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Abstract

We introduce a robust belief-based measure of complexity. The idea is that task A is

deemed more complex than task B if the probability of solving A correctly is smaller

than the probability of solving B correctly regardless of the reward. The corresponding

complexity order over the set of tasks is incomplete, being represented by a vector-valued

function over the two-dimensional space of difficulty and ex ante uncertainty. Then, we

aggregate the individual measures in a group of agents to obtain an objective measure of

complexity. Whenever the group is sufficiently large, the resulting objective complexity

order is complete and ranks the tasks lexicographically, comparing them first with respect

to difficulty and then with respect to ex ante uncertainty. The contribution of these

results is twofold: on the one hand, we identify ex ante uncertainty as a novel dimension

of complexity; on the other hand, we provide microeconomic foundations for belief-based

measures of complexity.

Keywords: complexity, measure, difficulty, ex ante uncertainty, incomplete relation,

effort.

JEL codes: D83, D90.

1. Introduction

Complexity is a fundamental concept across numerous scientific domains, including computer

science, cognitive sciences, neuroscience, etc. More recently, its importance has also been
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recognized by (behavioral) economists, as a key determinant of decisions in many settings, with

the potential to explain mistakes that people systematically make in such decisions (Banovetz

and Oprea, 2023; Enke et al., 2024a; Oprea, 2024b).

At the same time, it is also the case that complexity has been traditionally used in a casual

way, without consensus on what exactly it means (Gabaix and Graeber, 2024). This lack

of a widely accepted precise definition can possibly explain why scholars have also focused on

measurements of complexity, which can in turn serve as proxies for different types of complexity

(Oprea, 2024a).1 Common ways to measure complexity include direct metrics (Oprea, 2020),

behavioral metrics (Banovetz and Oprea, 2023), and most importantly for this paper belief-

based metrics (Enke and Graeber, 2023; Enke et al., 2024a,b).

The key idea within this last stream of literature is to use an agent’s belief about their

own accuracy as a proxy for complexity. This is also consistent with theoretical results which

show that people are more accurate when solving simpler tasks (Goncalves, 2024). However,

as appealing as this approach is, there is a serious caveat. Namely, expected accuracy depends

both on complexity as well as on the effort to handle the task. And since effort depends

non-linearly on the underlying reward (for correctly solving the task), it often happens that

expected accuracy is sensitive to the reward. And this naturally gives rise to the question: if

different rewards yield different accuracy orders over the set of tasks, which one should we use

as a measure of complexity?

In this paper, we take a robust approach, proposing the following way to rank tasks: we say

that task A is deemed more complex than task B, whenever the chances of correctly solving

A are smaller than the chances of correctly solving B, for every reward. Obviously, this is a

rather conservative criterion, as it imposes a strong dominance condition. But at the same

time, whenever satisfied, it provides quite convincing evidence that the tasks are indeed ranked

in this way, thus indirectly providing an arguably necessary condition for every reasonable

definition of complexity.

The first main result of the paper provides a full characterization of the complexity order

that the aforementioned criterion induces (Theorem 1). Not surprisingly, this complexity order

is incomplete. But they key insight is that it depends on two distinct parameters, viz., the

difficulty of the task and the ex ante uncertainty. More specifically, higher difficulty is only a

necessary condition for higher complexity. In order to also become sufficient, the agent cannot

be ex ante much more uncertain about the state realization. For example, in order for a student

to find exam A more complex than exam B, it must be both the case that A is more difficult

than B, and moreover that the student is not much better prepared about B than about A.

1Measurements and formal definitions of complexity are closely linked with each other, in an analogous way

belief elicitation mechanisms (Brier, 1950; Savage, 1971) are linked with definitions of subjective probability

(Savage, 1954; Anscombe and Aumann, 1963).
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The fact that complexity has these two distinct dimensions allows us to establish a link

with the decision-theoretic literature on incomplete preferences. In particular, we show that

our complexity order is represented by a vector (utility) function, like in Ok (2002).

Then, we aggregate individual complexity measure of a group of agents to obtain an objec-

tive measure of complexity. Accordingly, we will say that task A is objectively more complex

than task B if the two tasks are comparable by at least one agent in this group, and moreover

everyone who ranks them deems A more complex than B. The interesting fact is that the larger

the group becomes, the more complete the objective complexity order will be. Then, our sec-

ond main result shows that, once the group becomes sufficiently large, the objective complexity

order becomes lexicographic, in that it first compares tasks with respect to difficulty and then

with respect to ex ante uncertainty (Theorem 2).

Overall, the contribution of the paper is twofold. First, we identify ex ante uncertainty as

a novel dimension of complexity. This dimension is intuitively appealing: as we have already

mentioned above, an exam is deemed complex by a student, mainly because it is difficult,

but also because the student is not well prepared. This novel channel of complexity has been

previously overlooked, as complexity is typically associated only with difficulty (Oprea, 2024a,

and references therein). At the same time, our results are not entirely at odds with the existing

literature in the sense that, although difficulty is not the only dimension of complexity, it is

still the primary one. And crucially, this is not something we assume, but rather a property

that we naturally follows from our measure of complexity.

The second main contribution of the paper is to provide foundations for belief-based mea-

sures of complexity. Such measures have been recently surging (Enke and Graeber, 2023; Enke

et al., 2024a,b), as they provide a portable and simple way to elicit individual perceptions of

complexity. Unfortunately, solid microeconomic foundations have been missing. Therefore, by

filling this gap, we make this type of belief-based measures not only empirically appealing, but

also theoretically sound, and a fortiori more likely to be widely used in practice.

The literature on complexity is vast, and as such we are de facto forced to make a selection

of what in our view is the most relevant subset.

Early work focused primarily on the role of strategy complexity within game theory (Ru-

binstein, 1986; Abreu and Rubinstein, 1988). More recently, the focus has shifted towards

explaining mistakes and irrationalities, e.g., Oprea (2024b) study the effect of complexity on

risk preferences, and Enke et al. (2024a) the respective effect on time preferences. There is also

interest in formalizing definitions of complexity, e.g., Gabaix and Graeber (2024) build a general

model of production within a cognitive economy in order to operationalize complexity, whereas

Oprea (2024a) borrows insights from computer science to introduce a framework within which

complexity reflects the cost for handling a task. Others, define it as the signal-to-noise ratio

(Goncalves, 2024), similarly what is often done in psychometrics. The common denominator
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throughout most of this literature is that definitions of complexity are typically input-based,

i.e., they somehow reflect the underlying difficulty to process and handle a task.

What is closer to our work is the literature on measuring complexity. As Oprea (2024a)

elegantly points out, this literature can be classified into three large streams, depending the

measurement tool. Within the first stream, we encounter measurement with direct metrics,

such as willingness to pay in order to avoid dealing with a certain task (Oprea, 2020), response

times (Goncalves, 2024), and biometrics (van der Wel and van Steenbergen, 2018). The second

stream leverages behavioral metrics, such as procedural measurements (Banovetz and Oprea,

2023), and choice inconsistencies (Woodford, 2020).

Finally, the third stream, within which our paper belongs, uses belief-based metrics. These

include subjective rankings, like for instance in Gabaix and Graeber (2024) where subjects

are simply asked to rank tasks with respect to complexity, and beliefs about optimality of the

subject’s own accuracy (Enke and Graeber, 2023; Enke et al., 2024a,b), like in our paper. Of

course, in all aforementioned papers, rewards are fixed. The effects of varying rewards are

discussed in (Alaoui and Penta, 2022).

This entire literature is part of a surging field of Cognitive Economics (Caplin, 2025; Enke,

2024), which also incorporates topics such as rational inattention, cognitive uncertainty, etc.

The paper is structured as follows: In Section 2 we introduce our measure of complexity

and prove our main characterization result. In Section 3 we introduce an objective measure of

complexity, by aggregating the individual measures across many individuals. In Section 4 we

study the relationship between our complexity measure and the induced effort. In Section 5 we

discuss assumptions that we have imposed throughout the paper, as well as possible extensions.

2. A belief-based measure of complexity

An agent’s task is to guess the realization of a binary state space Θ = {θ0, θ1}. Let Y = {0, 1}
denote the possible results of this guessing task, i.e., 0 denotes a wrong guess and 1 denotes a

correct guess. Let X := [0,∞) be a convex set of material rewards for guessing correctly. The

agent’s preferences over the set of acts (X × Y )Θ admit a SEU representation with Bernoulli

utility function u : X × Y → R, which is often abbreviated by u0(x) := u(x, 0) and u1(x) :=

u(x, 1). Let u1 be continuously increasing and unbounded in X. We assume that

u1(x)− u0(x) ≥ 0.

That is, the agent may care (viz., > 0) or may not care (viz., = 0) intrinsically about being

correct, but she will never intrinsically want to fail. Other than this, do not impose any

condition on the difference u1(x)− u0(x) across x ∈ X. Neither do we assume separability of u
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with respect to X and Y . Finally, without loss of generality, the utility function is normalized

so that u(0, 0) = 0.

Going back to the guessing task, for some fixed extrinsic reward x ∈ X, the guess r ∈ Θ is

an act which yields utility u1(x) at state θ = r and utility 0 at θ 6= r. Thus, the agent’s indirect

expected utility, as a function of the probability q ∈ [0, 1] that she attaches to θ1, is given by

g(q) := u1(x) max{q, 1− q}, (1)

which is obviously proportional to the probability she attaches to her best guess being correct.

Suppose that the agent holds a prior belief which assigns probability p ∈ [0, 1] to θ1. This

belief incorporates her prior knowledge/experience, and therefore represents the degree of her

ex ante uncertainty in terms of proximity to the (maximally uncertain) uniform belief:

φ := 1− 2
∣∣p− 1/2

∣∣. (2)

That is, the larger φ, the more ex ante uncertain the agent is, meaning that φ = 0 whenever

p ∈ {0, 1}, and respectively φ = 1 whenever p = 1/2. This notion of uncertainty resembles

the usual measures of uncertainty from information theory (Cover and Thomas, 2006). Then,

before making a guess, the agent decides how much attention to pay. Attention is modelled with

a Bayesian signal, which is uniquely identified by a mean-preserving distribution of posterior

probabilities (Kamenica and Gentzkow, 2011). The set of all signals is denoted by

Π(p) =
{
π ∈ ∆

(
[0, 1]

)
: Eπ(q) = p

}
.

For any signal π ∈ Π(p), define the agent’s ex ante indirect expected utility,

G(π) := Eπ
(
g(q)

)
. (3)

It is not difficult to see that G(π)/u1(x) is the probability that she attaches ex ante (i.e., before

π is realized) to her best guess being eventually correct.

Aligned with the rational inattention literature, we assume that attention is costly. The

cost function is assumed to be uniformly posterior separable (Caplin et al., 2022), i.e., there is

a strictly convex function c : [0, 1]→ R such that the cost of signal π ∈ Π(p) is given by

C(π) = κ
(
Eπ
(
c(q)

)
− c(p)

)
, (4)

where c(q) represents the agent’s marginal cost for acquiring information, and κ > 0 is a

parameter of the task’s difficulty. Note that consistently with the complexity literature (Oprea,

2024a), the cost consists an objective part (viz., the parameter κ) and a subjective part (viz.,

the function c). Such cost functions have solid foundations (Denti, 2022) and are supported
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by experimental evidence (Dean and Neligh, 2023). Throughout the paper, we will focus on

symmetric cost functions, which include the Shannon entropy (Sims, 2003), the Shorrocks

entropy (Shorrocks, 1980), the Tsallis entropy (Caplin et al., 2022) as special cases. Formally,

this means that for every q ∈ [0, 1], we have c(q) = c(1−q). For an axiomatization of symmetric

cost functions, see Hébert and Woodford (2021). We further discuss the symmetry assumption

in Section 5.2.

The agent faces a tradeoff, in that more informative signals help her to achieve higher

expected utility, but at the same time are also more costly. That is, formally speaking, the

agent solves the following optimization problem:

max
π∈Π(p)

(
G(π)− C(π)

)
. (5)

It is not difficult to verify that for every tuple of parameters (x, φ, κ) there is a unique optimal

signal, henceforth denoted by π(·|x, φ, κ). It follows from standard arguments (e.g., Kamenica

κc(q)

g(q)

1/2δxκ 1− δxκ

Figure 1: The green solid piecewise linear function is the net expected utility from guessing correctly, and the

red line is the marginal cost for acquiring information. The blue curve is the concave closure of the difference

g(q)−κc(q). The optimal signal distributes all the probability between the posteriors δxκ and 1−δxκ whenever ex

ante uncertainty is large (i.e., whenever the prior lies between δxκ and 1−δxκ), and it is completely uninformative

otherwise.

and Gentzkow, 2011; Matějka and McKay, 2015) that π(·|x, φ, κ) is given by concavifying the

function g(q)− κc(q), as illustrated in Figure 1 below. In particular, there is some δxκ ∈
[
0, 1/2

]
such that, for small levels of ex ante uncertainty (i.e., φ ≤ 2δxκ) the agent does not exert any

effort in acquiring information about the task and maintains her prior beliefs, whereas for large
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levels of ex ante uncertainty (i.e., φ > 2δxκ) her optimal signal mixes between the posteriors δxκ
and 1−δxκ. Note that δxκ is continuously decreasing in the reward x, and continuously increasing

in the difficulty κ. Throughout the paper, we will denote by

φκ := 2δ0
κ (6)

the lower bound of ex ante uncertainty for which the agent will acquire information, in the

absence of a reward. By monotonicity of δxκ, it follows that φκ is continuously increasing in κ.

Note that three parameters enter the picture when computing the optimal signal:

• Difficulty (κ) : It is a feature of the task itself, and it is in general unobservable. It is

treated as an objective task characteristic, i.e., one that does not vary across agents.

• Ex ante uncertainty (φ) : It is an unobservable individual characteristic of the agent in

relation to the task, as it reflects the agent’s prior experience about the specific task. It is

treated as a subjective characteristic of the task, i.e., one that may be perceived differently

across agents, but which nonetheless is inherently linked to the task.

• Reward (x) : It is the only parameter which is directly observable, and can be controlled

by the analyst. It is treated as an experimental parameter/treatment, and it is not a task

characteristic as the utility from x is not affected by the task itself.

Given the previous classification, for a given agent, we will henceforth identify each task with

a pair (φ, κ), and we will denote the set of all tasks by

T := [0, 1]× (0,∞).

Remark 1. Of course, the optimal signal also depends on individual characteristics of the

agent, and in particular of the utility function u and the cost function c. However, given that

these characteristics are exogenously fixed, we will take them for granted. We come back to

the role of these parameters in Section 3 when we aggregate our soon-to-be-defined complexity

measure over a set of agents. /

Assuming that the agent is rational (in the sense that she picks the optimal signal), her

expected accuracy is given by

F (x, φ, κ) :=
G
(
π(·|x, φ, κ)

)
u1(x)

. (7)

This is equal to the expected probability of guessing correctly, as illustrated in Figure 2. Note

that whenever her ex ante uncertainty is small (i.e., φ ≤ 2δxκ), her expected accuracy will be

max{p, 1 − p}. On the other hand, whenever her ex ante uncertainty is large (i.e., φ > 2δxκ),

her expected accuracy becomes 1− δxκ.
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1

1/2δxκ 1− δxκ

F (x, φ, κ)

Figure 2: The blue piecewise linear function is the expected accuracy (as a function of the agent’s prior),

assuming that the optimal signal π(·|x, φ, κ) has been used.

In the literature on belief-based complexity measures, expected accuracy is used as a mea-

sure of task complexity (Enke and Graeber, 2023; Enke et al., 2024a,b; Oprea, 2024a). This is

also consistent with theoretical results that show certain definitions of complexity to be posi-

tively correlated with accuracy (Goncalves, 2024). However, there are is an important caveat:

Expected accuracy depends both on task characteristics and on an experimental parameter.

This leads to an undesirable situation where expected accuracy leads to a task complexity order

that varies with respect to characteristic that is not linked with the task itself, e.g., it may very

well be the case that task A is labelled more complex than task B under the reward x, while

at the same time A is labelled simpler than B under the reward x′. And this naturally makes

us wonder: does the agent deem A or B more complex?

In this paper, we address this question by proposing a robust belief-based measure of com-

plexity, which labels A more complex than B whenever the expected accuracy of A is always

smaller than the expected accuracy of B, for every extrinsic reward. This idea is formalized in

the following definition.

Definition 1. We say that task (φ, κ) is deemed more complex than task (φ′, κ′), and we

write (φ, κ) � (φ′, κ′), whenever

F (x, φ, κ) ≤ F (x, φ′, κ′) (8)

for all x ∈ X. /

The asymmetric and the symmetric parts of � are defined as usual. That is, we have
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(φ, κ) � (φ′, κ′) whenever (φ, κ) � (φ′, κ′) and (φ, κ) � (φ′, κ′), and respectively (φ, κ) ∼ (φ′, κ′)

whenever (φ, κ) � (φ′, κ′) and (φ, κ) � (φ′, κ′).

A task (φ, κ) is said to be trivial if the optimal signal reveals the true state with certainty

for every x ≥ 0. Obviously, if a task (φ, κ) is trivial, then it is simpler than any other task,

i.e., (φ′, κ′) � (φ, κ) for all (φ′, κ′) ∈ T . The set of non-trivial tasks is henceforth denoted by

T0 ⊆ T , and it is characterized by a difficulty threshold κ0 ≥ 0.

Proposition 1. There is some κ0 ≥ 0, such that the following are equivalent:

(i) κ > κ0.

(ii) (φ, κ) ∈ T0 for every φ ∈ [0, 1].

The idea is quite simple: in order for a task to be non-trivial, the information costs must

be sufficiently large to guarantee that the intrinsic incentives alone are not strong enough to

always lead to a perfectly informative signal. In our main result below, we characterize how

non-trivial tasks are ranked in terms of complexity if we use our robust belief-based measure.

Theorem 1. For any pair (φ, κ) and (φ′, κ′) of non-trivial tasks, the following are equivalent:

(i) (φ′, κ′) � (φ, κ).

(ii) κ′ ≥ κ and φ′ ≥ min{φκ, φ}.

Recall that φκ is the information-acquisition constraint in the absence of any reward, i.e.,

the agent will acquire information if and only if her ex ante uncertainty satisfies the following

inequality:

φ > φκ. (9)

Moreover, φκ is continuously increasing in κ, with φκ → 0 as κ → κ0, and φκ → 1 as κ grows

arbitrarily large. So, without sufficiently large costs, the agent will always acquire the perfectly

informative signal regardless of her prior, whereas when the cost becomes infinitely large she

will not acquire information regardless of her prior belief.

Remark 2. The function φκ depends on the cost function c and the value u1(0). Therefore,

the utilities assigned to any other x > 0 is inconsequential for �. /

Graphically, the previous result is illustrated in the Figures below which correspond to two

cases, i.e., the one where the information-acquisition constraint of (9) holds, and the one where

it does not. In both figures, we have taken c(q) = q2 − q, which is subdifferentiable at the

boundaries of the unit interval, and therefore for small cost parameters the agent will optimally

acquire the perfectly informative signal regardless of the size of the reward. This explains why
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φκ is initially constant at 0, and as a result there is a grey region which contains the trivial

tasks. Such horizontal part would not have appeared if the cost function was for instance

entropic, in which case a perfectly informative signal would have never been optimal.

Starting with the first case (Figure 3), we take a task (φ, κ) such that φ > φκ. Then, the

red region contains the tasks (φ′, κ′) that are demmed more complex than (φ, κ). On the other

hand, the green region contains the tasks (φ′, κ′) that are deemed simpler than (φ, κ). How

we obtained the red region is obvious given our previous theorem. So, let us elaborate on how

the green region arises. First of all, κ ≥ κ′ and φ ≥ φ′ jointly imply (φ, κ) � (φ′, κ′), again by

our theorem. Then, let us consider some (φ′, κ′) such that κ′ < κ and φ′ ≥ φ. By φκ being

increasing, it follows that φκ′ < φκ < φ. Hence, once again by our previous theorem, we obtain

(φ, κ) � (φ′, κ′).

ex ante
uncertainty

difficultyκ

φ

κ0

φκ

Figure 3: This is the case when the ex ante uncertainty is large and therefore it is optimal to acquire information

before making a guess. The red area contains the tasks that are deemed more complex than (φ, κ), and the

green area are the tasks that are deemed simpler than (φ, κ). Finally, the grey area contains the trivial tasks,

meaning that they are deemed simpler than every other task, including (φ, κ).

Let us now focus on the second case (Figure 4), where we take a task (φ, κ) such that φ ≤ φκ.

Once again, by our previous theorem, the red region is the set of tasks that are deemed more

complex than (φ, κ). And once again, the green region is the set of tasks that are deemed

simpler than (φ, κ). Regarding this last part, let us elaborate only on the non-obvious case

where κ′ < κ and φ′ > φ. If κ′ is such that φκ′ > φ, then by our theorem (φ, κ) and (φ′, κ′) are

not comparable via �.

Remark 3. Note that in most of the existing literature, complexity is taken as a synonym

of difficulty. Here we show that this is not the case, as complexity depends both on difficulty

and ex ante uncertainty. This is consistent with the idea that a task may be deemed complex

because it has not been previously encountered by the agent. For instance, students often

complain that they did not have enough practice questions similar to the ones they faced in

their final exam, even though their actual exam was not particularly difficult. Nevertheless,

even though increased difficulty is not sufficient for increased complexity, it is still a necessary
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ex ante
uncertainty

difficultyκ

φ

κ0

φκ

Figure 4: This is the case when the ex ante uncertainty is small and therefore it is optimal not to acquire any

information before making a guess. Once again, the red area contains the tasks that are deemed more complex

than (φ, κ), the green area the tasks that are deemed simpler than (φ, κ), and the grey area the trivial tasks.

condition, i.e., unless both (φ, κ) and (φ′, κ′) are both trivial, (φ′, κ′) � (φ, κ) will necessarily

imply κ′ ≥ κ. Therefore, even though neither difficulty nor ex ante uncertainty are directly

observable, by observing that task A is deemed more complex than task B, we can conclude

that A is more difficult than B. We come back to this point in Section 3. /

As conceptually appealing as robustness is, it comes at the cost of not being able to rank

all tasks. Below, we provide the formal statement:

Proposition 2. The relation � is transitive and incomplete.

The previous result can be easily illustrated in the two figures above, i.e., there is always a

white region which includes the tasks that are subjectively neither more complex nor simpler

than any given task.

Note that within T0 the relation � has the same structure as the incomplete preference

relations in Ok (2002). To understand the connection, recall that in that paper preferences are

represented by a vector-valued utility function. In the context of our paper this would mean

that there exists some

u : T0 → R2

such that (φ, κ) � (φ′, κ′) if and only if u1(φ, κ) ≥ u1(φ′, κ′) and u2(φ, κ) ≥ u2(φ′, κ′), where

u1(φ, κ) := κ and u2(φ, κ) := min{φκ, φ}.

The incompleteness property also distinguishes our measure of complexity from most defini-

tions in the literature which typically induce a complete order, e.g., the signal-to-noise ratio

(Callander, 2011; Fehr and Rangel, 2011; Goncalves, 2024) or willingenss to pay for avoiding

a task (Oprea, 2020) or the subjective-ranking metric (Gabaix and Graeber, 2024). Nonethe-

less, as we will discuss in the next section, completeness can be restored once we move to an

objective measure of complexity that aggregates the subjective measures from many agents.
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3. Towards an objective measure

The incomplete complexity order that we obtained through our complexity measure reflects an

agent’s subjective assessment. In this section, we will study the question of aggregating such

measures in an attempt to obtain an objective measure of complexity.

Consider a group of agents I. Each i ∈ I is identified by a utility function ui and a cost

function ci, which respectively satisfy the conditions we introduced in the previous section.

These two functions induce an information-acquisition constraint φiκ for every i ∈ I, which in

turn yields agent i’s incomplete complexity relation �i (via Theorem 1).

Let us then introduce a new complexity order which aggregates the different �i for all the

agents i ∈ I. This new order will label task A more complex than task B whenever at least

one agent is able to rank the two tasks, and moreover none of the agents deems B strictly more

complex than A. Formally, this criterion is stated as follows:

Definition 2. Within group I, we say that task (φ, κ) is objectively more complex than

task (φ′, κ′), and we write (φ, κ) �I (φ′, κ′), if the following conditions hold:

(a) There is at least one i ∈ I such that (φ, κ) and (φ′, κ′) are �i-comparable.

(b) For every i ∈ I, either (φ, κ) and (φ′, κ′) are not �i-comparable or (φ, κ) �i (φ′, κ′).

The strict relation �I and the indifference relation ∼I are defined in the usual way, i.e., as the

asymmetric and symmetric part of �I respectively. /

Before moving forward, let us point out that �I is well-defined in the following (desired)

sense: two agents will never completely contradict each other, i.e., it will never be the case

that one agent deems A more strictly complex than B, and another agent will deem B strictly

more complex than A (see Lemma A1 in the Appendix). And this, in turn, yields the following

result.

Proposition 3. For any i ∈ I and any pair of tasks (φ, κ), (φ′, κ′) ∈ T , we have:

(a) If (φ, κ) �i (φ′, κ′), then (φ, κ) and (φ′, κ′) are �I-comparable.

(b) If (φ, κ) �i (φ′, κ′), then (φ, κ) �I (φ′, κ′).

Note that (φ, κ) �i (φ′, κ′) does not directly imply (φ, κ) �I (φ′, κ′). This is because, if we

have (φ, κ) ∼i (φ′, κ′) and (φ′, κ′) �j (φ, κ), then it is the case that (φ′, κ′) �I (φ, κ).

So now, let us focus on the effect of adding more agents into a group. The idea is that the

moment two tasks are �i-comparable for some i ∈ I, then they are also �I-comparable. That

is, the more agent we are adding to I, the more complete �I becomes. Then, the question is

whether we will eventually have sufficiently many agents in I so that �I becomes complete.
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To answer the question, let us first formalize a notion of richness. Recall that �i is derived

from the information-acquisition constraint φiκ, which depends on agent i’s individual charac-

teristics (Remark 2). We will say that I is rich if for every task (φ, κ) there is some i ∈ I such

that φiκ = φ. In other words, there is always an agent for whom the information-acquisition

constraint is binding. Graphically, this corresponds to covering the entire set T with the graphs

of the functions φiκ for the different agents.

Theorem 2. For every rich group of agents I, and any pair (φ, κ) and (φ′, κ′) of tasks, the

following are equivalent

(i) (φ′, κ′) �I (φ, κ).

(ii) Either κ′ > κ, or simultaneously κ′ = κ and φ′ > φ.

The previous result has several direct implications. First of all, quite obviously, �I is the

lexicographic order that first ranks tasks with respect to difficulty, and then —in case of a tie—

ranks them with respect to ex ante uncertainty. In this sense, the complexity order that our

objective measure induces as two dimensions: the usual difficulty dimension that is identified

throughout the literature as almost synonymous to complexity (Oprea, 2024a), as well as the

novel dimension of ex ante uncertainty that we identify in this paper. Nonetheless, conceptually,

our conclusion is not that different from the existing literature. The reason is that, although

we identify this new dimension of complexity, the primary dimension remains the same, viz.,

difficulty.

We say that �I is robust with respect to adding more agents, if for every J ⊇ I it is the

case that �I=�J . As it turns out, the only relation �I which is robust with respect to adding

more agents in the lexicographic relation of Theorem 2, as formally shown below.

Proposition 4. For a group I, the following are equivalent:

(i) �I is robust with respect to adding more agents.

(ii) �I=�I′ for some rich group I ′.

By the previous result, the lexicographic order is the only complete and asymmetric �I
that can be obtained for some group I. The intuition is quite simple. If �I is already complete

and asymmetric and we add more agents to I, nothing is going to change (Proposition 3).

Hence, �I is robust with respect to adding more agents, which in turn implies that I is rich

(Proposition 4). Therefore, �I must necessarily be the lexicographic relation (Theorem 2).
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4. Subjective complexity and effort

Let us go back to the case where there is a single agent. In this context, the relationship between

complexity and effort has been studied by several papers in the literature (e.g., Goncalves, 2024,

and references therein). Similarly to these earlier papers, we naturally assume that effort is

positively correlated with the cost C
(
π(·|x, φ, κ)

)
that the agent incurs for optimally acquiring

information about the task.

For starters, it is not difficult to see that for any fixed x ∈ X, the induced effort is not

always monotonic in complexity. This finding is not surprising, and it has been already pointed

out in the literature. Here we will focus on the the problem from a different angle, focusing on

robustness with respect to the reward, i.e., we ask whether the non-monotonicity can arise for

every x ∈ X.

Proposition 5. Take an arbitrary (φ, κ) ∈ T0 such that φ > φκ. Then, there exists a task

(φ′, κ′) � (φ, κ) such that C
(
π(·|x, φ′, κ′)

)
< C

(
π(·|x, φ, κ)

)
for all x ∈ X.

The previous result shows that for all tasks for which the agent optimally exerts some effort,

we can always find a more complex task which will induce less effort regardless of the size of

the reward. In this sense, non-monotonicity of effort with respect to complexity is both generic

and robust with respect to the reward. Graphically this is illustrated in Figure 5 below. Of

course, for reward x = 0 it is pretty obvious, as the agent will not acquire any information when

facing (φ′, κ′), as opposed to when facing (φ, κ). The interesting part arises when the extrinsic

reward increases to any x > 0. In this case, although (φ′, κ′) is harder, it involves lower ex ante

uncertainty. And this is exactly what makes it cheaper.

ex ante
uncertainty

difficultyκ

φ

κw κ′

φ′

φw

Figure 5: THere is some κ′ > κ such that task (φ′, κ′) is strictly more complex than (φ, κ), but at the same

time it always induces less effort, regardless of how large the reward is.

In fact, it is not difficult to show that if complexity is entirely driven by ex ante uncertainty,

more complex tasks will always induce more effort. That is, whenever φ > φ′, it will be the

case that (φ, κ) � (φ′, κ), and furthermore C
(
π(·|x, φ, κ)

)
> C

(
π(·|x, φ′, κ)

)
for all x ≥ 0.

Interestingly, while the effect of ex ante uncertainty is clear, the same is not true for difficulty.
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Proposition 6. For every φ, there exists some κφ > κ0 such that, for any two κ′ > κ > κφ:

C
(
π(·|x, φ, κ)

)
> C

(
π(·|x, φ, κ′)

)
,

C
(
π(·|x′, φ, κ)

)
< C

(
π(·|x′, φ, κ′)

)
,

for rewards x′ > x ≥ 0.

The previous result suggests that effort rankings are never robust along the difficulty di-

mension. Thus, besides the fact that effort is not monotonic with respect to complexity, the

strength of the extrinsic reward also matters, in the sense that for relatively small rewards the

simpler task induces more effort, whereas for high rewards the more complex task induces more

effort. This result can be seen as the robust counterpart of Goncalves (2024, Prop. 3), who

shows that for a fixed x, effort is not monotonic with respect to difficulty.

5. Discussion

5.1. Eliciting subjective complexity

Let us focus on a simple —albeit important— aspect regarding the practical implementation

of our complexity measure. Suppose that we elicit a subject’s expected accuracy after she has

undertaken the task, like in Enke and Graeber (2023). The problem is that in this case, we can

no longer vary the reward, and therefore our measure will no longer be robust. Hence, the only

option would be to elicit expected accuracy before the task is undertaken, using the strategy

method across different rewards. However, in this case, the subject would have incentives to

hedge for each reward level, thus potentially misreporting her expected accuracy (Blanco et al.,

2010).

As a result, elicit beliefs about one’s own expected accuracy would not be feasible in practice.

In order to overcome this experimental hurdle, we can rely on an idea similar to the one

Bayesian markets (Baillon, 2017), where we use beliefs about other individuals to proxy one’s

own beliefs about themselves. Accordingly, in our setting, we can elicit our subject’s beliefs

about the expected accuracy of another individual for different reward levels. Then, under the

assumption that the subject considers this other individual being similar to themselves, the

elicited accuracy can be used to construct the complexity measure.

5.2. Cost specification

There is a natural question regarding the cost specification that we have assumed throughout

the paper: how restrictive is the symmetry assumption?

15



Starting with symmetry of c, note that in the literature this assumption has been critizised

mostly because distinguishing between two states might be more difficult than distinguishing

between two other states (Hébert and Woodford, 2021). In other words, asymmetries enter

the picture primarily in cases where the state space has some underlying distance, and more

similar states are harder to tell apart. However, given that here we focus on binary tasks, it is

reasonably justified to maintain symmetric costs.

A. Proofs

Proof of Proposition 1. By a standard concavification argument, there exists some δxκ ∈[
0, 1/2

]
such that the optimal signal distributes all probability between δxκ and 1− δxκ whenever

p ∈
(
δxκ, 1− δxκ

)
, and it is completely uninformative otherwise. Note that δxκ is increasing in κ

and decreasing in x. Then, define

κ0 := sup
{
κ > 0 : δ0

κ = 0
}
. (A.1)

(i) ⇒ (ii) : By construction, for every κ ≤ κ0 and every x ≥ 0, it is the case that δxκ ≤ δ0
κ ≤

δ0
κ0

= 0. This means that (φ, κ) is trivial for every φ ∈ [0, 1].

(ii)⇒ (i) : Suppose that κ > κ0. Then, by construction δ0
κ > 0. Therefore, there is some φ > 0

sufficiently close to 0 such that the optimal signal is completely uninformative. This means

that F (0, φ, κ) < F (0, φ, κ0) = 1, i.e., (φ, κ) is not trivial.

Proof of Theorem 1. Take an arbitrary pair (φ, κ). Using the definition of δxκ from the proof

of Proposition 1, we obtain

F (x, φ, κ) =

{
1− φ/2 if φ ≤ φxκ,

1− δxκ if φ > φxκ,
(A.2)

where φxκ := 1 − 2
∣∣δxκ − 1/2

∣∣ is the threshold of the degree of ex ante uncertainty for acquiring

information. Then, define φκ := φ0
κ.

(ii)⇒ (i) : Take κ′ ≥ κ and φ′ ≥ min{φκ, φ}, and consider two cases:

First, let φ′ ≥ φ. Note that Equation (A.2) can be equivalently rewritten as

F (x, φ, κ) = max{1− φ/2, 1− δxκ}. (A.3)

Letting δx
′
κ be the low posterior we obtain from the concavification exercise given the parameters

(φ′, κ′), it is not difficult to verify that δx
′
κ ≤ δxκ. Hence, it follows directly from (A.3) that

F (x, φ′, κ′) ≤ F (x, φ, κ) for all x ≥ 0, and a fortiori we obtain (φ′, κ′) � (φ, κ).
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Second, let φ > φ′ ≥ φκ. By definition, φxκ is decreasing in x, and hence φ > φxκ. So, combined

with (A.2), we obtain F (x, φ, κ) = F (x, φ′, κ) = 1 − δxκ. Moreover, as shown in the first case

above, F is decreasing in κ and therefore F (x, φ′, κ′) ≤ F (x, φ′, κ). Combining the two yields

F (x, φ′, κ′) ≤ F (x, φ, κ) for all x ≥ 0, and a fortiori we obtain (φ′, κ′) � (φ, κ).

(i) ⇒ (ii) : Suppose that κ0 < κ′ < κ. Then, there exists some x ≥ 0 such that φ > φxκ, and

therefore F (x, φ, κ) = 1− δxκ. But then, by (A.3), it is also the case that F (x, φ′, κ′) ≥ 1− δx′κ .

And by κ′ < κ, we have 1− δx′κ > 1− δxκ, and a fortiori F (x, φ′, κ′) > F (x, φ, κ), meaning that

(φ′, κ′) � (φ, κ).

Finally, suppose that κ0 < κ ≤ κ′ and φ′ < min{φ, φκ}. The latter implies that φ′ < φ. Since

both (φ, κ) and (φ′, κ′) are non-trivial, it means that F (x, φ, κ) = 1−φ/2 < 1−φ′/2 = F (x, φ, κ),

and therefore (φ′, κ′) � (φ, κ).

Proof of Proposition 2. Transitivity: It follows directly from Theorem 1. Namely, begin

with (φ′′, κ′′) � (φ′, κ′) � (φ, κ). Hence, we have κ′′ ≥ κ′ ≥ κ and φ′′ ≥ min{φ′, φκ′} and

φ′ ≥ min{φ, φκ}. Then, we consider two cases:

(i) φ′′ ≥ φ′ : It follows directly φ′′ ≥ min{φ, φκ}, and therefore (φ′′, κ′′) � (φ, κ).

(i) φ′ > φ′′ ≥ φκ′ : By monotonicity, we have φκ′ ≥ φκ ≥ min{φ, φκ}. Hence, we obtain

φ′′ ≥ min{φ, φκ}, and a fortiori (φ′′, κ′′) � (φ, κ).

Incompleteness: By the fact that φκ approaches 1 in the limit, there exists some κ > κ0 such

that φκ > 0. Then, consider φ > φκ > φ′, and κ′ > κ. By Theorem 1, we obtain (φ, κ) � (φ′, κ′)

and (φ′, κ′) � (φ, κ), meaning that � is incomplete.

Lemma A1. There is no pair of agents i, j ∈ I and tasks (φ, κ), (φ′, κ′) ∈ T such that (φ, κ) �i
(φ′, κ′) and (φ′, κ′) �j (φ, κ).

Proof. By Theorem 1, if (φ, κ) �i (φ′, κ′), then it is either the case that κ > κ′, or simulta-

neously κ = κ′ and φ ≥ φκ > φ′. But then, in either of these cases, again by Theorem 1, we

cannot have (φ′, κ′) �j (φ, κ).

Proof of Proposition 3. (a) : There are two possible cases. First, let (φ, κ) �i (φ′, κ′). This

means that condition (a) in Definition 2 is satisfied. Moreover, by Lemma A1, for every j ∈ I
for which (φ, κ) and (φ′, κ′) are �j-comparable, we will have (φ, κ) �j (φ′, κ′), meaning that

condition (b) in Definition 2 is also satisfied. Hence, we obtain (φ, κ) �I (φ′, κ′), and therefore

(φ, κ) and (φ′, κ′) are �I-comparable.

Turning to the second case, let (φ, κ) ∼i (φ′, κ′). This means that condition (a) in Definition

2 is satisfied. If there is some j 6= i such that either (φ, κ) �j (φ′, κ′) or (φ′, κ′) �j (φ, κ),

then following the same steps as in the previous case, we conclude that (φ, κ) and (φ′, κ′) are
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�I-comparable. If on the other hand, for every j ∈ I for which (φ, κ) and (φ′, κ′) are �j-
comparable, we have (φ, κ) ∼j (φ′, κ′), then (φ, κ) ∼I (φ′, κ′), meaning that (φ, κ) and (φ′, κ′)

are �I-comparable.

(b) : By the first case in the proof of part (a) above, (φ, κ) �i (φ′, κ′) implies (φ, κ) �I (φ′, κ′).

Then, suppose contrary to what we want to prove that (φ′, κ′) �I (φ, κ). Since the two tasks

are �i-comparable, part (b) of Definition 2 would then imply (φ′, κ′) �i (φ, κ), which would in

turn contradict (φ, κ) �i (φ′, κ′).

Proof of Theorem 2. (ii)⇒ (i) : If κ′ = κ and φ′ > φ, then it follows directly from Theorem

1 that for every i ∈ I, we will have (φ′, κ′) �i (φ, κ), and therefore (φ′, κ′) �I (φ, κ).

So, let us focus on the case where κ′ > κ. Again by Theorem 1, if φ′ ≥ φ then (φ′, κ′) �i (φ, κ)

for every i ∈ I, and a fortiori (φ′, κ′) �I (φ, κ). So, suppose that together with κ′ > κ we have

φ′ < φ. Since I is rich, there exists some i ∈ I such that φiκ = φ′, meaning that (φ′, κ′) �i (φ, κ).

Furthermore, by κ′ > κ, there is no j ∈ I such that (φ, κ) �j (φ′, κ′), as explained in Remark

3. Hence, (φ′, κ′) �I (φ, κ).

(i) ⇒ (ii) : We will proceed by contraposition, starting with the premise that (ii) does not

hold. Then, there are two cases. First, let κ′ < κ. Thus, by Remark 3, there is no j ∈ I such

that (φ′, κ′) �j (φ, κ), and therefore (φ′, κ′) �I (φ, κ).

So, let us turn to the second case where κ′ = κ and φ′ < φ. Then, by I being rich, there is

some i ∈ I such that φ′ < φiκ′ = φiκ < φ. As a result, by Theorem 1, we obtain (φ, κ) �i (φ′, κ′).

Hence, by Proposition, it is the case that (φ, κ) �I (φ′, κ′), and a fortiori (φ′, κ′) �I (φ, κ).

Proof of Proposition 4. (ii)⇒ (i) : Take some rich I ′ such that �I=�I′ . Then, by Theorem

2, the order �I is complete and asymmetric, i.e., for any two tasks (φ, κ), (φ′, κ′) ∈ T , we will

have either (φ, κ) �I (φ′, κ′) or (φ′, κ′) �I (φ, κ). Without loss of generality, let (φ, κ) �I (φ′, κ′).

Now, suppose that we take some J ) I. Then, by Lemma A1, for every j ∈ J \ I, we will have

either (φ, κ) �j (φ′, κ′) or the tasks will not be �j-comparable. Hence, by definition, it will be

the case that (φ, κ) �J (φ′, κ′), i.e., �I=�J .

(i) ⇒ (ii) : Since I is robust to adding more agents, we can take some J ⊇ I such that for

every pair (u, c) there exists some j ∈ J such that (uj, cj) = (u, c). This means that J will be

rich. But then, by �I being robust with respect to adding more agents, we get �I=�J .

Proof of Proposition 5. Let φ′ := φκ. Denote by p and p′ two arbitrary priors that corre-

spond to φ and φ′ respectively. Then, for every x ≥ 0, we obtain

C
(
π(·|x, φ, κ)

)
− C

(
π(·|x, φ′, κ)

)
= κ

(
c(p)− c(p′)

)
= ε > 0. (A.4)
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Take some κ′ > κ such that (κ′ − κ)
(
c(0)− c(1/2)

)
= ε. Then, for any x ≥ 0, we obtain

C
(
π(·|x, φ′, κ′)

)
− C

(
π(·|x, φ′, κ)

)
= κ′

(
c(δκ′x)− c(p′)

)
− κ
(
c(δxκ)− c(p′)

)
< ε, (A.5)

where δxκ and δκ′x are the posteriors that we obtain from the concavification exercise, like in

the proof of Theorem 1. The last inequality follows from c(δxκ), c(δxκ′) ≤ c(0) and c(p′) > c(1/2).

Hence, by (A.4) and (A.5), we obtain C
(
π(·|x, φ′, κ′)

)
− C

(
π(·|x, φ, κ)

)
< 0.

Proof of Proposition 6. Let φ < 1, and define κ0 := φ−1
κ (φ). Fix κ′ > κ > κ0, and

observe that there is some x > 0 such that π(·|x, φ, κ′) is completely uninformative as op-

posed to π(·|x, φ, κ) which provides some information. Therefore, we obtain C
(
π(·|x, φ, κ)

)
>

C
(
π(·|x, φ, κ′)

)
. Moreover, for each x′′ ≥ 0, denote by δxκ and δxκ′ the low posteriors in the

support of π(·|x′′, φ, κ) and π(·|x′′, φ, κ′) respectively, like in the proof of Theorem 1. Note that,

as x′′ becomes arbitrarily large, both δxκ and δxκ′ converge to 0. Thus, by continuity of c, there

exists some x′ such that C
(
π(·|x′, φ, κ)

)
< C

(
π(·|x′, φ, κ′)

)
.
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