A robust measure of complexity

Egor Bronnikov & Elias Tsakas

Maastricht University

Berlin Behavioral Economics Seminar May 2025

Elias Tsakas (Maastricht University)

< □ > < 同 > < 回 > < 回 > < 回 >

Roadmap

- 1 Research Question
- 2 Contribution
- 3 Theory
- Proof of concept

イロト イヨト イヨト イヨト

Roadmap

Research Question

2 Contribution

3 Theory

Proof of concept

5 Conclusion

イロト イヨト イヨト イヨト

Background

- Most Economists agree that (task) complexity is a key determinant of human behavior.
- It has the potential to explain mistakes that people systematically make
- At the same time, there is no consensus on what complexity is.
- Often, it is defined in a casual way

< □ > < □ > < □ > < □ > < □ > < □ >

How is complexity formalized?

Direct approach: start with a definition, e.g.,

- Characteristics of lotteries (Huck & Weizsäcker, 1999; Fudenberg & Puri, 2023; Enke & Shubatt, 2023; Hu, 2023; de Clippel et al., 2025)
- Degree of contingent reasoning in mechanisms (Nagel & Saitto, 2025)
- How pronounced tradeoffs are (Shubatt & Yang, 2025)
- Through productivity of thinking about a task (Gabaix & Graeber, 2024)
- Signal-to-noise ratio (Goncalves, 2024)
- Revealed complexity: start with a measure/proxy, e.g.,

O Direct metrics:

- WTP to avoid a task (Oprea, 2020),
- response times (Wilcox, 1993; Goncalves, 2024),
- biometrics (van der Wel & van Steenbergen, 2018).
- Ø Behavioral metrics:
 - choice inconsistencies (Woodford, 2020).
- 8 Belief-based metrics:
 - expected accuracy (Agranov, Schotter & Trevino, 2025; Enke & Graeber, 2023; Enke, Graeber & Oprea, 2025; Hu, 2024; ...)

Expected accuracy as a measure of complexity

• Expected accuracy: Probability to solve task correctly.

• Basic idea: Higher complexity := Lower expected accuracy

- Reasons to use it:
 - It is simple and intuitive!
 - ② Gaining momentum in the literature!
- On the flip side, there are two important caveats:
 - There are no choice theoretic foundations.
 - What are we actually measuring?
 - ② The induced complexity order depends on the size of the reward
 - Chances to solve task A are larger than task B, if reward is high
 - Chances to solve task A are smaller than task B, if reward is low
- Thus, the following question arises:

Is it a reasonable measure of complexity?

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Expected accuracy depends on reward

• Reward affects attentions

(higher reward, more attention)

Attentions affects expected accuracy

(more attention, more likely to be correct)

• Hence, reward affects expected accuracy

Expected accuracy depends on reward

• Reward affects attentions

(higher reward, more attention)

Attentions affects expected accuracy

(more attention, more likely to be correct)

• Hence, reward affects expected accuracy non-linearly

Roadmap

2 Contribution

B) Theory

Proof of concept

5 Conclusion

イロト イヨト イヨト イヨト

Our approach

• We take a robust approach

 $\mathsf{Higher}\ \mathsf{complexity}\ :=\ \mathsf{Lower}\ \mathsf{expected}\ \mathsf{accuracy}\ \mathbf{for}\ \mathbf{every}\ \mathbf{reward}$

- Conservative (dominance) criterion: not all tasks will be ranked
- Complexity order:
 - (+) Intuitively appealing
 - (-) Incomplete

< □ > < □ > < □ > < □ > < □ > < □ >

Preview of main conclusions

• Theoretical conclusions:

- Condition for any reasonable definition of complexity (based on the appeal of our criterion)
- ② Degree of uncertainty is an essential part of complexity (when is an exam deemed complex?)

• Practical conclusions:

- Recently popular measure of complexity is validated (using a lab experiment)
- Elicit expected accuracy for more rewards (using strategy method)

- 4 回 ト 4 ヨ ト 4 ヨ ト

Our relation to the literature

- Literature justifies belief-based measures of complexity based on common sense (Agranov, Schotter & Trevino, 2025; Enke & Graeber, 2023; Enke, Graeber & Oprea, 2025; Hu, 2024; ...)
 - We provide theoretical foundations
- Literature takes complexity almost as a synonym to difficulty in the corresponding context (Oprea, 2024; Nagel & Saitto, 2025; Shubatt & Yang, 2025; Gabaix & Graeber, 2024; Goncalves, 2024; ...)
 - We identify degree of uncertainty as a novel channel
- Literature de facto postulates that complexity is a complete order (Oprea, 2020, 2024; Nagel & Saitto, 2025; Shubatt & Yang, 2025; Gabaix & Graeber, 2024; Goncalves, 2024; Woodford, 2020; Agranov, Schotter & Trevino, 2025; Enke & Graeber, 2023; Enke, Graeber & Oprea, 2025; Hu, 2024; ...)
 - No need to do so! We take a more conservative approach.

イロト 不得 トイラト イラト 一日

Roadmap

- 1 Research Question
- 2 Contribution
- 3 Theory
 - Proof of concept

5 Conclusion

イロト イヨト イヨト イヨト

(Standard) theoretical framework

- Binary task $S = \{s_0, s_1\}$
- Set of all tasks \mathcal{S}_0
- Scores *Z* = {0, 1}
- Rewards $X = [0, \infty)$
- Net utility $v_{S}(x) := u_{S}(x, 1) u_{S}(0, 0) = \beta_{S}v(x)$
 - Task-specific subjective parameter (satisfaction)
 - Risk preferences are task-independent
 - Only for presentation purposes, fix $eta_{\mathcal{S}}:=1$ for all $\mathcal{S}\in\mathcal{S}_0$
- Prior belief $\mu_{\mathcal{S}} \in [0,1]$ of s_1
 - Novelty of our paper to let the prior vary across tasks
- Degree of uncertainty $\eta_S = \frac{1}{\log 2} H(\mu_S)$
 - Task-specific subjective parameter (familiarity)
 - Consistent with information theory (Cover & Thomas, 2006)

Degree of uncertainty

Elias Tsakas (Maastricht University)

Degree of uncertainty

Utility from answering correctly

Utility from answering correctly

▲ ■ ▶ ■ シへの May 2025 15/37

Attention

• Attention strategy: signal producing stochastic evidence

Each attention strategy is characterized by a (mean-preserving) distribution of posteriors: π ∈ Δ([0,1]) such that E_π(q) = μ_S.

- Attention has benefits and costs.
- Well-known that it is enough to focus on binary attention strategies (Matějka & McKay, 2015)

Elias Tsakas (Maastricht University)

Expected benefit of attention graphically

Elias Tsakas (Maastricht University)

▲ ■ ▶ ■ シ۹C May 2025 17/37

Cost of attention

Posterior-separable cost of attention

$$\mathcal{C}_{\mathcal{S}}(\pi) = \kappa_{\mathcal{S}} \big(\mathbb{E}_{\pi}(c(q)) - c(\mu_{\mathcal{S}}) \big)$$

- Task-independent subjective parameter (cost of information processing)
- Task-specific objective parameter (difficulty)
- Solid theoretical foundations (Caplin et al., 2017; Tsakas, 2020; Zhong, 2022; Denti, 2022) and support by experimental findings (Dean & Neligh, 2024)
- Symmetry of *c* has been axiomatized (Hébert & Woodford, 2021) and particularly natural in binary tasks

A D F A B F A B F A B

Cost of attention

Posterior-separable cost of attention

$$C_{\mathcal{S}}(\pi) = \kappa_{\mathcal{S}}(\mathbb{E}_{\pi}(\boldsymbol{c}(\boldsymbol{q})) - \boldsymbol{c}(\mu_{\mathcal{S}}))$$

- Task-independent subjective parameter (cost of information processing)
- Task-specific objective parameter (difficulty)
- Solid theoretical foundations (Caplin et al., 2017; Tsakas, 2020; Zhong, 2022; Denti, 2022) and support by experimental findings (Dean & Neligh, 2024)
- Symmetry of *c* has been axiomatized (Hébert & Woodford, 2021) and particularly natural in binary tasks

A D F A B F A B F A B

Cost of attention

Posterior-separable cost of attention

$$C_{\mathcal{S}}(\pi) = \frac{\kappa_{\mathcal{S}}}{\kappa_{\mathcal{S}}} (\mathbb{E}_{\pi}(c(q)) - c(\mu_{\mathcal{S}}))$$

- Task-independent subjective parameter (cost of information processing)
- Task-specific objective parameter (difficulty)
- Solid theoretical foundations (Caplin et al., 2017; Tsakas, 2020; Zhong, 2022; Denti, 2022) and support by experimental findings (Dean & Neligh, 2024)
- Symmetry of *c* has been axiomatized (Hébert & Woodford, 2021) and particularly natural in binary tasks

< □ > < □ > < □ > < □ > < □ > < □ >

Cost of information graphically

Elias Tsakas (Maastricht University)

A robust measure of complexity

▲ E ▶ E ∽ Q C May 2025 19/37

イロト イヨト イヨト イヨト

- Agent's optimization problem $\max_{\pi} (G_S(\pi) C_S(\pi))$
- Solved with concavification method (Aumann & Maschler, 1995; Kamenica & Gentzkow, 2011)

- Agent's optimization problem $\max_{\pi} (G_S(\pi) C_S(\pi))$
- Solved with concavification method (Aumann & Maschler, 1995; Kamenica & Gentzkow, 2011)

- Agent's optimization problem $\max_{\pi} (G_S(\pi) C_S(\pi))$
- Solved with concavification method (Aumann & Maschler, 1995; Kamenica & Gentzkow, 2011)

- Agent's optimization problem $\max_{\pi} (G_S(\pi) C_S(\pi))$
- Solved with concavification method (Aumann & Maschler, 1995; Kamenica & Gentzkow, 2011)

Optimal attention graphically

- Attention threshold q_S^{\times} :
 - decreasing in reward (x)
 - increasing in difficulty (κ_S)

• Uncertainty threshold without reward $\bar{\eta}_S = \frac{H(q_S^0)}{\log 2}$

Attention map without reward

- Green area/large uncertainty ($\eta_S > \bar{\eta}_S$): attention without reward
- Red area/small uncertainty $(\eta_{S'} \leq ar{\eta}_{S'})$: no attention without reward
- Without intrinsic incentives, the entire area is red

Elias Tsakas (Maastricht University)

Expected accuracy

<ロト < 四ト < 三ト < 三ト

Robust definition of complexity

Definition

Task $S \in \mathcal{S}_0$ is more complex than $S' \in \mathcal{S}_0$ if

 $P(S,x) \leq P(S',x)$

for all $x \ge 0$. Then, we write $S \succeq S'$.

Elias Tsakas (Maastricht University)

< □ > < 同 > < 回 > < 回 > < 回 >

Trivial tasks

- Task $S \in \mathcal{S}_0$ is trivial if $S' \succeq S$ for all $S' \in \mathcal{S}_0$.
- The set of non-trivial tasks is denoted by $\mathcal{S} \subseteq \mathcal{S}_0$.

- The following are equivalent:
 - S is trivial
 - P(S, x) = 1 for all $x \ge 0$
 - So easy that the state is learned with certainty (even without reward)

Characterization: Vector-valued representation (Ok, 2002)

Theorem (Identification)

For any pair $S, S' \in S$:

 $S' \succeq S \Leftrightarrow \phi(S') \ge \phi(S),$

where $\phi_1(S) = \kappa_S$ and $\phi_2(S) = \min\{\eta_S, \overline{\eta}_S\}$.

• A task is complex when it is both difficult and unfamiliar.

(exam is complex when it is hard and not practiced).

• Difficulty remains the primary channel: $\kappa_S > \kappa_{S'} \Rightarrow S' \not\geq S$ (even though not necessarily $\kappa_S > \kappa_{S'} \Rightarrow S \succeq S'$).

• Without intrinsic incentives, we have $\phi_2(S) = \eta_{S_{i,j}}$

Elias Tsakas (Maastricht University)

Characterization of incompleteness

Proposition (Single crossing)

Suppose that $S, S' \in S$ are not \succeq -comparable, in that

- S more difficult than $S': \phi_1(S) > \phi_1(S')$,
- S more familiar than $S': \phi_2(S) < \phi_2(S')$.

Then, there are two thresholds $0 < x_1 < x_2 \le \infty$ such that:

(i) P(S, x) < P(S', x) for all $x < x_1$,

- For small rewards, it is more likely to solve the difficult familiar task
- Not worthy paying attention, so the agent relies more on the prior
- (ii) P(S,x) > P(S',x) for all $x_1 < x < x_2$,
 - For large rewards, it is more likely to solve the easy unfamiliar task
 - Worthy paying attention, so the agent relies more on the signal

(iii) P(S,x) = P(S',x) for all $x \ge x_2$.

< □ > < □ > < □ > < □ > < □ > < □ >

Characterization of incompleteness

- S more difficult than $S': \phi_1(S) > \phi_1(S')$
- S more familiar than $S': \phi_2(S) < \phi_2(S')$

• Small rewards (red area): more likely to solve the difficult familiar task

- Large rewards (blue area): more likely to solve the easy unfamiliar task
- Very large rewards (green area): both tasks solved with certainty

< □ > < □ > < □ > < □ >

Detour: Eliciting the complexity order

- Can we elicit the belief P(S, x)?
- Binarized scoring rule pays in probability units (Hossain & Okui, 2013):

Chances to win prizeWrong guess (z = 0)Correct guess (z = 1)Reported belief of $z_1(R)$ $1 - \gamma R^2$ $1 - \gamma (1 - R)^2$

- Optimal report $R(S,x) \neq P(S,x)$
- Identification problem due to state-dependent utilities (Tsakas, 2025)
 - She cares about the prize y and the outcome (x, z)
 - Even if we disregard hedging opportunities
- It doesn't matter: we actually care about \succeq , not about P(S, x):

Proposition (Elicitation)

For every pair $S, S' \in S$ and every $x \ge 0$:

 $P(S,x) \ge P(S',x) \iff R(S,x) \ge R(S',x).$

Some practical considerations

• Robustness forces us to use strategy method:

- Elicit R(S, x) for multiple $x \ge 0$
- Elicitation must take place before the task
- There are hedging opportunities
 - Usual problem (Blanco et al., 2010)
 - It can be solved by randomly paying for one $x \ge 0$
- Alternative empirical strategy: Elicit belief about accuracy of others
 - Often simpler to implement
 - Similar idea in Bayesian markets (Baillon, 2017)
 - This is what we use in our experiment

A D F A B F A B F A B

Roadmap

- 1 Research Question
- 2 Contribution
- 3 Theory
- Proof of concept

Conclusion

< □ > < □ > < □ > < □ > < □ >

Proof of concept

- A panel with colored balls (red and blue) is drawn
 - Easy panel (100 balls): 51 of dominant color / 49 of other color
 - Difficult panel (400 balls): 201 of dominant color / 199 of other color
- This panel is drawn from a pool (all easy or all difficult)
 - Familiar task: 8 panels of one color / 2 panels of other color
 - Unfamiliar task: 5 panels of one color / 5 panels of other color
- Participants see the drawn panel and estimate the dominant color
- Two treatments: High reward (€10) / Low reward (€0.5)

- A panel with colored balls (red and blue) is drawn
 - Easy panel (100 balls): 51 of dominant color / 49 of other color
 - Difficult panel (400 balls): 201 of dominant color / 199 of other color
- This panel is drawn from a pool (all easy or all difficult)
 - Familiar task: 8 panels of one color / 2 panels of other color
 - Unfamiliar task: 5 panels of one color / 5 panels of other color
- Participants see the drawn panel and estimate the dominant color
- Two treatments: High reward (€10) / Low reward (€0.5)

Proof of concept

- A panel with colored balls (red and blue) is drawn
 - Easy panel (100 balls): 51 of dominant color / 49 of other color
 - Difficult panel (400 balls): 201 of dominant color / 199 of other color
- This panel is drawn from a pool (all easy or all difficult)
 - Familiar task: 8 panels of one color / 2 panels of other color
 - Unfamiliar task: 5 panels of one color / 5 panels of other color
- Participants see the drawn panel and estimate the dominant color
- Two treatments: High reward (€10) / Low reward (€0.5)

Proof of concept

- A panel with colored balls (red and blue) is drawn
 - Easy panel (100 balls): 51 of dominant color / 49 of other color
 - Difficult panel (400 balls): 201 of dominant color / 199 of other color
- This panel is drawn from a pool (all easy or all difficult)
 - Familiar task: 8 panels of one color / 2 panels of other color
 - Unfamiliar task: 5 panels of one color / 5 panels of other color
- Participants see the drawn panel and estimate the dominant color
- Two treatments: High reward (€10) / Low reward (€0.5)

Elias Tsakas (Maastricht University)

(H₀) Sanity check: For all $S \in \{EU, DU, EF, DF\}$: $P(S, \in 10) \ge P(S, \in 0.50)$ (H₁) Basic hypothesis: For both $x \in \{ \in 0.50, \in 10\}$ $P(EF, x) \ge P(EU, x) \ge P(DU, x)$ and $P(EF, x) \ge P(DF, x) \ge P(DU, x)$

Elias Tsakas (Maastricht University)

(*H*₁) **Basic hypothesis:** For both $x \in \{ \in 0.50, \in 10 \}$ $P(EF, x) \ge P(EU, x) \ge P(DU, x)$ and $P(EF, x) \ge P(DF, x) \ge P(DU, x)$

Elias Tsakas (Maastricht University)

 $P(S, \in 10) \ge P(S, \in 0.50)$ $(H_1) \text{ Basic hypothesis: For both } x \in \{ \in 0.50, \in 10 \}$ $P(EF, x) \ge P(EU, x) \ge P(DU, x) \text{ and } P(EF, x) \ge P(DU, x) \ge P(DU, x) = P$

Elias Tsakas (Maastricht University)

 $P(S, \in 10) \ge P(S, \in 0.50)$ (H₁) **Basic hypothesis:** For both $x \in \{ \in 0.50, \in 10 \}$ $P(EF, x) \ge P(EU, x) \ge P(DU, x) \text{ and } P(EF, x) \ge P(DF, x) \ge P(DU, x)$

Elias Tsakas (Maastricht University)

(H₀) Sanity check: For all $S \in \{EU, DU, EF, DF\}$: $P(S, \in 10) \ge P(S, \in 0.50)$ (H₁) Basic hypothesis: For both $x \in \{\in 0.50, \in 10\}$ $P(EF, x) \ge P(EU, x) \ge P(DU, x)$ and $P(EF, x) \ge P(DF, x) \ge P(DU, x)$ Elias Teakas (Maastricht University) A robust measure of complexity May 2025 33/37

(H₀) Sanity check: For all $S \in \{EU, DU, EF, DF\}$: $P(S, \in 10) \ge P(S, \in 0.50)$ (H₁) Basic hypothesis: For both $x \in \{\in 0.50, \in 10\}$ $P(EF, x) \ge P(EU, x) \ge P(DU, x)$ and $P(EF, x) \ge P(DF, x) \ge P(DU, x)_{3,3}$ Elias Tsakas (Maastricht University) A robust measure of complexity May 2025 33/37

 $\begin{array}{l} (H_2) \text{ Additional hypotheses:} \\ (H_{2a}) \ P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow \ P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) \ P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow \ P(EU, \in 0.5) \leq P(DF, \in 0.5) \\ \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

Guess: how many participants were correct?

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

Guess: how many participants were correct?

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

Guess: how many participants were correct?

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

Guess: how many participants were correct?

(H₂) Additional hypotheses:

 $\begin{array}{ll} (H_{2a}) & P(EU, \in 0.5) \geq P(DF, \in 0.5) \Rightarrow & P(EU, \in 10) \geq P(DF, \in 10) \\ (H_{2b}) & P(EU, \in 10) \leq P(DF, \in 10) \Rightarrow & P(EU, \in 0.5) \leq P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

Guess: how many participants were correct?

(H₂) Additional hypotheses:

 $\begin{array}{l} (H_{2a}) \ P(EU, \in 0.5) \ge P(DF, \in 0.5) \ \Rightarrow \ P(EU, \in 10) \ge P(DF, \in 10) \\ (H_{2b}) \ P(EU, \in 10) \le P(DF, \in 10) \ \Rightarrow \ P(EU, \in 0.5) \le P(DF, \in 0.5) \end{array}$

Elias Tsakas (Maastricht University)

A robust measure of complexity

Roadmap

- 1 Research Question
- 2 Contribution
- 3 Theory
- 4 Proof of concept

< □ > < □ > < □ > < □ > < □ >

Overview of results

- Identification: Task A is more complex than task B if it is both more difficult and less familiar
 - Degree of uncertainty is a novel channel of complexity
 - Difficulty remains the primary channel
- Elicitation: Standard belief elicitation mechanisms reveal whether probability of solving A is larger or smaller than B, even though both might be misreported.
 - Not too difficult to elicit our measure
- **Validation**: Theoretical predictions corroborated in lab experiment.
- Completion (extra result): For non-comparable tasks A and B (viz., A is more difficult and more familiar than B), suppose that we start collecting data about B. Then, regardless where the data comes from, eventually A will certainly become more complex than B.
 - We do not need to know anything about the information source

Thanks for your (in)attention ③

Elias Tsakas (Maastricht University)

A robust measure of complexity

▲ 重 ▶ 重 少 Q C May 2025 37 / 37

< □ > < 同 > < 回 > < 回 > < 回 >