
Sequential Search with Flexible Information ∗

Pavel Ilinov† Andrei Matveenko‡

École Polytechnique Fédérale de Lausanne University of Mannheim

Salil Sharma§ Elias Tsakas¶ Mark Voorneveld‖

Princeton University Maastricht University Stockholm School of Economics

December 2024

Abstract

We consider a model of sequential search in which an agent (the employer)
has to choose one alternative (a candidate) from a finite set. A key feature of
our model is that the employer is not restricted to specific forms of informa-
tion acquisition, i.e., she is free to endogenously choose any interview for each
candidate that arrives. Our main characterization result shows that the em-
ployer’s unique optimal strategy is to offer a gradually easier interview to later
candidates. Further, we study whether the candidates are treated equally in
terms of the probability of being hired. We show that although the discrimi-
nation created by the order of consideration depends on the cost structure, for
large numbers of candidates the first one will be generically favored. Finally,
we characterize a wide range of cases where the employer prefers to start by
interviewing ex ante worse candidates.
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1 Introduction
Since the seminal work of Stigler (1961), search models have had a prominent place
both within the microeconomic and macroeconomic literature (e.g., see Anderson
and Renault, 2018; Chade et al., 2017; Mortensen and Pissarides, 1999). Multiple
applications can be studied within this framework, e.g., a consumer’s search through
different alternatives before purchasing one, an employer’s search through different
candidates before hiring one, an employee’s search through different jobs before
accepting one, etc. The common denominator in all of these situations is that the
search involves some kind of friction, which makes the search problem non-trivial.

Within this literature, sequential search models are considered a benchmark
setting for studying such problems (McCall, 1970; Weitzman, 1979). In this basic
environment, an agent goes through a number of options, acquiring information
about them sequentially before stopping at some point and selecting one. While
this model describes a somewhat stylized search procedure, it is still parsimonious
enough to accommodate most applications of interest and thus allows us to study
the most interesting features of search problems. In this setting, frictions usually
arise as the cost of information acquisition or as waiting costs.

In this paper, we focus on sequential search, with the important novel feature
that the agent can flexibly differentiate the information she collects about each
option. Our analysis is carried out in the specific setting of an employer who se-
quentially interviews candidates for a vacancy, without being exogenously restricted
to a specific set questions or a specific test format. The only constraint is that she
must immediately decide on whether to hire the candidate or not after the interview.
Such constraint is common in thick labor markets where decisions are made quickly
and there are plenty outside options both for the employer and the candidates, e.g.,
low-skill workers in retail, hospitality sector, food services, construction, sales, etc.
In fact, in many of these examples, work is temporary or seasonal and the workers
are unlicensed which makes it practically unlikely to delay the hiring decision. At
the same time, despite the large supply or candidates, employers face a hard dead-
line to hire someone, and as a result there is an exogenously given finite number of
interviewing slots.

The reason why we are interested specifically in the role of flexible information
acquisition is twofold: first, flexibility in the interviewing process is quite common
in practice, as employers often keep calibrating their questions throughout the inter-
viewing process (Laker, 2023); second, by allowing full flexibility, we can study the
employer’s best case scenario, thus obtaining an upper bound on what the employer
can achieve in terms of efficiency. The latter will allow us to address questions re-
garding the optimal order of interviewing candidates (Weitzman, 1979) or regarding
fairness concerns and biases that stem from the interviewing process (Bertrand and
Duflo, 2017; Neumark, 2018; Schlag and Zapechelnyuk, 2024).

Our formal model is a variant of Pandora’s boxes (Weitzman, 1979) with a ra-
tionally inattentive employer (Sims, 2003). In the benchmark case, the type of each
candidate is drawn independently from the same (Bernoulli) distribution. Of course,
the actual types remain unobservable to the employer. The candidates arrive for
interviews sequentially in a fixed order. A candidate’s interview takes the form of a
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usual Bayesian signal, which is chosen by the employer and crucially may depend on
the realizations of the earlier interviews. Aligned with the rational inattention lit-
erature, the cost of each interview is posterior-separable (Caplin et al., 2022; Denti,
2022): in this sense, our model covers as special cases all the commonly-used cost
specifications, including entropic costs. Upon observing the realized signal of an
interview, the employer may either reject the candidate and proceed to the next
interview or hire him right away, similarly to the literature on committed Pandora’s
boxes (Beyhaghi and Cai, 2023, Section 2.2) and on the secretary’s problem (Correa
et al., 2024, and references therein), as well as in the more extensive search litera-
ture within labor economics (Mortensen and Pissarides, 1999). As we have already
discussed, this assumption naturally fits the applications that we have in mind, and
moreover will eventually allow us to obtain sharp theoretical predictions.

We start by asking a general question: what is the employer’s optimal inter-
viewing strategy? We characterize the optimal strategy by reducing the dynamic
information acquisition problem into a static one (Theorem 1). This characteriza-
tion uncovers a special feature of the employer’s behavior: we show that candidates
interviewed earlier face a “more difficult interview. ” That is, the optimal interviews
are ranked with respect to a novel order of difficulty. Remarkably, this order turns
out to have striking similarities with the likelihood ratio dominance order for lotter-
ies (Shaked and Shanthikumar, 2007, and references therein), the information bias
order (Gentzkow et al., 2014), and a toughness measure in the context of product
testing (Gill and Sgroi, 2012).

The implications of the previous result are twofold. First, the employer has the
luxury of overshooting for very high expected quality in early candidates, as there
are still plenty of candidates to come. Second, by having a large expected quality
of a failed early candidate, the employer makes the interview of this early candidate
relatively cheap, thus balancing the risk that she undertakes (via overshooting) and
the information acquisition cost that she has to incur.

Our paper continues with another question with interesting practical implica-
tions for recruiters, candidates, regulators, etc. We ask whether sequential search
with flexible information acquisition is discriminative, in the sense of ex-ante identi-
cal candidates having non-equal chances of being hired (Bertrand and Duflo, 2017;
Neumark, 2018). Opinions among practitioners on this subject wildly differ, typi-
cally based on psychological arguments, i.e., some hiring managers suggest that it
is better to be interviewed first because of primacy bias. In contrast, others suggest
that it is better to go last because of recency bias (Cotterell, 2019; Laker, 2023).
Here, we approach this problem from a completely different angle. We highlight that
the optimal interviewing strategy induces a tradeoff: early candidates have a higher
probability of being interviewed in the first place, but at the same time, they have
a lower probability of being hired conditional on being interviewed because of the
more difficult interview they face. This raises the question: which effect ultimately
dominates?

We demonstrate that the answer to the question depends on the specific form of
the learning cost. Additionally, the answer is significantly influenced by the number
of candidates considered by the manager. We categorize our analysis into two sec-
tions: the “small world” where two candidates are considered, and the “big world”
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where many candidates are considered. For the small world, we provide a character-
ization for a broad class of functions, which includes entropy, quadratic costs, and
Shorrock’s entropies. For the big world, we show that the first arriving candidate
will generically get preferential treatment and has the highest probability of being
hired. That is, summing up, the candidates have the same probability of being
chosen in very rare cases. A similar conclusion is reached in a very different model
by Schlag and Zapechelnyuk (2024), who show that only very specific interviewing
protocols guarantee fair treatment of the candidates.

In the final main part of the paper, we relax the assumption that candidates
are ex-ante identical. Within this more general framework, we first naturally ask
whether our results about the employer’s optimal interview carry, and second, we
ask whether the employer prefers to start by interviewing better or worse candidates
first. Once again, similarly to the question about discrimination, this is a question
to which practitioners do not agree (Selby Jennings, 2023). Starting with the first
of these two last questions, we show that our previous result about the difficulty
of the interview still holds, i.e., earlier interviews are easier than later ones. Then,
turning to the second question in a setting with two candidates, we show that under
quadratic costs, the order does not matter. However, with entropic costs, for large
priors, it is often better to start with the better candidate, whereas for small priors,
it is often better to start with the worse candidate.

Finally, we consider a simple extension of our model. Namely, we discuss a naive
policy that forbids discrimination in the interview process: we force the employer
to choose the same interview for all candidates. We show that in this case, the
optimal interview that is used for all candidates is easier than the interview for the
first candidate in the unrestricted case but more difficult than the interview for the
second-to-last candidate. The consequence is immediate: the probability of hiring
the first candidate in the restricted case is higher than the same probability in the
unrestricted case. In many cases, the outcome of the naive policy can be contrary
to the desired result: if the first candidate is given preferential treatment without
restrictions, under the restricted interview policy, that candidate is treated even
better.

Our results are important for several strands of literature. First, our work should
be primarily seen as part of the literature on Pandora’s boxes (Weitzman, 1979), and
in particular on the case with no-recall (Salop, 1973). The main difference to our
setting is that in Pandora’s boxes, the information acquisition boils down to an all-
or-nothing decision, i.e., in our language, the employer will either learn the type of
candidate with certainty (perfectly informative interview) or will not learn anything
at all (completely uninformative interview). In addition, the early papers did not
allow a candidate to be hired without having been interviewed first, something
which was later permitted by Doval (2018). For an excellent recent overview of this
literature, we refer to Beyhaghi and Cai (2023).

Within this literature, particularly relevant to our work are the recent papers
of Schlag and Zapechelnyuk (2024), where the problem of fair sequential interviews
is studied, and the one of Ursu et al. (2020), which allows for flexible information
acquisition but restricts attention to a specific information acquisition technology.

Related to this literature is the one on the secretary’s problem (Correa et al.,
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2024, and references therein). This literature can be seen as a stream of sequential
search with unknown distribution of types. The feature shared with our work is that
they also typically assume no recall.

Second, our work can be seen as part of a broad stream within the dynamic
rational inattention literature that focuses on the timing of information acquisition
(Steiner et al., 2017; Morris and Strack, 2019; Zhong, 2022; Hébert and Woodford,
2023). There is variation in the underlying assumptions that they impose, e.g.,
some allowing for flexible information acquisition, some assuming discounting, and
some considering continuous time. At the same time, all these papers differ from
ours in that they allow for information acquisition about the entire state space
at any point in time. In our context, this would imply that the employer can
potentially interview multiple candidates at any point in time and may also invite
back candidates for follow-up interviews. While this assumption certainly makes
sense for the applications that these authors have in mind, it seems less appealing
in the job market setting that we have in mind as our main application.

Third, our paper is incidentally related to the literature on ordering Bayesian
signals, by introducing our difficulty order, which is equivalent to the toughness
order that Gill and Sgroi (2012) use in a different context. A similar order has also
been used by Gentzkow et al. (2014) and Charness et al. (2021) in an attempt to
model information biases. All of these orders share striking similarities with the
likelihood ratio dominance order (Shaked and Shanthikumar, 2007).

Finally, there is a large literature on ordered consumer search, studying dynamic
information acquisition about different consumption choices before an eventual pur-
chase decision is made (for an overview, see Armstrong, 2017). The main difference
to our work is that the focus of this literature is on the role of different asymmetries
across choices, e.g., which product does the consumer inspect first when the products
differ in price or in inspection costs? Similarly to the literature on Pandora’s Boxes,
most of the work on ordered consumer search imposes strict exogenous assumptions
on the information acquisition technology, which at the outset seems quite natural
in the context of the corresponding applications. To the best of our knowledge,
there are two exceptions: the paper of Jain and Whitmeyer (2021) where the ef-
fect of flexible information acquisition on market outcomes is studied, and the one
of Georgiadis-Harris (2024) where —among else— dynamic information acquisition
with a fixed deadline is studied, and it is found that close to the deadline not much
is learned.

2 Model
We study a (female) employer who considers an ordered set of a priori identical
(male) candidates I = {1, . . . , T}. Each candidate i ∈ I is associated with a type

θi ∈ Θ := {Good, Bad} = {G,B},

which is independently drawn from the same distribution that assigns probability
µ ∈ (0, 1) to the good type G.1

1The binary type assumption is not essential for our analysis. Our results hold in a more
general setting, more specifically, when the utility of the employer only depends on the beliefs
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The employer must choose one candidate, and there is no outside option. Before
making a decision, she may acquire information about the candidates’ types. Infor-
mation acquisition is sequential, following the candidates’ order. That is, at stage i,
the employer selects a Blackwell experiment σi : Θ → ∆(Si) for candidate i. Upon
observing a signal realization s ∈ Si, she forms a posterior distribution on Θ, that
we identify with her posterior belief about the state G

psi :=
µσi(s|G)

µσi(s|G) + (1− µ)σi(s|B)
.

It follows from the work of Kamenica and Gentzkow (2011) that each experiment
is identified by a mean-preserving distribution over posterior beliefs, i.e., by some
πi ∈ ∆([0, 1]) such that Eπi

(p) = µ. A fully uninformative signal is one that puts
probability 1 to the prior µ.

After updating to belief psi about candidate i, the employer either hires i or
proceeds to interview the next candidate i + 1. We assume no recall, i.e., if a
candidate is not hired right after an interview, he is no longer available to the
employer. There can be several rationales for such an assumption: For instance, it
can be driven by psychological factors of the rejected agent (e.g., pride, frustration,
etc.) or by conditions on the labor market (e.g., there is excess labor demand and the
rejected candidate is hired immediately by another firm), or because of institutional
rules (e.g., HR rules dictate that every candidate is only interviewed once). Thus,
the employer chooses an action

ai ∈ Ai := {0, 1}

following the realization of an interview for candidate i, where action 0 corresponds
to not hiring a candidate and 1 to hiring. Hiring a good candidate brings utility 1,
and hiring a bad candidate 0.

Formally, a non-terminal history at round i ∈ {1, 2, . . . , T} is identified by the
set of realized posteriors for all candidates j ∈ {1, . . . , i− 1}, i.e.,

Hi := [0, 1]i−1.

The employer’s action at every h ∈ Hi consists of a signal that leads to a distribution
of posteriors πh

i and a mapping αh
i : supp(πh

i ) → Ai. Whenever p ∈ supp(πh
i ) is

realized, and αh
i (p) = 1 is chosen, a terminal history is reached, and candidate i is

hired. In case round T is reached, the last candidate will be hired regardless of the
realization of the respective signal. A typical strategy of the employer is henceforth
denoted by (π,α).

Information acquisition is costly. In line with the rational inattention literature,
we consider posterior separable costs (Caplin et al., 2022; Denti, 2022): test πi costs

C(πi) = λ

(
Eπi

[c(p)]

)
, (1)

about posterior means as is typically assumed in the literature of the information design or costly
information acquisition, for example, see Arieli et al. (2023) and Mensch and Malik (2023) for the
recent references. We hold the binary type assumption mainly for the simplicity of the exposition.
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where λ ∈ R++ is the marginal cost of information and c : [0, 1] → R is continuous,
strictly convex and smooth on the interior of the unit interval.

Throughout the paper, we impose the following assumption:

Boundary condition : lim
p→0+

c′(p) +
1

λ
< c′(µ) < lim

p→1−
c′(p)− 1

λ
. (2)

Intuitively, this assumption puts a lower bound on the marginal cost at the bound-
aries, i.e., learning the true state with certainty is expensive.

The two standard special cases of costs are the quadratic and the entropic costs.

Example 1. We say that the cost function is quadratic whenever

c(p) = (p− µ)2.

◁

Example 2. We say that the cost function is entropic whenever

c(p) = µ log µ− (1− µ) log(1− µ)− (−p log p− (1− p) log(1− p)).

Recall that −p log p− (1− p) log(1− p) is known as Shannon entropy. ◁

If the employer chooses the action (πh
i , α

h
i ) at history h ∈ Hi, the expected payoff

that she wants to maximize is equal to

Eπh
i

[
αh
i (p)p+ (1− αh

i (p))Vi − λc(p)
]
,

where Vi denotes her maximum net expected payoff if she continues and interviews
candidate i+1. Note that Vi depends only on the number of remaining candidates,
as the types of the different candidates are drawn independently from the same
probability distribution, and there is no recall possibility. Hence, without loss of
generality, we can restrict attention to Hi-measurable strategies, i.e., to strategies
such that (πh

i , α
h
i ) = (πi, αi) for all h ∈ Hi. This means that the employer’s expected

payoff is simplified to

Eπi

[
αi(p)p+ (1− αi(p))Vi − λc(p)

]
. (3)

Definition 1. The employer’s dynamic optimization problem is

max
(πi,αi)

Eπi

[
αi(p)p+ (1− αi(p))Vi − λc(p)

]
, (4)

subject to

Vi = max
(πi+1,αi+1)

Eπi+1

[
αi+1(p)p+ (1− αi+1(p))Vi+1 − λc(p)

]
, (5)

VT = 0. (6)

Constraint (5) ensures dynamic consistency; that is, the DM behaves optimally
in every history. Constraint (6) captures the intuition that if the DM has rejected
all candidates, she ends up with zero payoff.
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3 Optimal interviewing strategy
The optimal strategy (π,α) in problem (4) is the collection of the optimal actions
(πi, αi) for all i ∈ I. Note that the interview design problems at some stages i, j
differ only by their continuation values Vi and Vj, correspondingly. Therefore, in the
dynamic problem, the employer behaves as if she solves a collection of static problems
with different continuation values. These continuation values are determined from
the future behavior of the employer, and the value is exogenous at stage i. Thus, at
stage i, a continuation value Vi serves the role of an outside option to the employer.
Therefore, we conclude that at each stage i, the employer solves a static problem
with an exogenous outside option. A static problem with an exogenous outside
option is a building block for the dynamic problem, and we discuss a static problem
in great detail in this section.2

Additionally, we observe that at stage i given the realized value p, the employer
simply selects candidate i if p ≥ Vi and continues search otherwise, and therefore in
our previously-stated optimization problem, we can replace αi(p)p + (1 − αi(p))Vi
with max{p, Vi}. Thus, the optimization problem at stage i boils down to the
following (static) optimization problem with parameter V := Vi.

Definition 2. The static optimization problem (or the problem with exogenous
outside option) is

max
π

Eπ

[
max{p, V } − λc(p)︸ ︷︷ ︸

ϕ(p,V,λ)

]
. (7)

We discuss the properties of the static problem using two technical lemmas. The
first lemma characterizes the solution exploiting the convexity and differentiability
of the function c(p).

Lemma 1. The following statements hold:

1. The solution to problem (7) exists, and it is unique and interior.

2. There exist two thresholds VL, VH ∈ (0, 1) with VL < µ < VH , such that the
optimal test πV satisfies:

V ≤ VL =⇒ supp(πV ) = {µ},
VL < V < VH =⇒ supp(πV ) = {pLV , pHV },
V ≥ VH =⇒ supp(πV ) = {µ}.

3. The optimal hiring decision is given by the following:

V ≤ VL =⇒ α(µ) = 1,

VL < V < VH and p = pHV =⇒ α(p) = 1,

VL < V < VH and p = pLV =⇒ α(p) = 0,

V ≥ VH =⇒ α(µ) = 0.

2Such a problem is a variant of the problem of a rationally inattentive agent with an exogenous
outside option, see, e.g., Matějka and McKay (2015), Caplin and Dean (2013) for the reference.
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The previous lemma is illustrated in Figure 1. The idea is that ϕ(p, V, λ) consists
of two strictly concave parts, with a kink at V . This induces the two posteriors
pLV and pHV , and as the prior lies between these two, the employer will acquire an
informative signal that distributes its probability to these two posteriors; otherwise,
she will pick the completely uninformative signal. These posteriors are obtained, for
example, using the concavification technique as in Caplin and Dean (2013).3

ϕ(p, V, λ)

concavification

0 1pLV pHVV µ p

Figure 1: The employer’s static payoff function and its concavification when V ∈
(VL, VH).

The key observation is that both pLV and pHV are, in general, continuously in-
creasing in V (see Lemma B4 in the Appendix for a formal proof). Moreover, we
have

lim
V→0+

pLV = lim
V→0+

pHV = 0 and lim
V→1−

pLV = lim
V→1−

pHV = 1.

Hence, for sufficiently large V , the whole interval [pLV , pHV ] will lie to the right of µ.
Likewise, for sufficiently small V , the interval will lie to the left of µ. Thus, we can
define the two thresholds:

VH := min{V ∈ [0, 1] : pLV ≥ µ},
VL := max{V ∈ [0, 1] : pHV ≤ µ}.

Intuitively, if the value of the outside option is very high (V > VH), the DM does
not acquire any information and simply chooses the outside option. Similarly, when
the value of the outside option is very low (V < VL), the DM takes the current option
without extra information. Note that by the prior µ ∈ (0, 1) being full-support, we
obtain both VL ∈ (0, 1) and VH ∈ (0, 1).

In the dynamic problem of the employer, the outside option at stage i equals
the value of the problem at stage i + 1. In turn, this value equals the maximal
attained value in a static problem (7) for a particular value of outside option V . To

3For recent use of concavification to the related rationally inattentive problems, see, e.g., Jain
and Whitmeyer (2021), Kim et al. (2022).

9



study the maximal attained value in the static problem, we define a value function
g : [0, 1] → [0, 1] such that

g(V ) = max
π

Eπ

[
ϕ(p, V, λ)

]
.

Function g(V ) is clearly non-decreasing by construction, as ϕ(p, V, λ) is weakly
increasing in V for every p. We note that function g(V ) is linear on [0, VL] and [VH , 1],
namely, we have g(V ) = µ if V ≤ VL and g(V ) = V if V ≥ VH , as in either of these
two regions the employer does not incur any costs for acquiring information, and
makes a hiring decision straight away. The following lemma completes the analysis
for the entire unit interval.

Lemma 2. The function g is increasing, convex, and differentiable on [0,1]. More-
over, it is strictly increasing on the interval [VL, 1].

We will now proceed to characterize the solution to the dynamic problem. To
do so, we first define a specific sequence of static problems by means of a sequence
of outside options, namely, for each i ∈ {1, . . . , T}, we have

Vi := g(Vi+1), (8)

with VT = 0.

Lemma 3. For the sequence (Vi)
T
i=1 defined in (8), the following statements hold:

1. The continuation value Vi is strictly decreasing in i.

2. For every i ∈ {1, . . . , T − 1}, we have µ ≤ Vi < VH .

We illustrate Lemma 3 graphically (Figure 2). First of all, by combining con-
vexity and differentiability of g with the fact that g(V ) = V for all V ≥ VH , it
follows that g(V ) > V for all V < VH . Hence, Vi keeps shrinking as the employer
moves to later candidates. This is not surprising, as there are fewer candidates left
to interview. The fact that for all candidates except the last one, the outside option
always lies in the learning region (VL, VH) holds similarly.

Theorem 1. The solution to the dynamic problem of Definition 1 is as follows:

1. At every round i ∈ {1, . . . , T − 1}, the employer draws the signal πVi
which is

optimal in the static problem (according to Lemma 1), with the outside option
Vi that we defined in (8). Moreover, we have:

(a) If pHVi
is realized, the search stops and candidate i is hired.

(b) If pLVi
is realized, the search continues to candidate i+ 1.

2. At round T , the employer does not acquire information and hires the candidate
right away.
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1

1

VL VH

VL

VH

V2 V1

g

V3

µ = g(V3)

g(V2)

Figure 2: The sequence of outside options with three candidates.

The employer’s optimal interview design in the dynamic problem is very straight-
forward: She continues the search until she receives a high signal about the quality
of a candidate. If only the low signals have been realized during the first T − 1 in-
terviews, she simply chooses the last candidate with the fully uninformative signal.

In the next section it will be easier to interpret optimal interview at stage i as
a binary test. The employer offers personalized test to each candidate i. If the
candidate passes, he is hired; if the candidate fails, he is discarded. We state our
main result about the characterization of the optimal tests in the next section.

4 Difficulty of interviews
We introduce the following partial order to compare the different tests that the
employer optimally chooses for different candidates.

Definition 3. Let πi and πj be two binary tests, with pLi < pHi and pLj < pHj being
the posteriors beliefs in the respective supports. We say that πi is more difficult
than πj if

pLi > pLj and pHi > pHj .

The condition above has a simple interpretation. The two candidates are ex ante
identical from the point of view of the employer, and they are offered one test each
such that, whenever there is a tie, i is deemed better than j, i.e., in particular,

(a) if both of them pass their respective tests, the expected quality of i is higher
than the expected quality of j, and

11



(b) if both of them fail their respective tests, the expected quality of i is higher
than the expected quality of j.

The concept of test difficulty can also be demonstrated by means of a simple ex-
ample. Consider two following interview tasks, the first being “Formulate and prove
the Hahn-Banach theorem” and another one “Compute the derivative of quadratic
function” The first task is clearly more difficult, and if the candidate succeeds, the
posterior belief about the candidate becomes relatively high, while if he fails, the
belief does not go down by much. For the second task, which is clearly easier, the
belief dynamics are the opposite.

Let us provide some further justification for calling πi more difficult than πj.
Recall that the two tests πi and πj are respectively characterized by the underlying
experiments σi and σj (see Section 2).

Definition 4. We say that experiment σi likelihood-ratio dominates experiment σj
whenever, for every signal realization s ∈ {H,L},

σi(s|G)
σi(s|B)

>
σj(s|G)
σj(s|B)

.

The underlying idea is as follows: conditional on every test result, the relative
evidence for the good type is stronger under i’s interview than under j’s interview.
A similar relation has been used in the literature on biased information sources
(Gentzkow et al., 2014; Charness et al., 2021) and in the literature on product
testing (Gill and Sgroi, 2012). All these orders bear striking similarities with the
likelihood ratio dominance, which is often used in the literature to compare lotteries
(Shaked and Shanthikumar, 2007).

Proposition 1. The following are equivalent:

(i) Test πi is more difficult than test πj.

(ii) Experiment σi likelihood-ratio dominates experiment σj.

(iii) For every prior µ, the passing probability under σi is lower than the passing
probability under σj, i.e.,

µσi(H|G) + (1− µ)σi(H|B)︸ ︷︷ ︸
passing probability under σi

< µσj(H|G) + (1− µ)σj(H|B)︸ ︷︷ ︸
passing probability under σj

.

(iv) The probability of “false-positive” outcome σi(H|B) is lower than σj(H|B), and
the probability of “false-negative” outcome σi(L|G) is higher than σj(L|G).

From the previous result, it follows directly that our notion of more difficult
interview does not depend on the prior. This is a desirable property, satisfied by
other well-known orders over the set of Bayesian experiments. The idea is that
difficulty is a property of the test alone, defined independently of the candidate who
takes the test.
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Furthermore, if the two candidates share the same prior, i’s interview is more
difficult than j’s interview if and only if the probability of passing the test is lower
for i than it is for j.

Let us now state our main result, which says that, in the optimal interview-
ing strategy, the interviews decrease in difficulty as the employer proceeds to later
candidates.

Theorem 2. In the optimal strategy from Theorem 1, the following hold:

1. Difficulty of interviews is decreasing with respect to the order of being inter-
viewed, i.e., for all i ∈ {1, . . . , T − 2}, test πVi

is more difficult than test πVi+1
.

2. As the number of candidates grows large, we obtain:

lim
T→∞

pLV1
= µ and lim

T→∞
pHV1

= VH .

Hence, the following hold:

(a) The probability of the first candidate being hired converges to 0.

(b) The probability of hiring a good candidate is bounded away from 1.

Figure 3 shows an example of an optimal learning strategy. On the vertical axis,
we have the number of remaining candidates besides the one currently interviewed.
So, for instance, if there are ten candidates in total, we depict the optimal inter-
views for the first nine, recalling that the last one will be hired anyway without an
interview.
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Figure 3: Optimal interviews as a function of the number of remaining candidates.

Decreasing the high posterior realizations pHVi
is intuitive. If a posterior pHVi

is
realized on the interview i, the employer stops the search and chooses candidate
i. Thus, it makes sense that in order for the employer to stop the search early,
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she needs to be sufficiently certain that the candidate she hires is good, as she is
foregoing the chance to interview many other potential candidates.

Decreasing the low posterior realizations pLVi
is less intuitive. By using such

a strategy, the employer optimally procrastinates: instead of acquiring the most
information during the first interviews, she wants to spread expected information
acquisition towards all interviews. Intuitively, during the first interviews, she offers
difficult tests to the applicants because she has some applicants left. The employer
wants to bear the risk and try to “catch a big fish” at the beginning and do not
spend too much on information to be more sure that the rejected candidate is of
bad type. The fewer candidates are left, the safer the strategy used by the employer
is.

Additionally, we describe the dynamics of the optimal interviews in terms of
the statistical errors that the employer makes. Combining results from Theorem
2 and Proposition 1, we obtain that, in the first stages, the employer bears the
risks, offers the hardest tests, and tolerates the false negatives, whereas, in the later
stages, she plays safer, decreasing the probability of false negatives and increasing
the probability of false positives.

Corollary 1. The probability of false positive outcome σi(H|B) is decreasing in i,
and the probability of false negative outcome σi(L|G) is increasing in i.

It is remarkable that even with an arbitrarily large number of candidates, the
employer will not be certain that a good candidate will be hired in the end. This is
because even the first candidate’s test (which will be very difficult due to the vast
number of candidates that are still to follow) will not fully rule out the possibility
of a false positive. The reason is that the marginal cost of information close to the
boundary grows arbitrarily large, i.e., it becomes too expensive to try and split hairs
at the top end of test results.

5 Discrimination
From Theorem 2, we know that the optimal interviews are more difficult for earlier
candidates: conditional on being interviewed, later candidates get an easier test
than earlier ones. However, from Theorem 1, we know that the probability that a
candidate is interviewed at all is lower than that of his predecessors since it depends
on those candidates failing their interviews. The aggregate effect is unclear. In
this section, we ask which effect dominates, that is, what can we say about the
unconditional probability of a candidate being hired?

In our analysis, we distinguish two cases depending on the number of available
candidates. We argue that in the case when a few candidates are available, the
pattern of discrimination is complex and non-trivially dependent on the shape of
the cost function and the parameters of the model. However, when the number of
candidates is large, the pattern of discrimination starts to emerge, and the model
delivers a unique prediction.
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5.1 Few candidates

In the section, we focus on the analysis when T = 2. In order to make the problem
tractable, we make certain assumptions on the cost function. We start with the
technical assumption of symmetry.

Definition 5. c is said to be symmetric about a point z ∈ (0, 1) if for any pair
p, r ∈ [0, 1]

|z − p| = |z − r| =⇒ c(p) = c(r).

We denote the set of symmetric functions by Cs

Note here that the point of symmetry, z, may or may not depend on the prior
belief. Symmetry is a mild assumption that is satisfied, for example, for quadratic
or entropic costs. See also Hébert and Woodford (2021), who derive symmetric cost
using an axiomatic approach.

Next we put an additional structure on the shape of the cost. We require our
cost to belong to one of the three families.

Definition 6. c belongs to either of the three following families:

C1 =
{
c ∈ Cs

∣∣ c′ is concave on (0, z)
}
,

C2 =
{
c ∈ Cs

∣∣ c′ is linear on (0, z)
}
,

C3 =
{
c ∈ Cs

∣∣ c′ is convex on (0, z)
}
.

The symmetry defines how the cost function c behaves on the interval (z, 1). If
c ∈ C2, then c is simply a quadratic cost function. The shape of the derivative c′(p) is
crucial because it imposes a structure on the costs associated with obtaining high pH
and low pL posteriors. In the optimum, the employer balances the informativeness
of both low and high posteriors, ensuring that the marginal costs for acquiring pH
and pL are aligned. For instance, if c′(p) is concave for small beliefs, it means that
improving information about the good state is more expensive than improving it
about the bad state. This is due to the symmetry that makes c′(p) convex for high
beliefs.

We say that candidate 1 is favored if the unconditional probability of hiring him
exceeds 0.5. The next proposition identifies the behavior of the employer depending
on which family the cost function belongs to.

Proposition 2. 1. If c ∈ C1, then

1) If µ > z, then the first candidate is favored.

2) If µ = z, then no candidate is favored.

3) If µ < z, then the second candidate is favored.

2. If c ∈ C2, then no candidate is favored.

3. If c ∈ C3, then

1) If µ > z, then the second candidate is favored.

15



2) If µ = z, then no candidate is favored.

3) If µ < z, then the first candidate is favored.

Intuitively, the first candidate is favored if the low posterior belief is more in-
formative about the bad state than the high posterior about the good state; if pL
is further away from µ than pH . Family Cs puts structure on such informativeness
trade-off. As an immediate corollary from Proposition 2, we get results for quadratic
and entropic costs because quadratic costs belong to C2 family and entropic costs
belong to C1 family with z = 0.5.

Corollary 2. If c is quadratic, no candidate is favored. If c is entropic, the first
candidate is favored if µ > 0.5, the second candidate is favored if µ < 0.5, and no
candidate is favored if µ = 0.5.

Bartoš et al. (2016) find that endogenous attention leads to discrimination when
candidates have different expected productivity. They show that the behavior of
the employer depends on whether the market is lemon-dropping with high priors
or cherry-picking with low priors. Proposition 2 suggests that discrimination may
present even if the candidates are ex-ante the same, but the choice problem is se-
quential.

There is an ongoing debate in the literature on rational inattention, which learn-
ing cost function most adequately represents the choice of the individual. We show
that the observed behavior can depend on non-trivial properties of the cost, but
our results also provide a testable hypothesis for the cost of learning. Our result
in Proposition 2 can be parametrized with the help of Shorrock’s entropy, which
was recently used in experiments (Dean and Neligh, 2023) and in theoretical work
(Miao and Xing, 2024)). Given a posterior belief p for our binary setup, Shorrock’s
entropy is

c(p) = − 1

(α− 1)(α− 2)

[
1−

(
p2−α + (1− p)2−α

)]
,

where α ∈ R is a parameter. Shorrock’s cost belongs to the Uniformly Posterior
Separable costs family. Additionally, note that when α → 1, Shorrock’s entropy is
approaching the negative entropy, and when α = 0, the costs are quadratic.

Shorrock’s entropy is symmetric around z = 0.5, and the sign of c′′′(p) on (0, z)
is uniquely determined by the value of α. The following corollary reformulates
Proposition 2 for Shorrock’s entropy.

Corollary 3. 1. If α ∈ (−∞,−1) ∪ (0,∞), then

1) If µ > 0.5, then the first candidate is favored.

2) If µ = 0.5, then no candidate is favored.

3) If µ < 0.5, then the second candidate is favored.

2. If α = 0, then no candidate is favored.

3. If α ∈ (−1, 0), then

1) If µ > 0.5, then the second candidate is favored.
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2) If µ = 0.5, then no candidate is favored.

3) If µ < 0.5, then the first candidate is favored.

Our Corollary 3 produces a testable hypothesis. The hypothesis can be tested
as follows. The parameter α can be estimated from the earlier choices as in Dean
and Neligh (2023). After that, the subject faces the sequential task that we describe
in the current paper. Depending on the estimated value of α, we have a unique
prediction about the discrimination that can arise. Depending on the results, it
is an empirical question of whether Shorrock’s entropy adequately describes the
behavior of the subject.

Adding one candidate substantively complicates the analysis. The complexity of
the discrimination pattern increases because of the endogenous continuation value.
For instance, as shown in Figure 4 below, the probabilities of the different candidates
being drawn for prior µ = 0.15 and different values of the parameter λ, we see that
the results are a very mixed bag.

λ

q

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.3

0.4

0.5
First candidate

Second candidate

Third candidate

Figure 4: Non-monotonicity with three candidates and entropic costs. q denotes
unconditional probability of being hired.

These results may explain why there is no consensus as to whether it is bene-
ficial for a candidate to be interviewed early or late. In particular, the folk views
among practitioners are split, with some arguing that it is better to be interviewed
early on and some arguing that it is better to be interviewed late. The typical ex-
planation that is used to support either of these arguments is that employers are
biased, suffering from primacy and recency bias, respectively. However, our previous
analysis suggests that all the reasons why there is such a plurality of views among
practitioners can very well be attributed to the sensitivity of the discrimination to
unobservable parameters, but it can nonetheless still be explained through the lens
of a rational model.
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5.2 Many candidates

If we switch our focus to cases with a large number of candidates, we observe that
a particular pattern starts to emerge as the number of candidates increases, irre-
spective of unobservable parameters. Namely, the first candidate starts emerging
as the one who is consistently favored. As Proposition 2 suggests, the behavior of
c′(p) is important. First, we show that if c′(p) is linear, then the first candidates are
favored.

Denote by qiT the unconditional probability of candidate i being hired from a
pool of T candidates. Whenever T is obvious from the context, with slight abuse of
notation, we will omit it and simply write qi.

Proposition 3. Let c ∈ C2. For every prior µ ∈ (0, 1), for any fixed T > 2, the
unconditional probability is strictly decreasing in the order of being interviewed, i.e.,

q1 > q2 > · · · > qT−1 = qT .

Recall that earlier candidates face interviews that are harder to pass, but they
have a higher probability of being interviewed. If c′′(p) is constant, the second effect
will always dominate: it is always better to be among the earlier candidates. For
general costs, the analysis is much more complicated. However, if the number of
candidates is large, the first tests should not vary much, and therefore, it should also
be better to be first. Moreover, later candidates should have a lower probability of
being interviewed. Overall, intuitively, it should also be better to be first with a
large number of candidates. The next theorem confirms the intuition.

Theorem 3. For every prior µ ∈ (0, 1), there is some T0 > 2 such that for every
T > T0 the first candidate is favored, i.e.,

q1 > max{q2, . . . , qT}.

We identify several implications of Theorem 3. First, the results provide the
normative tool for a candidate: in the ex-ante identical environment without pri-
vate information and many competitors, it is always better to be interviewed first.
Second, the results are crucial for policymakers concerned about fairness as they
reveal the direction of discrimination. Third, our Theorem 3 gives a unique predic-
tion about the behavior of the individual modeled by the posterior-separable cost
of information. Denti (2022) argues that the assumption of posterior separability
may not hold in certain decision problems. Given the unique prediction, it is an
empirical question whether the assumption is always appropriate for our problem.

It is now safe to generically conclude that in models with flexible information
acquisition, there will generally be discrimination. The latter highlights that the
usual tradeoff (between efficiency and equity) arises in a rather surprising form in
this setting, i.e., the employer’s first best (which is the overall most efficient outcome)
will only guarantee equality of opportunity for the candidates under a very restricted
set of parameters. A result in the same direction was recently obtained by Schlag
and Zapechelnyuk (2024), who showed that only a very specific set of interviewing
protocols can guarantee fair treatment of the candidates. This is a feature that
may make a designer or policy maker uncomfortable, as equal opportunity is often a
desired property for a hiring procedure (Bertrand and Duflo, 2017; Neumark, 2018).
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6 Different productivities
Throughout the text, we assumed that all candidates were ex ante identical. Al-
though that may seem a substantial simplifying assumption, it allows us to inves-
tigate the effect of the sequential structure on the employer’s incentives to acquire
information, without needing to worry about confounding effects due to differential
prior information. In this section, we will relax this assumption, thus allowing the
manager to have different priors about the different candidates, e.g., due to different
education, work experience, recommendations from past employers, etc.

In our analysis, we compare the information acquisition strategies for the candi-
dates with different priors. In general, with posterior separable costs, the marginal
costs of information may depend on prior beliefs. As we are mostly interested in the
intertemporal trade-offs, it is natural to exclude cases when different prior beliefs
may affect the optimal test through the direct cost effect. Consequently, we consider
uniformly posterior separable costs in this section: we assume that function c(p) is
independent of the prior belief.4

The first question that naturally arises then is whether our earlier results on the
employer’s optimal interview will still carry. It is not difficult to verify that the
basic structure remains the same, i.e., the outside option Vi will still be decreasing
across candidates, in the sense that removing an early candidate can only be (weakly)
detrimental for the employer. The sequence of outside options (Vi)Ti=1 is still obtained
by Lemma 3, with the only difference that the function g is now prior dependent
and therefore becomes

gi(V ) = max
π

Eπ

[
ϕ(p, V, λ)

]
,

where π is chosen from the distributions with mean µi instead of µ.
As a result, we can simplify the employer’s optimization problem by first drop-

ping some candidates. There are two types of candidates that we can drop:

1. The candidates that are preceded by someone who is hired without an inter-
view, i.e., every j = 2, . . . , T such that µi ≥ pHVi

for some i < j.

2. The candidates that are skipped without an interview, i.e., every i such that
µi ≤ pLVi

.

These candidates do not play any role in the optimization problem, as it is known
ex ante that they will never be optimally hired, either because they follow someone
who is much better than them, or because they are followed by someone who is
much better than them, respectively.

The remaining candidates can be seen as the ones that have been shortlisted
for an interview. Notice that the way a shortlist is obtained is dependent on the
order we plan to conduct the interviews, i.e., a different order may very well lead
to a different shortlist. Once a shortlist has been obtained, the problem looks very
similar to the one we previously solved, and the main conclusions of Theorem 2 still
hold.

4Quadratic costs can be equivalently defined as a member of uniformly posterior separable cost,
for example, as Shorrocks entropy with α = 0.
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Proposition 4. Suppose that Ĩ = {1, . . . , T̃} is the ordered set of shortlisted candi-
dates with T̃ ≥ 2. Then, the employer’s optimal strategy satisfies the following:

1. Difficulty is decreasing with the order of being interviewed, i.e., for every i =
1, . . . , T̃ − 2, it is the case that pHVi

> pHVi+1
and pLVi

> pLVi+1
.

2. As the number of shortlisted candidates grows large, we obtain:

(a) The probability of the first candidate being hired converges to 0.

(b) The probability of hiring a good candidate is bounded away from 1.

However, the really interesting question within this framework is whether the
employer should prefer to interview the best or the worst candidate first. This ques-
tion is discussed among practitioners (Selby Jennings, 2023), but the issue remains
still unsettled.

Given the complexity of the question, we will focus on the simplest possible
context, i.e., a setting with only two candidates, and the employer’s cost function
coming from one of the common specifications. Let µ1 and µ2 be the priors of the
two candidates respectively. Moreover, denote by U1 and U2 the employer’s indirect
net utility when candidate 1 is interviewed first and when candidate 2 is interviewed
first, respectively. Obviously, if µ1 = µ2, the two utilities are identical, and the order
does not matter.

Theorem 4. Suppose that the are only two candidates, i.e., we have I = {1, 2}.
Then, the following hold:

(a) Quadratic cost: The employer does not have a preference on the order of
interviewing the candidates, i.e., U1 = U2 for any µ1, µ2 ∈M .

(b) Entropic cost: For any large prior there is an even larger prior with which
the employer would rather start; likewise, for any small prior there is a larger
prior with which the employer would rather follow, i.e., there exists some µ0 ∈
(0, 1) such that:

1) For every µ1 > µ0, there exists some µ2 > µ1 such that U1 < U2.

2) For every µ1 < µ0, there exists some µ2 > µ1 such that U1 > U2.

Fix the order of candidates. Theorem 4 leverages the idea that if switching the
order changes the employer’s strategy from non-learning to active learning, then
the initial order can not be optimal. In the case of quadratic costs, the optimal
posteriors are linear in the outside option, and this effect is not present. The effect
arises for more complex relationships between the optimal posteriors and an outside
option. To get analytical results, it is convenient to have closed-form expressions for
posterior beliefs, and therefore, we formulate our results for the entropic costs.

Theorem 4 suggests that the employer’s preferences regarding the order of inter-
viewing the candidates is highly sensitive with respect to the prior beliefs, meaning
that unless we exogenously impose very strong assumptions on the primitive pa-
rameters of the model, it will not be possible to make strong predictions about the
employer’s optimal order of interviewing candidates. This conclusion reinforces the
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view that general results about the optimal interviewing order can only be obtained
under strong structural assumptions Doval (2018). This is in contrast to the im-
pression that many people had regarding the generality of the corresponding result
of (Weitzman, 1979).

7 Extensions

7.1 Restricted interview design

At the optimum, the employer in our model fully leverages the flexibility of the
interview design. She constructs different interviews depending on the serial position
of a candidate. Utilizing the dynamic structure of the problem, the employer offers
more difficult tests to the candidates who are arriving early. Such a difference in the
treatment can create discrimination in the hiring outcomes, as discussed in Sections
5 and 6, and may be seen as normatively unfair. In this section, we instead consider
the scenario in which the employer is exogenously restricted to using interviews with
the same difficulty for all candidates, except for the last one.5

We will maintain some features of our main model for comparison purposes. In
particular, we will still consider common prior and only binary interviews. Moreover,
passing an interview will always lead to a candidate being hired, whereas failing the
interview will always lead to a candidate being rejected.

We formulate the restricted manager’s problem as a restricted version of problem
(1).

Definition 7. The restricted dynamic employer’s problem is to find (π, α) such that

(π, α) ∈
(
arg max

(πsupp|π|≤2,α)
Eπ

[
α(pi)pi + (1− α(pi))Vi − λc(pi)

])
subject to

Vi = Eπ

[
α(pi+1)pi+1 + (1− α(pi+1))Vi+1 − λc(pi+1)

]
,

VT−1 = µ,

VT = 0.

We emphasize two differences between the restricted and the unrestricted prob-
lems. First, in the restricted problem, the employer chooses a posterior distribution
only once. Therefore, we omit index i. Additionally, there is a restriction on the
cardinality of the support of the posterior distribution.6

It is convenient to analyze the restricted problem (9) explicitly using the un-
conditional choice probabilities. The restricted problem is a special case of a static

5To not put our employer at risk of not hiring anyone, we assume that the last arriving candidate
can be hired without an interview.

6If the support of posterior distribution is not bounded, it is generally unclear whether Lemma
1 holds in the restricted setting. For example, anticipating the lack of choice in the following
periods, the DM may leverage her flexibility in the first period and design a test with more than
two realizations. This strategy may allow the optimal dynamic behavior to be squeezed into a
single test. Such a more general problem is out of this project’s scope and is a natural direction
for future research.
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problem (2) with a corresponding outside option. In Appendix A, we reformulate the
static problem (2) as an equivalent problem, in which maximization is over the un-
conditional choice probabilities only, and show that there is a one-to-one mapping
between unconditional choice probability and the optimal posteriors. Analogous
analysis can be found in a recent paper by Fosgerau et al. (2023) and is similar
to the expressing discrete static rational inattention problem as the log-sum as in
Matějka and McKay (2015), Caplin et al. (2019).

The next proposition is our main result for this Section; it compares the solutions
of the restricted and unrestricted problems.

Proposition 5. Let q∗ and q1T be the optimal probability of hiring the first arriving
candidate in the restricted and unrestricted problems with T candidates, respectively.
When T > 2, the inequality q12 > q∗ > q1T holds.

Proposition 5 identifies that in the restricted problem, the employer chooses a
test with intermediate difficulty: the test is easier than the hardest one, which is
offered to the first candidate, and is more difficult than the easiest one, which is
offered to the last interviewed candidate. Recall that the employer engages in more
risky behavior in the unrestricted setting in the earlier stages. She chooses a test
with a low probability of success because she can mitigate the failure in the future
stages. Restriction on the interview design forbids such mitigation. The results in
Proposition 5 are intuitive and naturally fit into the risk interpretation: the manager
bears less risk in the earlier stages.

It is immediate from Proposition 5 that the restriction on interviews increases
and decreases the probabilities of hiring the first and the last interviewed candi-
dates, respectively. How the restriction influences the chances of other candidates
being hired is generally unclear. Consider the natural goal of the authority: make
probabilities of being hired not depend on the serial number of a candidate and,
therefore, be equal to each other. A combination of the results from Proposition 5
with the analysis in Section 5 suggests that the policy introduced in this Section
may increase discrimination that appears in the unrestricted problem. For example,
it happens if the sequence qiT decreases in i. The ideal policy must take into account
the intertemporal incentives of the manager and not naively put a simple restriction
on the feasible set of strategies.

7.2 Infinitely many candidates

The alternative way to think about our problem is within the context of sequen-
tial search models à la McCall (1970). The key modeling difference between this
approach and ours is that they typically assume an infinite stream of candidates —
also without recall— and they solve for the stationary optimal search strategy (see
Chade et al., 2017, for an overview of this literature). To make the employer’s prob-
lem well-defined, we weight her future payoffs with the discount factor β ∈ (0, 1).

Definition 8. The employer’s dynamic optimization problem with an infinite amount
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of candidates is

max
(π∞,α∞)

Eπ∞

[
α∞(p)p+ (1− α∞(p))βV∞ − λc(p)

]
, (9)

subject to

V∞ = max
(π∞,α∞)

Eπ∞

[
α∞(p)p+ (1− α∞(p))βV∞ − λc(p)

]
. (10)

The solution to problem (9) always exists and is unique for high enough β. In-
deed, using the value function, we can express constraint (10) as V∞ = g(βV∞).
From Lemma 2 value function g(V ) is strictly increasing, and, additionally inequal-
ities, g(βVH) < VH and g(βµ) > µ hold. Therefore, equation V∞ = g(βV∞) always
has a unique solution.

The employer has a stationary optimal rule in problem (9) because the solution
to the static problem (7) is unique. Therefore, the employer offers the same test to
each candidate at the optimum. The solution is strikingly different from the solution
of the main problem (4) when a very large number of candidates are available. Addi-
tionally, due to discounting, the employer chooses a test with intermediate difficulty
when an infinite number of candidates are available: the optimal test is easier than
the hardest one, which is offered to the first candidate, and is more difficult than
the easiest one, which is offered to the last interviewed candidate. Intuition from
Section 7.1 applies, rejection becomes costly, and, therefore, the employer engages
in the less risky behavior.

With an infinite amount of candidates, the part of the Theorem 2 still applies;
the employer will not be certain that a good candidate will be hired. Additionally,
it is clear that the candidates who are interviewed early will be favored.

8 Conclusion
As documented in the economic literature, see, e.g., Bertheau et al. (2023), hiring
is difficult for firms, and one of the reasons is that the firms face time constraints
while hiring candidates. This means that firms do not learn the potential workers’
productivities perfectly (since it will take too long time) but instead acquire noisy
information about those. In this paper, we model the process of sequential search
with costly but flexible learning in each stage.

The hiring firm observes several candidates who arrive sequentially and can de-
sign interviews for each candidate individually. We show that the optimal learning
strategy has a simple feature – the later the candidate appears (the higher the se-
rial number she has), the easier questions she will be facing. That is, the optimal
interviews are decreasing in their difficulty in time. However, it does not mean that
the workers should try to be interviewed in the end since the probability of being
hired as a function of time of arrival is not necessarily increasing.

Our paper is the first step in studying sequential search with flexible and en-
dogenous information acquisition. Therefore, many research questions are left for
the future. For instance, we study only the situation when the distribution of pro-
ductivities is known to the employer. The problem of studying a similar problem
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with extra layer of learning about the workers’ productivities is interesting and in-
triguing.

Another suggestion for future research is to consider a model similar to ours but
with an opportunity for recall. We suspect that the decreasing difficulty property
will remain present in this class of problems.
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A Reformulation of the static problem
Instead of relying on the concavification technique to solve the static problem (2),
we will introduce the unconditional probability q of the interview having a good
outcome explicitly as a choice variable. This is in contrast, in the concavification
technique, the optimal unconditional probability was derived as a function of the
two posterior beliefs that satisfy Bayesian consistency.

For every V ∈ [0, 1], define the function

U(q, V ) := max
x,y

[
qϕ(x, V ) + (1− q)ϕ(y, V )

]
,

subject to
µ ≤ x ≤ 1,

0 ≤ y ≤ µ,

qx+ (1− q)y = µ.

Note that for notation simplicity, we have omitted λ from ϕ. Then, we can refor-
mulate the static optimization problem as follows:

Lemma A1. For every V ∈ [0, 1], the optimization problem

max
q∈[0,1]

U(q, V ) (A.1)

has a unique solution, henceforth denoted by qV . Moreover, we have

g(V ) = U(qV , V ). (A.2)

Additionally, problem (A.1) is concave in q, with unique solution, and the interior
solution of (A.1) is decreasing in V .

Proof. We first analyze the case in which inequality pH > µ > pL holds. That is,
when V ∈ (VL, VH). Using the fact that support of the optimal posterior distribution
has no more than two points we rewrite the static problem (2) as

max
(q,pH ,pL)∈[0,1]3

{q(pH − λc(pH)) + (1− q)(V − λc(pL))}

s.t. qpH + (1− q)pL = µ,

pH ≥ pL.

(A.3)

We denote the objective in the above problem as Ũ(q, pH , pL). Using the identity
from the multivariable calculus we can write max

q,pH ,pL
Ũ(q, pH , pL) = max

q
max
pH ,pL

Ũ(q, pH , pL).

Therefore, problem (A.3) can always be solved sequentially finding optimal pL, pH
given q and then optimize over q. To show the equivalence between problems, we
need to show first that for given q, there is only one pair of optimal (pL, pH) and
second that there is a unique optimal q.

To show that there exists a unique pair of optimal (pL, pH) given q we observe
that the interior solution to the static problem (2) should satisfy necessary optimality
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conditions in problem (A.3). In particular, for given q optimal (pL, pH) should satisfy
the system {

−λc′(pL) = 1− λc′(pH)
qpH + (1− q)pL = µ.

We show that given q ∈ (0, 1) the system has a unique solution (pL, pH). We
rewrite the first equation as pL = (c′)−1(c′(pH) − 1

λ
). This expression defines a

function pL(pH). Indeed, c′(pH) is increasing in pH , therefore mapping pL(pH) is
also increasing and the mapping defines unique pL for any pH .

We rewrite the second equation as q = (µ−pL)/(pH −pL). Simple algebra shows
that the derivative of the right-hand side with respect to pH is positive; therefore,
the right-hand side is increasing in pH . Therefore, for any given q, there exists
unique pH and, thus, for any given q, there exists unique pair (pL, pH) that solves
the system above. Further, we write pL(q), pH(q) to emphasize the dependence of
optimal posteriors from the marginal distribution.

Following Fosgerau et al. (2023) we show that problem (A.1) is concave. Without
abuse of notation, we omit V in the argument and denote the objective function as
U . The derivative equals to

U ′(q) = −pH(q) + λc(pH(q)) + (V − λc(pL(q)))+

+(1− q)((pH(q))′ − λc′(pH(q))(pH(q))′)− (q)λc′(pL(q))(pL(q))′,

where (pH(q))′ and (pL(q))′ are the derivatives of the posteriors with respect to q.
Using optimality condition λc′(pH) − λc′(pL) = 1 and differentiating the Bayesian
consistency constraint to get (1− q)(pH(q))′ + q(pL(q))′ = pL(q)− pH(q) we obtain

U ′(q) = pH(q)− λc(pH(q))− (V − λc(pL(q))) + λc′(pL(q))(pH(q)− pL(q)). (A.4)

Differentiating the expression with respect to q one more time and using optimality
condition for posteriors result in

U ′′(q) = λc′′(pL(q))(pH(q)− pL(q))(pL(q))′.

We show that inequality (pL(q))′ < 0 holds. Combining optimality condition for
posteriors and differentiable Bayesian consistency condition we obtain that equality
(pL(q))′

(
q c′′(pL(q))
c′′(pH(q))

+ 1 − q
)

= pL(q) − pH(q) holds. Thus (pL(q))′ < 0 holds and
U ′′(q) < 0 holds and problem (A.1) is concave. Therefore, problem (A.1) has a
unique solution that is determined from the first-order condition or on the boundary.
However, because the inequality pH > µ > pL holds, the optimal q is interior and
uniquely determined from the first-order condition.

If V /∈ (VL, VH) then the DM chooses degenerate distribution, optimal q equals
to 0 if V ≤ VL and equals to 1 if V ≥ VH .

To get comparative statics of the optimal q with respect to V , we employ the
standard supermodularity argument: optimal interior q is decreasing in V because
the mixed derivative of ∂2U(q,V )

∂q∂V
= −1 is negative.
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B Proofs of Section 3

B.1 Intermediate results

Lemma B2. pLV , pHV ∈ (0, 1).

Proof. By a standard concavification argument, the following inequality holds:

1− λc′(pHV ) > −λc′(pLV ).

Now, assume the contrary to what we want to prove, i.e., for a given V , the employer
chooses the optimal signal π with the pair of posterior beliefs pLV , pHV such that at
least one of them belongs to the boundary {0, 1}.

If pLV = 0, by (2), we have

1− λc′(pHV ) > −λ lim
p→0+

c′(p) > 1− λc′(µ),

and therefore, because c is convex, it is the case that µ > pHV . Likewise, if pHV = 1,
again by (2), we obtain

−λc′(pLV ) < 1− λ lim
p→1−

c′(p) < −λc′(µ),

and therefore by convexity of c, it is the case that µ < pLV . In either case, pLV < µ <
pHV is violated, and the proof is complete.

Lemma B3. Both pLV and pHV are differentiable with respect to V in (VL, VH).

Proof. Under Lemma 1, the concave closure of ϕ as defined in the static problem
(2) for p ∈ [pLV , p

H
V ] is a straight line that is tangent to ϕ at pLV and pHV . This tangent

is characterized by the following equality for p ∈ [pLV , p
H
V ]

V − λc(pLV )− λc′(pLV )(p− pLV ) = pHV − λc(pHV )− [λc′(pHV )− 1](p− pHV ), (B.1)

such that

λc′(pLV ) = λc′(pHV )− 1. (B.2)

By the strict convexity of c and (B.2), we can implicitly define pHV as a continu-
ously differentiable function of pLV . Using this in (B.1), we have that

V = pHV − λc(pHV )− [λc′(pHV )− 1](p− pHV )− [−λc(pLV )− λc′(pLV )(p− pLV )]. (B.3)

Using (B.2) yields:

0 = −V + pHV − λc(pHV ) + λc(pLV ) + λc′(pLV )(p
H
V − pLV ). (B.4)

Next, note that the RHS in (B.4) is a continuously differentiable function of pLV .
Moreover its derivative with respect to pLV is given by

(1− λc′(pHV )) · (pHV )′ + λc′(pLV ) + λc′(pLV ) · (pHV )′ − λc′(pLV ) + λc′′(pLV )(p
H
V − pLV )

= λc′′(pLV )(p
H
V − pLV ) > 0,

where the last equality comes from (B.2). The implicit function theorem implies that
pLV is a continuously differentiable function of V and, consequently, so is pHV .
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Lemma B4. Both pLV and pHV are increasing with respect to V in (VL, VH).

Proof. Differentiating tangent optimality conditions (B.2) and (B.4) with respect to
V gives the system

∂pLV
∂V

=
1

λc′′(pLV )(p
H
V − pLV )

, (B.5)

∂pHV
∂V

=
1

λc′′(pHV )(p
H
V − pLV )

. (B.6)

By convexity of c, together with inequality pHV > pLV , both derivative are positive.

B.2 Proof of Lemma 2

For every V ∈ (VL, VH), the optimal signal πV assigns to the two respective poste-
riors, pLV and pHV , probability

πV (p
L
V ) =

pHV − µ

pHV − pLV
and πV (pHV ) =

µ− pLV
pHV − pLV

,

and the employer’s indirect expected utility in (VL, VH) is

g(V ) = πV (p
H
V )
(
pHV − λc(pHV )

)
+ πV (p

L
V )
(
V − λc(pLV )

)
.

Since pLV and pHV are differentiable in V , so is g. By the Envelope Theorem, we have

g′(V ) = πV (p
L
V ) > 0.

Thus, g is strictly increasing in (VL, VH). Then, simple algebra yields

∂πV (p
L
V )

∂V
=
∂pHV
∂V

(µ− pLV ) +
∂pLV
∂V

(pHV − µ),

which, by Lemma B4, is non-negative. Therefore, g is convex.

B.3 Proof of Lemma 3

Part 1 follows directly from (8) combined with Lemma 2.

By definition we have VT = 0. Then, Part 2 follows directly from the fact that
g(V ) ∈ (VL, VH) for all V ∈ [0, VH).

B.4 Proof of Theorem 1

The proof follows directly from Lemmas 1 and 3.

In particular, by VT = 0, we get VT < VL. Hence, supp(πVT
) = {µ} and αT (µ) = 1.

Moreover, for every i ∈ {1, . . . , T − 1}, we have VL < Vi < VH , and therefore
supp(πVi

) = {pLVi
, pHVi

} with αi(p
L
Vi
) = 0 and αi(p

H
Vi
) = 1.
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C Proofs of Section 4

C.1 Proof of Proposition 1

(i) ⇐⇒ (ii): For each s ∈ {H,L}, we have:

psi =
µ

µ+ (1− µ) σi(s|B)
σi(s|G)

> psi =
µ

µ+ (1− µ)
σj(s|B)

σj(s|G)

⇐⇒ σi(s | G)
σi(s | B)

>
σj(s | G)
σj(s | B)

.

(i) ⇒ (iii): By the Bayes rule the passing probability under test k equals to (µ −
pLk )/(p

H
k − pLk ). The required follows from the inequalities

µ− pLj
pHj − pLj

>
µ− pLj
pHi − pLj

<
µ− pLi
pHi − pLi

.

(iii) ⇒ (i): Let the passing probability under test i be lower than under test j,
but signal πi be not more difficult than πj. In this case, at least one inequality
pHj ≥ pHi , p

L
j ≥ pLi holds. In the first case for a candidate µ = pHi and in the second

case for a candidate µ = pLj , the passing probability of test i is higher. Thus, the
signal πi has to be more difficult than πj.

(i) ⇒ (iv): Applying the Bayes rule and using (iii) implies:

σi(H|B)

σj(H|B)
=
σi(B|H)σi(H)

σj(B|H)σj(H)
< 1.

Similarly,
σi(L|G)
σj(L|G)

> 1.

(iv) ⇒ (i): Obviously, the inequality σi(L|G) > σj(L|G) implies σi(H|G) < σj(H|G).
And, since σi(H|B) < σj(H|B), (iv) is satisfied.

C.2 Proof of Theorem 2

For the first part, it is sufficient to show that both optimal posterior beliefs in the
static problem (7) are increasing functions of the outside option. The latter follows
from the proof of Lemma 2.

For the second part, note that by Proposition 1 and Lemma 1 continuation value

lim
T→∞

pHV1
= VH .

In the solution to problem (7) with an outside option VH , the solution to the first-
order conditions from Lemma 1 implies that the lower optimal posterior equals the
prior. Therefore, by the continuity

lim
T→∞

pLV1
= µ.

Finally, by Theorem 1, recall that the probability of the first candidate being hired
is (µ− pLV1

)/(pHv1 − pLV1
), and therefore statements (a) and (b) follow trivially.
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D Proofs of Section 5

D.1 Proof of Proposition 2

Proof. We rewrite the first-order optimality conditions for posterior beliefs pL and
pH as identity for Bregman divergences. Adding and subtracting V in the right-hand
side of the brackets of the equality

pH − λc(pH)− (V − λc(pL)) = −λc′(pL)(pH − pL),

and using condition
λc′(pL) + 1 = λc′(pH),

we get that

c(V )− c(pH)− c′(pH)(V − pH) = c(V )− c(pL)− c′(pL)(V − pL) (D.1)

holds. Given that function c is strictly convex, we observe that identity (D.1) is the
equality between two Bregman divergences

D(µ, pH) = D(µ, pL), (D.2)

where D(x, y) = c(x)− c(y)− c′(y)(x− y) is a Bregman divergence.7 Additionally,
we substitute µ = V . To analyze the equality (D.3) it is convenient to identify the
test (pL, pH) as a pair (∆L,∆H), where ∆L = µ − pL and ∆H = pH − µ. Clearly,
the first candidate is favored if and only if ∆L > ∆H holds. With new notation, we
can write

D(µ, µ+∆H) = D(µ, µ−∆L). (D.3)

Taking arbitrary ∆ ∈ R and using the first fundamental theorem of calculus gives

D(µ, µ+∆) =

∫ ∆

0

∂D(µ, µ+ δ)

∂δ
dδ =

∫ ∆

0

δc′′(µ+ δ)dδ (D.4)

and

D(µ, µ−∆) =

∫ ∆

0

∂D(µ, µ− δ)

∂δ
dδ =

∫ ∆

0

δc′′(µ− δ)dδ.

Conditions c ∈ C1 or c ∈ C2 pin down the inequality between c′′(µ+ δ) and c′′(µ− δ)
for each δ > 0. In particular, let c ∈ C1. If µ > z then c′′(µ + δ) > c′′(µ − δ) for
δ > 0 and, therefore, for applying (D.4) and (D.4) to identity (D.3), it must be that
∆L > ∆H . If µ = z then c′′(µ + δ) = c′′(µ − δ) for δ > 0 and, it must be that
∆L = ∆H . If µ < z then c′′(µ + δ) < c′′(µ − δ) for δ > 0 and, it must be that
∆L > ∆H .

Therefore, if c ∈ C1 then the first candidate is favored if µ > z, the second
candidate is favored if µ < z, and no candidate is favored if µ = z. The cases c ∈ C2
and c ∈ C3 are analogous.

7See for example, Hébert and Woodford (2023) for the application of Bregman divergences to
the rational inattention problems.
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D.2 Proof of Proposition 3

Simple algebra shows that the system has unique solution

pLV = V − 1

4λ
, pHV = V +

1

4λ
. (D.5)

Substituting the solution gives the value of the problem as

g(V ) = V + λ(µ− V +
1

4λ
)2.

We show that for a given T > 2 inequality q1T > q2T holds. Using the derived
expressions above, we get that

q1T = 2λ
(
µ− V1 +

1

4λ

)
; q2T = 4λ2

(
V1 − µ+

1

4λ

)(
µ− V2 +

1

4λ

)
,

moreover equality

V1 = V2 + λ
(
µ− V2 +

1

4λ

)2
holds. We denote t = µ− V2 +

1
4λ

, thus,

q1T = 2λ(t− λt2),

q2T = 4λ2t
( 1

2λ
− t+ λt2

)
.

Therefore, the inequality q1T > q2T is equivalent to the inequality 1
2λ
> t. Because

inequality V2 > µ− 1
4λ

holds for all T > 2, inequality q1T > q2T also holds.
By the Bayes rule the inequality qtT > qt+1T is equivalent to the inequality

q1T−t+1 > q2T−t+1, therefore, the inequality holds.
Finally, if T = 2 then q12 = 2λ(µ − V1 +

1
4λ
) = 1

2
because in this case V1 = µ.

Therefore, qT−1T = qTT for all T .

D.3 Proof of Theorem 3

Instead of analyzing the general dynamic problem (4) - (6), it is convenient to
consider a collection of static problems (see Lemma A1) that are introduced in
Appendix A. Additionally, it is convenient to use slightly different notations for the
proof. We denote sT and RT to be the optimal passing probability and the optimal
attained value in the problem with T available candidates correspondingly8

sT = argmax
s∈[0,1]

U(s, RT−1),

RT = U(sT , RT−1).

The proof consists of four parts. First, we show that for large enough T approx-
imation 1

sT
− 1

sT−1
≈ 1

2
holds. Second, we reformulate the statement of the theorem

8To emphasize the difference, in Appendix A in the DM’s problem ri and Vi are passing prob-
ability and continuation value for different i and fixed T . In this section, we vary T instead.
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into the convergent property of the sequence. Third, using step 1, we simplify the
sequence from step 2. Fourth, using step 1 again, we show the desired property of
the sequence and conclude the proof.

Part 1.
We consider the limit of expression 1

sT
− 1

sT−1
when T → ∞.

From Lemma A1 function U(s, R) is strictly concave in s, therefore, there exists
a function v : R → R such that v(RT−1) = sT holds. Moreover, from the Im-
plicit function theorem function v(.) is differentiable and from Lemma A1 equality
v′(RT−1) =

1
Uss(sT ,RT−1)

holds.
Denoting φ(x) = 1

v(x)
by the mean value theorem we get that

1

sT
− 1

sT−1

= φ(g(RT−1))− φ(RT−1) = (g(RT−1)−RT−1)φ
′(ξ), (D.6)

where ξ ∈ (RT−1, g(RT−1)). By the chain rule φ′(x) = −
(

1
v(x)

)2
v′(x) holds. Using

the expression for v′(RT−1) we can write

1

sT
− 1

sT−1

= −(g(RT−1)−RT−1)
( 1

v(ξ)

)2 1

Uss(v(ξ), ξ)
.

We approximate expression (g(RT−1)−RT−1) using the Taylor expansion. Clearly,
identities U(sT , RT−1) = g(RT−1) and U(0, RT−1) = RT−1 hold. We use Taylor
expansion for value U(sT , RT−1):

U(sT , RT−1) = U(0, RT−1) + sT × Us(0, RT−1) +
1

2
s2T × Uss(χ,RT−1),

where χ ∈ (0, sT ). Therefore, equality

g(RT−1)−RT−1 = sT × Us(0, RT−1) +
1

2
s2T × Uss(χ,RT−1) (D.7)

holds. Using mean value theorem for function Us(s, RT−1) at point s = sT we get

Us(sT , RT−1) = Us(0, RT−1) + sT × Uss(ψ,RT−1),

where ψ ∈ (0, sT−1). From the first-order condition for sT we get equality Us(sT , RT−1) =
0, therefore, equality

Us(0, RT−1) = −sT × Uss(ψ,RT−1) (D.8)

holds. Substituting expression (D.8) into (D.7) results in

g(RT−1)−RT−1 = −s2T × Uss(φ,RT−1) +
1

2
s2T × Uss(χ,RT−1). (D.9)

Therefore, we can write

1

sT
− 1

sT−1

=
s2T × Uss(φ,RT−1)− 1

2
s2T × Uss(χ,RT−1)

v(ξ)2Uss(v(ξ), ξ)
. (D.10)
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From the mean value theorem ξ ∈ (RT−1, RT ) holds, therefore, we observe that
lim
T→∞

sT
v(ξ)

= 1 because sequence (sT )T converges. Similarly, lim
T→∞

Uss(φ,RT )
Uss(v(ξ),ξ)

= 1 and

lim
T→∞

Uss(χ,RT )
Uss(v(ξ),ξ)

= 1 holds. The sequence (RT )T converges to VH therefore the values
of the second derivative converge to a value Uss(0, VH), which equals to Uss(0, VH) =
−λc′′(µ)(VH − µ)2 from the proof of Lemma A1. By combining obtained limiting
behaviors, we get that

lim
T→∞

s2T × Uss(φ,RT )− 1
2
s2T × Uss(χ,RT )

h(ξ)2Uss(h(ξ), ξ)
=

1

2
(D.11)

and, therefore,

lim
T→∞

( 1

sT
− 1

sT−1

)
=

1

2
.

Part 2.
First, we show that exists a number T̄ such that inequality q1T > qiT holds for

all i ∈ [2, T − T̄ ′ + 1] for all T > T̄ . The statement implies that if there are at least
T̄ + 1 candidates, then the first candidate has the largest probability of being hired
amount first T − T̄ ′ + 1 candidates.

To prove the statement, it is sufficient to show that for T > T̄ inequality q1T >
q2T holds. If q1T > q2T holds for some T then q2,T+1 > q3,T+1 simply by the Bayes
rule. Therefore, inequalities q1,T+1 > q2,T+1 > q3,T+1 hold. Continuing the argument
we get that if q1T > q2T holds for all T > T̄ then inequalities

q1T > q2T > . . . > qT−T̄ ′+1,T

hold, and the first candidate has the largest probability of being hired amount first
T − T̄ ′ + 1 candidates.

We show inequality q1T > q2T using the results from Part 1. We rewrite q1T > q2T
using passing probabilities:

q1T > q2T > ⇔ sT > (1− sT )sT−1 ⇔ 1

sT
− 1

sT−1

< 1.

From Part 1, the last inequality holds for sufficiently large T .
Second, consider the case with T̄ available candidates. Let imax be the candidate

with the largest probability of being hired and qmax be the corresponding probability
when there are T̄ available candidates. If imax = 1, then trivially, the statement from
the beginning of this Part completes the proof of the theorem. If imax ̸= 1, then
we increase the number of available candidates and compare the probabilities of
hiring a first candidate and candidate imax with an increased number of candidates.
That is, let the number of candidates be T̃ > T̄ . The probability to hire the
first candidate equals to sT̃ and the probability to hire candidate imax equals to
(1− sT̃ )× (1− sT̃−1)× . . .× (1− sT̄+1)× qmax.

Therefore, to complete the proof of the theorem, it is sufficient to show that

lim
T̃→∞

sT̃
(1− sT̃ )× (1− sT̃−1)× . . .× (1− sT̄+1)

= ∞. (D.12)
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If the limiting behavior (D.12) holds, then exists T ′ such that if there are T ′, avail-
able candidates, then the probability of hiring the first candidate is larger than the
candidate imax.

Part 3.
We rewrite the expression under the limit (D.12) as

sT̃
(1− sT̃ )× (1− sT̃−1)× . . .× (1− sT̄+1)

=

=
sT̃

sT̃−1(1− sT̃ )
×

sT̃−1

sT̃−2(1− sT̃−1)
× . . .× sT̄+2

sT̄+1(1− sT̄+2)
× sT̄+1 ×

1

1− sT̄+1

.

We denote yk =
sT̄+k+1

sT̄+k(1−sT̄+k+1)
for k ≥ 1. Therefore, to show limiting behavior

(D.12) is equivalent to show

lim
K→∞

K∏
k=1

yk = ∞. (D.13)

Using the results from Part 1, we express the value yk. We use the approximation
1

sT̃+k+1
− 1

sT̃+k
≈ 1

2
.9 Routine algebra shows that

sT̃+k+1

sT̃+k(1− sT̃+k+1)
≈ 1 +

1

2

sT̃+k+1

1− sT̃+k+1

.

Using Taylor approximation of function f(x) = 1
1−x

≈ 1 + x around x = 0 gives the
first order approximation of yk as

yk ≈ 1 +
1

2
sT̃+k+1. (D.14)

To show (D.13) is equivalent to show

lim
K→∞

log
K∏
k=1

yk = ∞.

We simplify the expression under the limit and use the derived approximation (D.14)

log
K∏
k=1

yk =
K∑
k=1

log yk ≈
K∑
k=1

log(1 +
1

2
sT̃+k+1) ≈

1

2

K∑
k=1

sT̃+k+1.

Therefore, to show the limiting behavior (D.12) we need to show that

lim
K→∞

K∑
k=1

sT̃+k+1 = ∞. (D.15)

holds.
9To show that the sequence in (D.12) diverges is sufficient to consider zero-order approximation.

If the sequence diverges, the higher-order terms of the infinitesimal sequence do not change the
limiting behavior.
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Part 4.
For convenience, we denote l = T̃+k+1. Therefore, the limit (D.12) is equivalent

to

lim
L→∞

L∑
l=1

sl = ∞. (D.16)

Using again approximation 1
sl+1

− 1
sl

≈ 1
2

we observe that the sequence ( 1
sl
)l grows

linearly in l. Therefore, the sequence (sl)l grows as 1
l

in l. Thus the sum
L∑
l=1

sl

grows as the sum of harmonic sequence (1
l
)l. The sum of the harmonic sequence

divergences; therefore, the limiting behavior (D.16) holds. Therefore, by Part 2, T ′

exists, such that if the number of candidates is larger than T ′, the probability of
hiring the first candidate is the largest.

E Proofs of Section 6

E.1 Proof of Theorem 4

Quadratic cost: Let us first take any two µ1, µ2 ∈M , which are sufficiently close
to each other, i.e.,

µ1 ∈
(
pLµ2

, pHµ2

)
and µ2 ∈

(
pLµ1

, pHµ1

)
.

Then, using the conventional notation κ := 1/4λ, by (D.5) we obtain

U1 :=
µ1 − pLµ2

pHµ2
− pLµ2

pHµ2
+
pHµ2

− µ1

pHµ2
− pLµ2

µ2

=
µ1 − µ2 + κ

2κ

(
µ2 + κ

)
+
µ2 − µ1 + κ

2κ
µ2

=
µ1 + µ2 + κ

2
.

Then, by symmetry, we obviously get U1 = U2.

Then, suppose that µ1 < µ2 are not sufficiently close to each other, i.e., let µ2 > pHµ1
.

Now, let us introduce the convenient notation:

hL(V ) := pLV ,

hH(V ) := pHV ,

and then take the useful composite function

h := hL ◦ hH . (E.1)

Then, notice that for every V ∈ (0, 1), we trivially obtain

h(V ) = V.
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Hence, it will necessarily be the case that µ1 < pLµ2
, meaning that regardless who

arrives first, candidate 2 will be hired without any of the two being interviewed.
Hence, we will have U1 = U2.

Entropic cost: We will now use the notational convention κ := 1/λ, and we
will use again the function h as defined in (E.1). Then, using the formulas for the
posterior beliefs,

pLµ =
eµ/λ − 1

e1/λ − 1
pHµ =

e1/λ − e(1−µ)/λ

e1/λ − 1
, (E.2)

we obtain

h′(V ) =
κeκhH(V )

eκ − 1
· κe

κ(1−V )

eκ − 1
,

which is obviously positive. Furthermore, we have

h′′(V ) =
κeκ(1−V )

eκ − 1
− 1.

which has a unique root

µ0 := 1− 1

κ
log

eκ − 1

κ
∈ (0, 1).

In addition we have h′′(V ) > 0 if and only if V < µ0. This means that h is strictly
convex below µ0 and strictly concave above µ0. Therefore, it will be the case that

h(V ) < V for all V < µ0, and h(V ) > V for all V > µ0.

Part 1: Take an arbitrary µ1 < µ0. By hL being continuously increasing, for each
µ2 > pHµ1

there is some ε > 0 such that

pLµ2
= hL(µ2) = hL(p

H
µ1
) + ε = h(µ1) + ε.

By taking µ2 sufficiently close to pHµ1
, it will be the case that the corresponding ε

will satisfy
ε < µ1 − h(µ1).

By strict convexity of h below µ0, the righthand side is strictly positive. As a result,
we obtain

pLµ2
< µ1.

Thus, by µ2 > pHµ1
, if candidate 2 goes first, he will be directly hired without any

interview, and therefore we will have U2 = µ2. On the other hand, by pLµ2
< µ1,

if candidate 1 goes first, there will be an informative interview, meaning that it is
not optimal to hire candidate 2 without an interview, and therefore U1 > µ2. As a
result, we conclude that U1 > U2.

Part 2: We follow same steps as in the previous part. Take an arbitrary µ1 > µ0.
Then, there is some µ2 < pHµ1

and some ε < h(µ1) − µ1 such that pLµ2
= h(µ1) − ε.

Hence, it will be the case that
pLµ2

> µ1.

Then, by the same argument as above, we have U1 = µ2 and U2 > µ2, which implies
U1 < U2, thus completing the proof.
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F Proofs of Section 7

F.1 Proof of Proposition 5

We assume that the solution to the restricted problem is interior and later show
that it is indeed optimal. Optimal interior q∗ solves

∂U

∂r
(q∗, V1(q

∗, µ)) +
∂U

∂V
(q∗, V1(q

∗, µ))× dU

dr
(q∗, V2(q

∗, µ)) = 0.

Using the chain rule, we can express this first-order condition as

∂U

∂r
(q∗, V1(q

∗, µ)) +
T−1∑
j=2

(
∂U

∂r
(q∗, Vj(q

∗, µ))

j−1∏
k=1

∂U

∂V
(q∗, Vk(q

∗, µ))

)
= 0. (F.1)

We will show that the first term in the first-order condition is negative, that inequal-
ity ∂U

∂r
(q∗, V1(q

∗, µ)) < 0 holds. We show this fact by the contradiction, analyzing
the second term in the first-order condition.

First, we observe that for general values r, V, the following partial derivatives are
equal to

∂U

∂V
(r, V ) = 1− r,

∂2U

∂V ∂r
(r, V ) = −1,

therefore, partial derivative ∂U
∂V

(r, V ) is always positive and function ∂U
∂r
(r, V ) is

decreasing in V .
Second, let inequality ∂U

∂r
(q∗, V1(q

∗, µ)) ≥ 0 hold. The partial derivative of func-
tion in r is decreasing in the second argument, therefore, inequality
∂U
∂r
(q∗, Vi+1(q

∗, µ)) > 0 hold for all i > 1. Thus, the second term in the first-order
condition (F.1) is positive. Therefore, the left-hand side of the equation (F.1) is
positive. We reach a contradiction, thus, inequality ∂U

∂r
(q∗, V1(q

∗, µ)) < 0 holds.
To compare q∗ with q∗∗ we observe that inequality ∂U

∂r
(q∗, µ) > 0 holds. Indeed, if

this inequality does not hold, then the argument from the above paragraph suggests
that the left-hand side of the first-order condition (F.1) is negative. Optimal q∗∗ in
the T = 2 case solves ∂U

∂r
(q∗∗, µ) = 0. Function ∂U

∂r
(r, V ) is decreasing in r, therefore,

inequality q∗∗ > q∗ holds.
To compare q∗ with q∗∗∗ we consider the auxiliary static problem with an outside

option V1(q∗, µ):
max

r
{U(r, V1(q∗, µ))}

In this problem, the value of the outside option equals the obtained outside option
value in the restricted problem. Let q∗∗∗∗ be a solution to this problem, therefore
q∗∗∗∗ solves ∂U

∂r
(q∗∗∗∗, V1(q

∗, µ)) = 0. Function ∂U
∂r
(r, V ) is decreasing in r, therefore

the inequality q∗ > q∗∗∗∗ holds.
The unrestricted problem is a static problem with an outside option V1. Clearly,

the inequality V1 > V1(q
∗, µ) holds. Optimal r in the static problem decreases in the

outside option value V , therefore, inequality q∗∗∗∗ > q∗∗∗ holds and by transitivity
inequality q∗ > q∗∗∗ also holds.

We show that the optimal q∗ is interior by taking derivatives of the function
U(r, V1(r, µ)) on the boundary. We consider the case r = 0, and the analysis of case
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r = 1 is identical. We observe that Vi(0, µ) = µ for all i < T . Additionally, equality
∂U
∂V

(0, Vi(0, µ)) = 1 holds. Therefore, using the left-hand side of the expression (F.1)
we obtain that

∂U

∂r
(r, V1(r, µ))

∣∣∣∣
r=0+0

= (T − 1)
∂U

∂r
(0, µ) > 0.

The last inequality holds because the static problem with an outside option µ has
an interior solution and by Lemma A1 function U(r, µ) is concave in r.
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