finance, where
the investor can usually choose from a large set of assets (Telser, 1955-56). Then, the juror will prefer
to convict the defendant if her beliefs belong to

CΓ := {π ∈ ∆(Ω,R) : max
x∈Γ

EπVx ≥ 0}.

Obviously this set of beliefs is not necessarily associated with a hyperplane, as illustrated in Figure 4,
which depicts the adaptation of Example 2 with Γ = {0, 2, 4}, i.e., more specifically CΓ 6= Dp for all
p ∈ [0, 1]. Therefore, a version of Theorem 1 will still hold. In fact, it will be even harder to find a
rational threshold rule.

π(ω1)

π(ω2)

1

1

p`Γ

0.21

puΓ

0.51

Figure 4: The standards of reasonable doubt with |Γ| > 2.

Now, let us switch attention to the weak standards of reasonable doubt, defining the upper and the
lowed standard by puΓ := min{p ∈ [0, 1] : CΓ ⊇ Dp} and p`Γ := max{p ∈ [0, 1] : CΓ ⊆ Dp} respectively.
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The two extreme standards are graphically illustrated in Figure 4. Notice that whenever the two
extreme standards exist, it is the case that puΓ ≤ pux and p`Γ ≤ p`x for all x ∈ Γ. This last conclusion
is consistent with the one of Lundberg (2016), who showed that leaving the sentence at the juror’s
discretion leads to a lower probability threshold.

Finally, note that p`Γ always exists, as p`Γ = minx∈Γ p
`
x. On the other hand, puΓ does not always

exist. Nevertheless, it is “easier” for an upper standard of reasonable doubt to exist when the decision
problem contains more choices, e.g., if pux exists for at least one x ∈ Γ, so does puΓ.22

6.3. Subjective perception

Throughout the paper we have assumed that the juror shares the same interpretation of the events inR
as the lawmaker. Now, consider the possibility that the juror perceives certain events differently, e.g.,
suppose that according to the law self-defense implies guilt, whereas according to the juror it implies
innocence. Formally speaking – borrowing terminology from logic – the juror and the lawmaker would
attach different semantics (viz., a different set of states) to the same syntactic proposition (viz., guilt
in the previous example). This distinction is particularly relevant when the interpretation of certain
relevant events is not transparent, e.g., in antitrust cases. In either case, all our results will still hold,
by taking R to be the juror’s perceived frame, even if the latter differs from the lawmaker’s intended
frame.

A. Proofs

Let us first introduce some additional machinery that we will need to prove some of our results. Let P be
the (finite) partition of Ω that induces the frame R, i.e., formally, P is a subcollection of nonempty events
in R such that (i) P1 ∩ P2 = ∅ for all P1, P2 ∈ P, and (ii) for every E ∈ R there exist P1, . . . , Pn ∈ P such
that E = P1 ∪ · · · ∪ Pn. It is well known that such a partition always exists. Since every event in P is
R-measurable, we define Vx(P ) := Vx(ω) for an arbitrary ω ∈ P . Then, notice that ∆(Ω,R) is identified with
the unit simplex over the finite set P, which spans the hyperplane

H =
{
q ∈ RP :

∑
P∈P

q(P ) = 1
}

of the |P|-dimensional euclidean space. Moreover, for any convex set M ⊆ H, let δ∗(·|M) : H → R be the
support function of M , defined by

δ∗(q|M) := sup
{ ∑
P∈P

π(P )q(P )
∣∣∣ π ∈M }

for each q ∈ H ⊆ RP . Then, it follows from Rockafellar (1970, p.112) that, for every q ∈ H,

M ⊆
{
π ∈ H :

∑
P∈P

π(P )q(P ) ≤ p
}
⇔ p ≥ δ∗(q|M). (A.1)

Proof of Theorem 1. Necessity (⇒). Let px be the standard of reasonable doubt. Consider the following

22Observe that this not an if-and-only-if statement, i.e., there may exist some Γ = {0, x, y} with puΓ existing, even
though neither pux nor puy exists.
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hyperplanes of H,

Hc :=
{
q ∈ H :

∑
P∈P

q(P )Vx(P ) = 0
}

Hd :=
{
q ∈ H :

∑
P∈P

q(P )Wx(P ) = px
}

=
{
q ∈ H :

∑
P∈P

q(P )Wx(P ) =
∑
P∈P

q(P )px
}

=
{
q ∈ H :

∑
P∈P

q(P )(Wx(P )− px) = 0
}
,

where Wx(P ) := 1 if P ⊆ G and Wx(P ) := 0 otherwise. Notice that Hc and Hd are the hyperplanes associated
with the half-spaces Cx and Dpx respectively. Hence, by the fact that Cx = Dpx it follows that Hc = Hd.
Thus, there exists some λ ∈ R such that Vx(P ) = λ(Wx(P ) − px) for all P ∈ P. That is, Vx(P ) = λ(1 − px)
for each P ⊆ G and Vx(P ) = −λpx for each P ⊆ I. Therefore Vx is G-measurable.

Sufficiency (⇐). Let Vx be G-measurable. Define Vx(G) := Vx(P ) for P ⊆ G and Vx(I) := Vx(P ) for
P ⊆ I. Notice that by (A0), it is the case that Vx(I) < 0. Moreover, since x is nontrivial, we also obtain
Vx(G) > 0. Thus,

Cx =
{
π ∈ ∆(Ω,R) :

∑
P∈P

π(P )Vx(P ) ≥ 0
}

= {π ∈ ∆(Ω,R) : π(G)Vx(G) + (1− π(G))Vx(I) ≥ 0}
= {π ∈ ∆(Ω,R) : π(G)(Vx(G)− Vx(I)) ≥ −Vx(I)}
= {π ∈ ∆(Ω,R) : π(G) ≥ Vx(I)/(Vx(I)− Vx(G))}
= Dpx ,

where px := Vx(I)/(Vx(I)− Vx(G)). And obviously px ∈ (0, 1), since Vx(I) < 0 and Vx(G) > 0.

Proof of Theorem 2. Necessity (⇒). Suppose that pwx is a weak standard of reasonable doubt, i.e., let
pux ≥ pwx ≥ p`x. Now, unless pwx = 1, consider an arbitrary p > pwx ≥ p`x, thus obtaining Dp ( Dpwx and

Cx * Dp. Hence, it will necessarily be the case that P
pwx
x ( P px , and therefore R

pwx
x * Rpx, i.e., σpwx is not

dominated by σp. Likewise, unless pwx = 0, consider an arbitrary p < pwx ≤ pux, in which case we get Dp ) Dpwx

and Cx + Dp. Then, similarly to the previous case, it will necessarily be the case that N
pwx
x ( Np

x , and

therefore R
pwx
x * Rpx, i.e., σpwx is again not dominated by σp, which completes the proof.

Sufficiency (⇐). Suppose that p is not a weak standard of reasonable doubt, i.e., let either p > pux or
p < p`x. Of course, p > pux (resp., p < p`x) can hold only if the upper standard (viz., the lower standard) exists
and is strictly less than 1 (resp., strictly greater than 0). So let us start by taking p > pux where pux < 1. Then,

by (9), we obtain Cx ⊇ Dpux ) Dp. Hence, it is the case that N
pux
x = Np

x = ∅ and P
pux
x ( P px , thus implying

R
pux
x ) Rpx, i.e., σp is dominated by σpux . Likewise, if we take p < p`x with p`x > 0, then by (10), we obtain

Cx ⊆ Dp ( Dp`x
. Therefore, N

p`x
x ( Np

x and P
p`x
x = P px = ∅, thus implying R

p`x
x ) Rpx, i.e., σp is dominated by

σp`x , which completes the proof.

Proof of Proposition 1. Necessity (⇒). Let px be the standard of reasonable doubt, i.e., it is the case that
Cx = Dpx . Then, it will necessarily be the case that Rpxx = ∆(Ω,R), i.e., the choice prescribed by σpx(π) is
rational for every belief π ∈ ∆(Ω,R). Hence, for every p ∈ [0, 1] it is the case that Rpxx ⊇ Rpx. Indeed, pick
an arbitrary p < px, which always exists (see Footnote 15). In this case, Dp ) Dpx , and therefore Dp ) Cx.
Hence, ¬Rpx 6= ∅, and therefore Rpxx ) Rpx, thus implying that px dominates p. Hence, by Theorem 2, we
obtain p /∈ [p`x, p

u
x]. Likewise, pick an arbitrary p > px, which again always exists (see Footnote 15). In this

case, Dp ( Dpx , and therefore Dp ( Cx. Hence, Rpxx ) Rpx, again implying, by Theorem 2, that p /∈ [p`x, p
u
x].

Therefore, the only threshold in [p`x, p
u
x] is px itself, thus completing this part of the proof.

Sufficiency (⇐). Let pux = p`x, implying by definition that {p ∈ [0, 1] : Cx ⊇ Dp}∩{p ∈ [0, 1] : Cx ⊆ Dp} 6=
∅. Hence, there exists some px ∈ [0, 1] such that Cx = Dpx .
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Proof of Proposition 2. Now take M := Cx, which is obviously convex, as it is the intersection of a simplex
and a half-space. Moreover, set q := −Wx, where similarly to the previous proof, Wx(P ) := 1 if P ⊆ G and
Wx(P ) := 0 otherwise. Furthermore, let p`x := −δ∗(−Wx|Cx). Hence,

Cx ⊆ Dp ⇔ M ⊆ {π ∈ ∆(Ω,R) : −π(G) ≤ −p}
⇔ −p ≥ −p`x
⇔ p ≤ p`x, (A.2)

with the first and the third equivalence being obvious, and the second equivalence following from (A.1).
Hence, it suffices to prove that p`x ∈ [0, 1]. We proceed by contradiction, first supposing that p`x < 0. Then,
by (A.2), it follows that there is no p ∈ [0, 1] such that Cx ⊆ Dp, which obviously contradicts the fact that
D0 = ∆(Ω,R). Finally, suppose that p`x > 1. Then, again by (A.2), it follows that Cx ⊆ Dp for all p ∈ [0, 1],
and in particular it follows that Cx ⊆ D1. Now recall that x is nontrivial, and therefore there exists some
P ∈ P with Vx(P ) > 0. Moreover, take an arbitrary P ′ ∈ P with P ′ ⊆ I, and recall that Vx(P ′) < 0, by (A0).
Then, define πε ∈ ∆(Ω,R) so that π(P ) = ε and π(P ′) = 1−ε, and notice that EπεVx = εVx(P )+(1−ε)Vx(P ′)
is continuous in ε. Hence, there exists some ε ∈ (0, 1) such that EπεVx > 0, thus implying that πε ∈ Cx \D1,
which completes the proof.

Proof of Proposition 3. For the most part, we follow similar steps as in the proof of Proposition 2. Take
M := ¬Cx, and set q := Wx and pux := δ∗(Wx|Ax). Hence,

Cx ⊇ Dp ⇔ Cx ⊇ {π ∈ ∆(Ω,R) : π(G) > p}
⇔ M ⊆ {π ∈ ∆(Ω,R) : π(G) ≤ p}
⇔ p ≥ pux, (A.3)

with the first equivalence following from the fact that Cx is closed and Dp = clos({π ∈ ∆(Ω,R) : π(G) > p}),
the second equivalence following from M = ¬Cx, and the third equivalence following from (A.1). Hence, it
suffices to prove that pux ∈ [0, 1] if and only if Vx(P ) ≥ 0 for all P ∈ P with P ⊆ G.

Step 1. First we prove that pux ≥ 0 irrespective of whether Vx(P ) ≥ 0 for all P ⊆ G or not. Suppose
instead that pux < 0. Then, by (A.3), we obtain Cx ⊇ D0 = ∆(Ω,R), which contradicts (A0).

Step 2. Second, we prove that pux > 1 if and only if Vx(P ) < 0 for some P ⊆ G, which is obviously
equivalent to what we want to show. Indeed, let pux > 1, which (by (A.3)) is equivalent to Cx + D1. The
latter is true if and only if there exists some π ∈ ∆(Ω,R) simultaneously satisfying π(G) = 1 and EπVx < 0.
Finally notice that this is the case if and only if Vx(P ) < 0 for some P ⊆ G.
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