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Abstract

Economic agents often seek to acquire information before taking an important action, but
in many domains, gathering this information requires approval from a regulator. This
paper develops a model in which an agent designs an experiment to inform his decision,
but can only implement it if a regulator authorizes it ex ante. We characterize the agent’s
optimal experiment under this approval constraint and show that, whenever the regulator
rejects full revelation, the agent strategically reduces informativeness in the states where
their disagreement is least sensitive. We then extend the model to settings with multiple
regulators, comparing sequential and collective approval mechanisms. The analysis yields
predictions for how institutional structure shapes access to information, with applications
to clinical trials, data privacy, and ethics boards.
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1 Introduction

Should an employer be allowed to test whether a candidate has a genetic condition?
Should a police department target searches based on ethnicity-related data? Should
a company be allowed to access users’ private data to tailor prices or offers? These
questions exemplify a growing tension across many domains: agents often want to acquire
precise information before taking an action, but regulators may wish to restrict the use
or collection of such information due to ethical, legal, or societal concerns.

In such settings, regulators are not only concerned with the actions agents take, but
with the experiments they run to inform those actions. Importantly, these regulators
often act as a representative of broader societal interests. For example, society may
object to employers accessing genetic records, or to insurers pricing based on personal
medical history. Likewise, individuals may oppose firms harvesting private data to tailor
prices or services. These concerns reflect the broader insight that not all information is
socially beneficial (Hirshleifer, 1971): while it may improve the agent’s private decision-
making, it can also undermine fairness, risk-sharing, or consumers’ privacy (Hackmann
et al., 2015; Agan and Starr, 2018; Galperti and Perego, 2023), and in turn, reduce
overall social welfare. From this perspective, the regulator’s role is to prevent precisely
those experiments that might generate private benefits but impose broader social costs.

This type of institutional oversight is widespread—in domains ranging from clinical
trials and criminal investigations to data privacy and employment screening'—but has re-
ceived limited attention in standard economic models. Existing frameworks in information
design typically focus on settings where the experimenter acts alone or is constrained only
by internal objectives. While recent work has begun incorporating external limitations,
such as discriminatory concerns or privacy constraints (Onuchic and Ray, 2023; Strack
and Yang, 2024), the role of formal institutional approval, where an external regulator is

responsible to authorize the agent’s information acquisition, remains understudied. Un-

'For instance, Institutional Review Boards (IRBs) and FDA panels must approve clinical trials in
advance; under the GDPR, data collection protocols may require prior consultation with supervisory
authorities; and U.S. law limits pre-employment screening through regulations such as the Genetic In-
formation Nondiscrimination Act. See U.S. Department of Health and Human Services (2022), 45 CFR
§46.108; European Union (2016), GDPR Articles 64-65; and U.S. Equal Employment Opportunity Com-
mission (2010).



derstanding how such regulatory constraints shape experimentation is both conceptually
and practically important. It has direct implications for how firms design screening proce-
dures, how companies access private data, or how researchers run experiments involving
human subjects. This paper develops a simple and flexible framework to analyze this

question.

We study a model in which an agent chooses between two actions whose payoffs depend
on an unknown state of the world. Before acting, the agent can design an experiment
to learn about the state, but it must be approved by a regulator who shares the same
prior but values actions differently. The regulator evaluates the experiment ex ante and
approves it only if it yields a higher expected payoff than the agent’s baseline action
under the prior. This creates a constraint on the space of admissible experiments. The
central tension is simple: the agent prefers the most informative experiment (i.e. the one
that perfectly reveals the state) but the regulator may block it if it induces actions she
finds undesirable in some states. In those cases, we find that the agent must design an
experiment that leaves the regulator exactly indifferent between approval and rejection.
As a result, when the agent and the regulator disagree, the regulator reaches exactly her
objective: She is not made worse off by the experimenter; but not better off either. We
then characterize the structure of optimal experiments under this approval constraint. The
key insight is that the agent distorts the experiment selectively, reducing informativeness
in states where his disagreement with the regulator is most salient. This yields a full

characterization of optimal experiments along the Pareto frontier of feasible payoffs.

Example 1. Suppose an employer is deciding whether to hire a promising candidate
for a long-term position. Based on the interview, the employer suspects there is a 20%
chance the candidate may have cancer. He is risk-neutral and would prefer not to hire
someone with a serious medical condition. Human Resources (HR), however, serves as a
regulator in this context: it shares the same information as the employer but is concerned
only with a fair evaluation based on the candidate’s qualifications, not her health status.
Table 1 shows the payoffs to the employer (agent) and HR (regulator) under each action

and state.

With no additional information, the employer chooses to hire. However, he would pre-
fer to run a background check to learn the candidate’s health status before deciding. If the

background check perfectly reveals whether the candidate has cancer, the employer will



States

Cancer No Cancer

Hire (-1, 1) (1, 1)
Actions
Not Hire (0, 0) (0, 0)

Table 1: Payoffs for agent and regulator.

always decline to hire her when the condition is confirmed—resulting in lower expected
utility for HR than the baseline of hiring without further information. Anticipating this,
HR blocks the use of fully revealing tests. In response, the employer designs a back-
ground check that is deliberately noisy: fuzzy enough that he sometimes hires even if
the candidate has cancer. By reducing informativeness in just the right way, he leaves
HR exactly indifferent between approval and rejection. The experiment is thus distorted
not uniformly, but selectively: informativeness is sacrificed precisely where HR’s and the
employer’s incentives diverge.

While our baseline model involves a single regulator, many institutional settings in-
volve more than a single regulator. In some cases, an agent can appeal a rejected proposal
to higher authorities (e.g. IRBs and FDA in clinical trials); in others, a panel or board
jointly decides whether to authorize an experiment (e.g. GDPR boards). To capture such
structures, we extend the model to environments where multiple regulators must approve
the agent’s information acquisition. Even when regulators share aligned preferences, the
order and structure of the approval process play a critical role in shaping what kinds of
experiments are ultimately allowed.

To analyze such settings, we introduce a comparative framework that formalizes how
permissive or restrictive a regulator is (what we call strictness). This notion allows us to
rank regulators by how tightly they constrain the agent’s ability to acquire information.
When approval is sequential, such as in appeals, what matters most is who reviews the
experiment last. If the final authority is highly restrictive, the agent must dilute the
experiment enough to satisfy her, even if earlier reviewers were more permissive. When
approval is collective, such as through committee voting, the pivotal regulator is the one
in the middle. In this case, the implemented experiment reflects the preferences of the

median reviewer, not the strictest or most lenient. We illustrate these insights through



applications to clinical trials, criminal investigations, data privacy, and medical review

boards.

Related Literature. Concerns about harmful or sensitive information are well docu-
mented across a range of applied settings, but typically addressed in isolation. McClellan
(2022) studies how ethics boards regulate clinical trials to limit health risks. Strack and
Yang (2024) analyze how data protection rules constrain firms’ ability to extract private
information under privacy-preserving detection constraints. Agan and Starr (2018) show
that employment regulations, such as Ban-the-Box policies, restrict access to criminal
records in hiring to reduce discrimination. These papers reflect a growing recognition
that society may not want certain types of information to be acquired or used, even when
doing so would improve decision-making (Hirshleifer, 1971; Morris and Shin, 2002; Ti-
role, 2016). What remains missing, however, is a unified framework to study how these
concerns operate across domains, and how they shape the design of experiments and in-
formation acquisition. We address this gap by modeling the regulator as an institutional
proxy for society. That is, one that evaluates experiments ex ante and blocks those that

would reduce expected social welfare.

In canonical models of information design, such as Kamenica and Gentzkow (2011), a
sender strategically designs experiments to influence a receiver’s action, typically under
full autonomy. Subsequent work has explored settings in which the sender faces limita-
tions—whether technological, informational, or ethical. Doval and Skreta (2024) study
arbitrary restrictions on the set of feasible experiments, while Ichihashi (2019) examines
how limits on the sender’s own information affect optimal persuasion. Privacy-motivated
constraints also appear in Ichihashi (2020), where consumers restrict the flow of data
to digital platform. While these papers consider rich constraint structures, they gener-
ally treat the limits as exogenous and internal to the sender’s environment. In contrast,
we model regulation as an institutional approval constraint: the regulator evaluates the
experiment ex ante and can veto its implementation. This external approval require-
ment alters the agent’s optimization problem, forcing him to design experiments that are

deliberately less informative in ways that align with the regulator’s preferences.

Our paper also contributes to a growing literature on delegated experimentation and
regulatory approval. Several studies model institutional review as an approval constraint

or persuasion device: Henry and Ottaviani (2019) analyze sequential drug trials under
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regulatory oversight, while Hu and Sobel (2022) interpret approval as a form of costly
persuasion. Closest in spirit is Wittbrodt and Yoder (2025), who study how a principal
can screen an agent’s private information by offering a menu of acceptable experiments.
In contrast, we consider a symmetric-information environment where the agent designs
a single experiment subject to external approval, and where approval operates as a bi-
nary constraint rather than a mechanism design menu. Methodologically, our paper is
broadly related to the literature on sequential information design. Doval and Ely (2020),
which examines how the timing of information release and commitment constraints affect
persuasion outcomes. Finally, our extension to multiple regulators introduces compar-
ative predictions across sequential and collective review institutions, providing insights
into appeals processes and board-based approvals, and relating to institutional models of
persuasion in political economy (e.g., Alonso and Camara, 2016; Bardhi and Guo, 2018).

The remainder of the paper is structured as follows: Section 2 introduces the model;
Section 3 characterizes the optimal experiment under approval constraints, Section 4 ex-
tends the framework to analyze multiple regulators, and derives comparative predictions;
Section 5 applies the results to institutional settings and compares sequential and collec-

tive approval processes; Section 6 concludes. All proofs are relegated to the appendix.

2 The Model

We consider a strategic interaction between an agent, who seeks to make an informed
decision, and a regulator, who can approve or block the agent’s experiment. The agent
chooses between two actions, A = {aj, a2}, whose consequences depend on the realized
state w € 2. The agent and the regulator share a common prior over states given by
o€ A(Q). The agent’s payoff from action a in state w is u(a,w), and the regulator’s
payoff is v(a,w). We use the index k& € {1,2} to denote any available action a, while
a, = arg max, u(a,w) and a, = argmax, v(a,w) for g,r € {1,2} denote the agent’s and
the regulator’s most preferred actions in state w, respectively. That is, a, and a, serve as
shorthand for the state-dependent optimal choices a4(w) and a,(w); we omit the argument
when the state is clear from context.

The agent can run an experiment to obtain information before choosing an action.
An experiment is a mapping oy, : 2 — [0, 1] for k = 1,2, where oy (w) is the probability

of receiving signal a; in state w. Since the action space is binary, two signal realizations



suffice to describe any experiment without loss of generality. Accordingly, we set oy (w) =
1 — 09(w). Thus, the posterior probability of state w given that the agent receives signal

ay is determined by Bayes’ rule:

C a)w)
Hla) = S i) .

We use o as shorthand for an experiment and denote the set of all experiments by .
Without loss of generality, the agent follows the experiment’s recommendation only if it
is incentive compatible, meaning that after receiving signal ay, the agent prefers action

ay. This imposes the following conditions:

Z (ar,w)u(wlay) > Z u(ag, w)p(wlay), Z (ag, w)p(wlag) > Z u(ay, w)p(wlas).
(2)
Then, the expected payoffs of the agent and the regulator under experiment o are

given by:

U(o) = ilw) Y onlw)ular,w), (3)

w k=1,2
= 3 3 exlelvion o) (@)
k=1,2

If the agent is unable to conduct an experiment, he chooses an action based on the
prior. Let a, be the agent’s prior-optimal action, i.e., a, € argmax, » ji(w)u(a,w). The
regulator approves an experiment o if and only if it does not reduce her expected utility

relative to the prior-based decision:

) > Z,u v(a,, w (5)

wes

Otherwise, the regulator blocks the experiment, and the agent chooses action a,.
Therefore, the agent’s problem is to select the experiment ¢ that maximizes his expected

utility subject to the regulator’s approval constraint:

maxU(o) s.t. ) > Z,u v(ay,, w (6)

oeY
wef



3 The optimal experiment

Let X* denote the set of experiments that solve the agent’s optimization problem in (6),
and let o0* € ¥* be one such optimal experiment. In the absence of a regulator, the
agent would choose an experiment that fully reveals the state w, allowing him to always
take his most preferred action a,(w). As usual, we refer to this experiment as the perfect
experiment, and denote it by o”%, which is defined as 6% : o,(w) =1 Vw € Q. Thus, if
no regulator were present, the agent would implement o* = o"'F.

However, because the regulator has the authority to block experiments, the agent may
not be able to implement the perfect experiment. The following proposition establishes
an important result: if the regulator does not approve the perfect experiment, then any
optimal experiment that the agent chooses will leave the regulator with an expected payoff
equal to what she would receive if no experiment was carried out. That is, the regulator is

never strictly better off compared to the baseline where the agent selects an action based

only on the prior.

Proposition 1. If the perfect experiment o is not approved by the requlator, then for
every optimal experiment o* € ¥*, the requlator’s expected payoff remains unchanged

compared to the prior, i.e., V(0*) = > .q i(w)v(ay,w).

This implies that whenever the agent and the regulator disagree—meaning the perfect
experiment is not implementable—the agent must design an experiment that makes the
regulator exactly indifferent between accepting and rejecting it. In this case, the approval
constraint binds, and any allowed experiment lies on the threshold of what the regulator
is willing to accept.

This result reflects the idea that when the agent’s interests diverge from those of the
regulator, the regulator can prevent harm but cannot enforce improvements. Her role
is protective: she ensures that information acquisition does not reduce expected societal
welfare, but she cannot compel the agent to generate surplus for others if it conflicts with
his own incentives.

To better understand the structure of optimal experiments, we now characterize the
set of feasible payoff pairs and the corresponding Pareto frontier. We call a payoff pair

(z,y) € R? feasible if there exists an incentive-compatible experiment o € 3 such that



(V(0),U(0)) = (x,y). Let F' be the set of all such feasible payoff pairs:
F={(V(0),U(0)) | o €5+ (2)}.

The Pareto frontier consists of the maximal elements of F', i.e., those (x,y) € F for which
there exists no (2/,y') € F with 2’ >z, ¥/ > y, and at least one inequality strict.

To describe experiments on the Pareto frontier, we classify states according to whether
the agent’s and the regulator’s preferred actions coincide or not. For each g,r € {1,2},
define:

Q= {w € Q| argmaxu(a,w) = a,, argmaxv(a,w) = ar} :
a a

This partitions the state space into four mutually exclusive regions: € 1,€ 2,2, and
(2 5. For states in which the agent and the regulator disagree—that is, w € €2; 2USQy ;—we

define the slope of state w as:

v(ag,w) —v(ag,w)
= it Q
m(w) u(ay,w) — ulag,w) orw €
m(w) = vlar,w) = v(ay, @) for w € Q
u(ag, w) — u(ay,w) 21

Finally, we define two sets of states based on how the experiment ¢ allocates signal

probabilities across states where the agent and the regulator disagree:

Qo) ={w e M| o1(w) >0} U{w € Ny | 09(w) > 0},
Q (o) :={we Qo |o1(w) >0} U{w € Q2| o2(w) > 0}.

Note that a state w € Q may appear in both Q% (o) and Q (o) depending on how the
experiment distributes signal probabilities.
The following proposition characterizes the structure of experiments on the Pareto

frontier:

Proposition 2. Let (U(o),V (o)) be on the Pareto frontier. Then:

a) op(w) =1 for every w € Qi and every k € {1,2};

b) If ' € Q (0) and " € QT (o), then m(w') > m(w").

This result provides two key insights into the structure of optimal experiments when
the agent is constrained by the regulator’s approval. Part (a) states that in any state

where the agent and the regulator agree on the preferred action, the experiment always



reveals the state perfectly. These states do not generate any conflict, so there is no reason
to withhold information. Part (b) applies to the states where preferences diverge. It shows
that the agent strategically prioritizes states with a higher relative cost to the regulator
for full revelation. Specifically, when moving away from the perfect experiment, the agent
first distorts information in states with higher slope values m(w) (i.e. those in Q7 (o))
before doing so in states with lower slope values. Intuitively, these are the states where
reducing informativeness harms the agent the least relative to the regulator’s gain.

Together with Proposition 1, this implies that when the perfect experiment is not
acceptable to the regulator, the agent constructs an optimal experiment by selectively
deviating from full revelation in the least painful way for regulator. He does so by partially
obscuring the states where the relative marginal cost to the regulator (per unit of agent
utility) is lowest, continuing until the approval constraint binds. The resulting experiment
lies on the Pareto frontier and makes the regulator exactly indifferent between approval
and rejection.

Combining Propositions 1 and 2, we build the following search algorithm over the

Pareto frontier to characterize the optimal experiment o*:

Algorithm 1. Constructing the Optimal Ezperiment.

STEP 1. Start with the perfect experiment o”'# where o,(w) =1 for all w € Q.

STEP 2. If the regulator accepts o', implement it. Otherwise, proceed to the next
step.

STEP 3. Initialize the experiment by setting o := o”. Identify the state w; €
Q12U Qy; with the highest slope m(w;) among all such states. If multiple states share
the highest slope, select one arbitrarily.

STEP 4. Gradually reduce o,4(w;) from 1 toward 0, keeping all other states at full reve-
lation, until the acceptability constraint binds with equality: V(o) = 3" ¢ fi(w)v(ay, w).
If such a o is found, implement it. Otherwise, proceed to the next step.

STEP 5. Fix the state with the highest slope m(w;) at 04(w;) = 0, and begin reducing
og4(ws), the second-highest, while keeping all others at full revelation.

STEP 6. Continue this process, each time selecting the next state w; with the next-

highest slope and reducing og4(w;), until the regulator accepts.



4 Comparative statics: Multiple regulators

We now extend the analysis to settings in which the agent faces multiple regulators, each
of whom must approve the experiment. Such situations arise in a variety of institutional
environments, ranging from regulatory appeals processes to committee-based approvals,
where decisions are made either sequentially or simultaneously. To analyze these settings,
we first introduce a general framework for comparing how different regulators constrain
the agent, defining a notion of regulatory strictness and establishing a key comparative
result. These foundations will support the applications discussed in Section 5.

Let the agent face n regulators, indexed by the set N = {1,...,n}. Each regulator
is a utility maximizer, and we assume that their preferences are aligned: that is, they
agree on the preferred action in every state. Formally, a’(w) = a(w) for all i, j € N and
all w € Q. Let &; denote the optimal experiment that regulator ¢ would approve if she
were acting alone, as in the single-regulator case. We use o (w) (or o}.(w)) to denote the
probability that signal a, (or a,) is sent in a given state w € €2 when the agent faces any
regulator i.

We say that regulator ¢ favors the perfect experiment if she would approve full infor-
mation revelation when acting alone, that is, if V;(¢7%) > v;(a,, w).

To compare how permissive or restrictive regulators are, we introduce a partial order
over regulators based on their preferences. Regulator i is said to be stricter than regulator

g if the following two conditions hold:

(i) Forallw € Q, v;(a,,w)—v;(a,(w),w) > v;(a,,w)—vj(ay(w),w), with strict inequality

holding for at least one state.

(ii) Forallw,w’ € Q1 2UQs 1, if v;(a,(w),w)—vi(ay(w),w) > vi(a, (W), ") —vi(a,(w'),w’),

then the same inequality must hold for regulator j.

The first condition captures the idea that a stricter regulator values the prior-based
decision more than a more lenient one does, relative to how much the agent values it. In
other words, she is more reluctant to allow experiments that might overturn the action of
the agent under the prior. The second condition guarantees that states can be compared
among regulators. That is, when agent and regulators disagree, the hierarchy among

preferred states must be preserved among regulators.
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(i)

The next result shows that stricter regulators impose tighter constraints on the agent.
If regulator ¢ is stricter than regulator j, then the experiment ¢ would approve leads to a
higher payoff for j than her own optimal experiment —if she were to face the agent on her
own— and yields lower utility for the agent. In simpler words, a more lenient regulator

is happier under the constraints of a more stricter regulator than her own.
Proposition 3. If requlator i is stricter than requlator j, then:

Vi(ai) > Vj(a;);

U(&Z) < U(5j).

The implications of this proposition are straightforward. Since by Proposition 1, we
know that the approval constraint must hold with equality, a more lenient regulator will
accept some experiments that stricter regulator would reject. These rejected experiments
are precisely those that the agent would prefer. This result is key to examine two in-
stitutional scenarios in which the agent faces multiple regulators: one where approval
can be obtained through a sequence of appeals, and another where all regulators vote

simultaneously.

5 Applications

Our model sheds light on different real-world settings in which an agent seeks informa-
tion before making a decision but faces approval constraints from regulatory institutions.
These constraints differ in structure across domains. In some cases, a single regulator
evaluates the proposed experiment. In others, the agent may appeal a rejection and re-
submit the experiment to another authority. And in many important domains, approval
is granted by a committee, either through formal voting rules or consensus procedures.
This section applies the theoretical insights from Section 4 to two broad classes of
institutional settings: sequential approval, which models appeals and re-submissions, and
collective approval, which captures voting-based mechanisms. For each structure, we
relate the core propositions to illustrative examples from clinical testing, warrant investi-

gations, data privacy and medical trials.
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5.1 Sequential Approval: Appeals in Clinical Trials and Investigations

Many institutional environments feature sequential oversight, where an agent can escalate
a rejected proposal to a higher authority. This occurs, for instance, in pharmaceutical
regulation: a clinical trial application rejected by an FDA division may be appealed to a

higher-level advisory board or to the Office of Special Medical Programs.?

Similarly, law enforcement officers escalate denied warrant requests to higher judges,
or pass an investigation proposal up a departmental hierarchy.?

We model such settings as cases where the agent faces multiple regulators sequentially.
Each regulator evaluates the experiment independently. If a regulator approves the pro-
posal, it is immediately implemented. If she rejects, the agent may revise and resubmit
to the next regulator in line. This structure maps naturally to our theoretical setup of
appeals. Formally, let i € N = {1,...,n} denote the order in which the agent approaches
the regulators. The following proposition shows that if the regulators are totally ordered

by strictness, the final regulator effectively determines the outcome.

Proposition 4. If requlator i is stricter than requlator j for alli,j € N, then experiment

o, will be implemented.

In particular, this implies that the perfect experiment is implemented if and only if

the last regulator in the sequence favors it:

Proposition 5. The perfect experiment is implemented if and only if the n-th requlator

favors the perfect experiment.

These results highlight the importance of who appears last in the appeals process. The
agent benefits from sequential review only if the final regulator is more lenient than the
others. Compared to the single-regulator setting, the agent is better off facing multiple
sequential regulators when the last one is less strict than the one he would have otherwise
faced alone. Conversely, if the final regulator is stricter, the agent ends up worse off.

From a policy perspective, this has clear institutional implications. If a designer (e.g., a

government) wants to make it harder for agents to access information, placing the strictest

2See FDA, “Formal Dispute Resolution: Sponsor Appeals Above the Division Level,” U.S. Food and

Drug Administration, Guidance for Industry, November 2001.

3See Administrative Office of the U.S. Courts (2022), Guide to Judiciary Policy, Vol. 4: Probation,
Part B: Investigative Policies and Procedures, §270.20 (“Warrant Applications”).
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regulator last ensures that no experiment passes unless it meets the highest standard. On
the other hand, if the goal is to encourage a freer access to information, the most lenient

regulator should be placed at the end of the sequence.

5.2 Collective Approval: Voting in Data Privacy and Medical Review Boards

Other institutional settings involve collective decisions by a panel or committee. Here,
regulators evaluate the proposal simultaneously, and approval depends on the aggregation
of their judgments—often via majority vote. This structure is common in legal, regula-
tory, and medical domains. For example, under the GDPR, cross-border data access
disputes are resolved by the European Data Protection Board (EDPB), which votes to
determine whether corporate practices meet regulatory standards.* Also, Institutional
Review Boards (IRBs) and FDA advisory panels use collective voting to approve or deny
proposed clinical trials.®

We model such environments by letting each regulator vote to accept or reject a

proposed experiment. Approval is granted if a majority supports implementation:

. (7)

N | =

%ZH(%(U) > V() >

As in the sequential case, we assume that regulators’ preferences are aligned and
ordered by strictness. The following proposition shows that the outcome is determined

by the median regulator in this ordering.

Proposition 6. If the set of requlators N is ordered by strictness, then experiment &,

will be implemented, where requlator m is the median requlator in terms of strictness.

This result highlights the central role of the median regulator under majority rule,
resembling the logic of the well-known median voter theorem (Black, 1948). In this setting,
the agent is better off under voting than under a single-regulator regime of regulator ¢ if
and only if regulator ¢ is stricter than the median regulator m, and worse off otherwise

(i.e. if regulator m was stricter than 7).

4See European Union. (2016). Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 (General Data Protection Regulation), Articles 64-65. Official Journal of the
European Union, L 119/1.

5See U.S. Department of Health and Human Services. (2022). Protection of Human Subjects, 45 CFR
§46.108 (IRB functions and operations).
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6 Conclusion

This paper examines how institutional approval constraints reshape the way agents gather
and structure information. We develop a model in which an agent can run an experiment
to guide his decision, but must first obtain authorization from a regulator. We charac-
terize the structure of optimal experiments and identify the key trade-offs agents face
when tailoring information to external approval: If the regulator opposes revelation of
full information, the approval constraint forces the agent to distort the experiment in
strategic ways, reducing informativeness in states where the regulator is least likely to
object. We also extend the framework to environments with multiple regulators, offering
comparative predictions across different institutional structures. In sequential settings,
the final reviewer determines the outcome; in collective settings, the median regulator is
pivotal.

Future work could explore several extensions. One direction is to study dynamic envi-
ronments. Agents might actually update proposals based on prior approvals, try to build
credibility through safe initial experiments, or predict certain approval cycles. Conversely,
regulators may adopt history-dependent approval policies, such as “fast-track” rules that
reward early success or gradually tighten standards based on observed behavior. These
dynamics introduce intertemporal incentives and learning, shifting the problem from one-
shot design to repeated strategic interaction. A second direction is to consider that the
regulator need not be a fixed, passive evaluator. She might be uncertain, strategic, or
internally divided. A review board could reject proposals to signal political toughness
or preserve institutional reputation, even if privately indifferent. Committees may aggre-
gate conflicting priorities (e.g., legal caution vs. scientific ambition) leading to approval
outcomes shaped by internal bargaining. Modeling the regulator as a strategic or multi-

attribute player opens further questions about institutional design and communication.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. Let oPF be the perfect experiment and let o* be an optimal experiment. If %
is not approved, then o% # ¢*, so that there exists a state w’ € Q with fi(w') > 0 and
oi(w') < 1, where a4(w') = ag. It follows that U(c*) < U(c"F). For € € [0,1], define the
experiment 0° € X by 0% (w) = eoTE(w)+(1—¢)o}(w) and 05(w) = ea P (w)+(1—¢)o3(w)

for every w € Q. Because both 0% and o* are incentive compatible, so is o¢, and
U(o%) = eU(c"") + (1 = £)U(0"),
V(o) =V (a"F) + (1 — )V (™).

Since U(c*) < U(cPF), we have U(c°) > U(c*) for every ¢ > 0, and if V(o*) <
Y weq Bw)v(ay, w), then V(o) < > .o fi(w)v(ay, w) for small € > 0. By the optimality
of o*, it follows that V(o) = > fi(w)v(ay,w). O

A.2 Proof of Proposition 2

Proof. Part a) We consider here the case that £k = 1; the other case is analogous and
therefore omitted. By contradiction, suppose there exists w' € Qp; with o1(w') < 1.

Counsider ¢ with

o1(w) if w# W,
01<W) =
1 ifw=uw.

We show that ¢ is incentive compatible. Thus, we need to show

> (ular,w) — u(az,w))d1(w)aw) = 0,

w

> (ulaz,w) — u(ar,w))ds(w)aw) > 0.

w

Because w’ € €1, we have u(ay,w’)—u(az,w’) > 0. Hence, since o is incentive compatible,

> (ular,w) = ulag, )G (W)aw) = Y (u(ar,w) — u(az, w))or(w)iaw) + (ular,w') - ulag,w'))a(w)

w wFw’

> Y (u(ar,w) — u(az,w))o (W) i(w)
>0
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and

> (ulaz,w) —ular,w))F(W)aw) = Y (ulaz,w) — u(ar, w))os(w)iw)

w wH#w'

> Y (u(az,w) — u(ar,w))os (W)A(w)

Thus, (U(6),V(5)) € F.
Now, since w’" € €211, we have
U() —Ulo)

V(e) = V(o)

W) (1 = o1(w))(ular, w') = ula,w’)) >0,

w1 = o1 (W) (v(ar,0') = v(ve, w')) > 0;

a contradiction to (U(c),V (o)) being in the Pareto frontier. Thus, o1(w) = 1 for every

w € Qll-

Part b) By contradiction, suppose there exist w' € Q7 (o) and w” € QF (o) with

m(w') < m(w”). We consider here the case that w’ € 15 and w” € Qyy; the other cases

are analogous and therefore omitted. Since o(w'), o1(w”) < 1, we can find €’,” > 0 such

that

oW+, 0mW)+e" <1
and
Bl Y (u{ar, o) — u(az, ') = ") (ulaz, ") — ular, &),

Observe that (8) implies

/] —

e (W )m(w) (u(ar, ) — ulaz, o)) < " p(w")m(w”) (u(az, w") — u(ar, w")).

Consider ¢ with
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We show that & is incentive compatible. Since ¢ is incentive compatible, (8) implies

Z a1 (w)p(w)(ular, w) — u(az, w)) = Z o1 (w)fi(w)(u(ar, w) — u(az, w))

+&'w) (ular, ) = u(as, o)) + " pw") (u(ar, w") — u(as, "))

= 3 o)) (u(ar,w) — ulaz,w))
> Ow

and

S o)) (ulaz, ) — u(ar,w) = 3 oa(w)a(w) (ulaz, ) — u(ar,w))

—&'p(w) (u(az, ') — u(ar,w)) — e"p(w")(u(az, w") — u(ar,w"))
= 202(w)ﬂ(w)(u(a27w) —u(ar,w))

> 0.

Thus, (U(6),V(5)) € F.
Lastly, we compare the expected payoffs generated by & and o, respectively. By (8),

U(g) —U(o) = a(w)(u(ar,w") — u(ag,w’)) + " p(w") (u(ar,w”) — u(ag, w")) = 0;

V(5) = V(o) = &'u(w)(v(ar,0') = v(ag, o)) + " i(w") (v(a1,w") — v(az, "))

= & (0’ )m(w) (u(az, ') — ular, o)) + " i(w")m(w") (u(az, w") — u(ar, "))

This is a contradiction to (U(o),V (o)) being in the Pareto frontier. Thus, m(w') >
m(w”). O
A.3 Proof of Proposition 3

Proof. Part i). Let regulator ¢ be stricter than regulator j. We need to show that V;(a;) >

V;i(d;),Vi,j € N. First, rearranging V;(a;) yields:
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= f(w) [5:;(“’)”]'(@“ )+ 7 ( )Uy(aww)}
=) Aw) [Fhw) (vj(ar, w) = v(ag,w)) + v(ag,w)] (10)

(11)
=D W) [0} (w) = 52(w)) (v (ar,w) = v;(ag,w))] >0 (12)

Note that, since regulator preferences are aligned, o’ (w) = o/(w) = 1 for all w €
11U Qqs. Thus it is enough to show that o' (w) > oi(w) for all w € Q5 Uy to prove
the proposition.

Because i is the stricter regulator, set &; # o©'F without loss of generality. Now:

Case 1: 5, =o0F

Since 07 (w) = o) = 1 for all w € Q, and &; # 0”7, then G, < 1 for at least one

9
w € Q12 Uy ;. Since the set Q15U Qs is the same for all regulators, o’(w) > o7 (w) for
all w ES)LQLJbe

Case 2: 7, #o"F

Since 7; # o7, we know that by Proposition 1, V;(g;) = Vi(it). Rearranging yields:

ZN w)vi(ap, w (13)

Zﬂ(w)&i(w) (vi(ar, w) — vi(ag,w)) + vi(ag, w Z:“ vi(ag,w) — vi(ay, w)) (14)
wen we
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Now partition © into Qi1 U Qa9 and Q2 U Qo and note that o' (w) = o(w) =
1 for all w € Q1,1 Uy, and further note that >- .o ,u0,, i(vi(ay,w) — vi(ag,w)) =
Zweﬂl U1 ﬁ(vi(ar, w) — vi(ag,w)) since either a, = a, or a, = a4 for all w € ;5 U Qy;
and > o o, , B(vi(ap, w) — vi(ag, w)) = 0 for states in the latter case.

Rearranging equation (14) yields:

S A@)E ) e @) vlag@) = Y ) (vilar @) — vilag )

weN 2UN2 1 weN 2UN2 1

= Y W) (vilagw) —vilap,w)) (15)

wEQLlUQQQ
Now, note that applying Proposition 2 and Algorithm 1, one can partition the set
Q12U Qs into three sets {€2g, 4, and y_;} defined as follows:
Qo is the set of all w € Q15 Uy such that 7 (w) = 0.
Q) is the set of all w € ;5 U Qg such that 7% (w) = 1.

Qo1 is a singleton in Oy 5 U Qs for which ¢’ (w) € (0,1). Let this state be called @.

Applying the above-mentioned partition to (15) yields:

RO)THE) (viar,2) — vilag @) = 3 ) (viar, ) — vilagw)

wENEUN0—1

= Y EW)(vilag,w) —vilayw)  (16)

0J€9171UQQ72

Solving for ¢(©) yields:

Zweﬂo ﬁ(w) (Ui(aﬂ w) - Ui(am w)) - ZWEQI,1UQ2,2 ﬂ(w) (Ui(agv OJ) - Ui(apv OJ))
A(@) (vilar, @) — vi(ag, @)

(17)

Applying the same procedure for V;(G;) yields:

+ Zwer ﬂ(w) (Uj (a“ w) — Uj (ag7 w)) - ZwGQMUQZQ ﬁ(w) (Uj (agv w) — Uy (apv w))
(@) (v(ar, @) — vj(ag, w))

(18)
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Now, first note that trivially 7% (w) = ¢/(w) = 0 for all w € Qg and 7% (w) = 1 > 57
for all w € €. Finally, for state @w, we know that since the second term of the RHS
of equations (17) and (18) must be negative, and given that regulator i is stricter than
regulator j, it directly follows that (©) > 74(©).

Therefore, o' (w) > o (w) for all w € Q15 U Qy 1, where at least one inequality holds

strictly. Thus Vj(5;) > V;(a;)

Part ii) The proof is analogous to Part i). We need to show that U(d;) — U(a;) > 0.

Rearranging this expression by following the same steps as Part i) yields:

U(0;) = Ua:) = ) iilw) [(77(w) — 52(w)) (ulag,w) — u(ar,w))] >0 (19)

we
By definition u(ay,w) > u(a,,w) for all w € 2. Additionally, from Part i) we know
that ol (w) > o (w) for all w € Q15U Ny, thus U(g;) > U(d;) since at least one of the

previous inequalities must hold strictly. O

A.4 Proof of Proposition 4

Proof. Assume that for all 7,7 € N, regulator i is stricter than regulator j. Note that if
the agent reaches decision node n, then experiment ,, will be implemented.

First, suppose that an arbitrary regulator i is stricter than regulator n. Then, by
Proposition 3 (ii) we have U(G,) > U(a;). Thus, the agent can always offer 7, to any
regulator ¢ that is stricter than regulator n. Although by Proposition 3 (i) we have
Vi(,) < Vi(a;), regulator ¢ has no incentive to reject 7, since he knows that at decision
node n experiment &, will be implemented.

Now, suppose instead that regulator ¢ is less strict than regulator n. Then, U(a;) >
U(G,). However, if &; were offered to regulator i, he would always reject it because
Vi(6,) > Vi(d;), and regulator i knows that at decision node n, experiment &, would
be implemented. Consequently, the agent does not have an incentive to deviate from

offering 7,,, and therefore the experiment is implemented. O

A.5 Proof of Proposition 5

Proof. (=) Let the n-th regulator favor the Perfect Experiment (i.e. V,(cF%)—v, (i) > 0).

P

Since oP'F is the agent’s most preferred experiment, the agent will offer 0% to the n-th
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PE

regulator, which will be accepted. Since at decision node n, ¢'* is guaranteed to be

PE

accepted, there is no incentive for any regulator i € N to reject o', and the perfect

experiment is implemented.

(<) Let the n-th regulator not favor the Perfect Experiment (i.e. V,,(cf)—wv,(ji) < 0).
Since o'F will be rejected at decision node n, the agent will offer regulator n the optimal
experiment under her participation constraint. Let such an experiment be denoted as 7,
and note that V,(a,) = V,,(i1), and U(a,), V,(F,) is in the Pareto frontier of regulator n.
This implies that V,(5,) > V,,(¢7F) and 5, (w) # o7 (w) for at least one w € Q5 Uy ;.
Since all regulator’s preferences are aligned, the set €2; U5 ; is the same for all regulators
i € N. This means that regulator n is stricter than any regulator i who does not favor o',
Thus, by Proposition 3 (Case 1), Vi(7,) > Vi(cPF),Vi € N, implying that the Perfect
Experiment will never be implemented since at least experiment &, is weakly preferred

by all regulators. O]

A.6 Proof of Proposition 6

Proof. Without loss of generality, suppose the regulators are indexed so that for each
i = 1,...,n, regulator ¢ + 1 is strictly stricter than regulator ¢. Define the median

regulator m as follows:

If N is odd, then m = &+,

vz o

If N is even, then m = & (so that the stricter side has one more regulator).

Further note that by Proposition 3, the agent will always prefer to implement experi-

ments that leave less strict regulators indifferent, i.e.,
U) > Uls,) Vi<,

while any regulator ¢ will prefer implementing experiments that leave stricter regulators
indifferent, i.e.,
Vi(a:) < Vi(a;) Vi<j.

Now, for the sake of contradiction, suppose that the agent proposes an experiment
o' # 7,,. We consider two cases:

Case 1: Suppose that ¢/ = G; for some i > m. Then, by the preference ordering for
the agent (Proposition 3),

U(a;) < U(Gm)-
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Hence, the agent strictly prefers offering a,,, to offering ;. This contradicts the assumption
that the agent would deviate to o’.
Case 2: Suppose that ¢’ = 7; for some i < m. In this case, by Proposition 3, for any

regulator j who is stricter than regulator m, we have
Vilo:) < Viloy) = V().

Thus, each such regulator j would reject &;. Since the set of regulators who are stricter
than regulator m constitutes more than half of the regulators (by the definition of the

median), it follows that

DO | —

ORORADIE

Hence, the proposal ¢; would fail to secure simple majority.
Since in both cases any deviation from offering &,, either results in a lower payoff for
the agent or fails to be accepted by a majority of regulators, the agent has no incentive

to deviate from offering 7,,. Consequently, experiment 7, will be implemented. O]
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