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Introduction



Two general observations

e New information is sometimes not fully reliable at first.

e News reports (PewResearch, 2022).

e Factual claims in discussions (e.g. politicians or friends/family).
e Information leaks from anonymous sources.

e Academic research on new topics (e.g. Covid-19).
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e Reaction to new information is well studied (Benjamin, 2019).

e |t is unclear how people deal with information about information, i.e.
confirmations or retractions.

e Significant differences between people in their acceptance of
misinformation after retractions (Meyer et al., 2020).
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Research Questions

1. How do people update their belief when being told a previous signal
was fully uninformative?
e Continued Influence Effect in psychology and Goncalves et al. (2022)
show (small) average effect.
e Mechanism not clear.

2. How do people update their belief when being told a previous signal
was indeed informative? [Not part of today]

e No prior evidence.
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Framework



What do we want from our design?

Requirements:

e Introduce information uncertainty.

e Neutral setting without motivated beliefs.

Verifications of previous information are unambiguous.

e Belief elicitation can be incentivized.

Bayesian beliefs can be computed.

(Results can be compared to the literature).
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Modified ball and urn framework

Step 1:

Red urn: Blue urn:

Randomly

selected urn
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I

Informative balls

I

Uninformative balls
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Two types of hints:

e Regular: Color of ball shown. Example: 0

e Check: Told if the previous ball was 'informative’ (I) or
"uninformative’ (U). The previous ball is again displayed.

Number of hints:

e 9 regular signals and 3 verifications.

e Verifications are always immediately after the respective ball.

e Which balls are verified varies per subject.
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Example Screen

Round 7

Background:
Show/hide instructions

History:

Ball 1 Ball 2 Ball 3 Ball 4 Ball 5 Ball 6 Ball 7 Ball 8 Ball 9

You previously thought it was 50% likely that the selected urn is red.

New Information:

A blue ball was drawn from the black box: o It is put back into the box with the other balls.

Question:
What do you think are the chances (in %) that the RED URN was picked in the beginning?

B

%
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Results




Sample Overview

Sample:

606 subjects completed the experiment on Prolific.

46 were removed as outliers (pre-registered criteria).

In total 6,720 observations.

Median time to complete survey 17 minutes.

Average payoff is 4.80€.

Sanity check:

e Beliefs and Bayesian posteriors are highly correlated (R? = 0.51).
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How do people react to retractions?

Rational Posterior

e Simply 'forget’ the initial uncertain signal.

e Return to the prior belief before retracted signal.
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How do people react to retraction

Rational Posterior

e Simply 'forget’ the initial uncertain signal.

e Return to the prior belief before retracted signal.

Question: Influenced by initial update?
Example: retracted red ball

Initial reaction:

Continued influence:
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How do people react to retractions?

Rational Posterior

e Simply 'forget’ the initial uncertain signal.

e Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

Initial reaction: m

0 0.5 0.6 0.8 1

Reverse influence: w

9/15



Initial Reaction vs Retraction

Belief Change with Retractions
All initial signals converted to 'red'
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Initial Reaction vs Retraction

Belief Change: Retraction
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Initial update explains reaction to retractions

Influence of Retractions
Mean belief before vs. after retracted signal & 95% CI

Belief biased towards initial signal (%pts)
I

Correctly reacted (+- 1%pt) Over-reacted (>1%pt) Under-reacted (<1%pt)* All Retractions
Reaction to initial signal (comp. to Bayesian)
* not including observations with initial update in wrong direction. SEs grouped by subject.
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Initial update explains reaction to retractions
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Magnitude of initial mistake matters

Belief biased towards initial signal (%pts)

Influence of Retractions
Belief before vs. after retracted signal

-50 -25 0 25 50
Reaction to initial signal (comp. to Bayesian)
Zoomed in for better visibility (3% of data points omitted)
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Alternative Mechanisms

Robustness checks:

e Are retractions different to 'regular’ signals?
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Alternative Mechanisms

Robustness checks:

e Are retractions different to 'regular’ signals?

e Are subjects consistent? X
e Anchoring? X
e Correction of previous mistake? X
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Summary




Findings:

e Initial reaction to uncertain signals determines how people respond
to their retraction (even in a neutral setting!):

e Overly trusting initially: continued influence of retracted information.
e Overly sceptical initially: reverse effect.

Implication:
e Misinformation (even if corrected immediately) is a potential reason
for persisting polarized beliefs.

e Correcting information ex-post is only (fully) effective if people
reacted correctly initially.

e Motivated beliefs are likely to amplify this effect.
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Thank you for your attention!

Questions?
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Appendix



e Belief updating problems first studied in 60s and 70s.
e Phillips and Edwards (1966); Tversky and Kahneman (1971, 1974);
and many others.
e Benjamin (2019) — Meta study
e Strong evidence of under-inference and base-rate neglect.
e Does not mention information uncertainty.
e Psychology literature - Continued Influence Effect!

e People fail to 'unlearn’ retracted information.
e Framework: narratives with a causal structure.
e Cognitive ability partly explains the size of the effect.

e Goncalves et al. (2022)

e Subjects fail to 'unlearn’ from retractions even in a neutral setting.
e Mechanism: Retractions are harder to process than regular signals.

LFor an overview of the literature see Ecker et al. (2022).



Different Types of Information Signals

e Two states of the world: © = {Blue (B), Red (R)}
e Two possible signal realizations: S = {blue (b), red (r)}

e Two signals:

e INFORMATIVE SIGNAL: 7;(b|B) = m;(r|R) =1 — ¢, with £ < 0.5.

e Noisy sSIGNAL: wy(b|B) = mn(b|R) = 3, for some 8 € [0, 1].

e Combining both signals: 7(b|0) = am/(b|f) + (1 — «)p
e For the experiment we set @« = 0.4 and 8 = 0.5. Hence:
7(b|B) = 7(r|R) = 0.6



Sanity Check: Reported Beliefs vs Bayesian Posteriors
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Sanity Check: Reported Beliefs vs Bayesian Posteriors

Table 1: Correlation of Beliefs with Bayesian Posteriors

Dependent variable:

Reported Belief

Constant 0.132%**
(0.010)
Bayesian Posterior 0.724***
(0.019)
Observations 6,720
Adjusted R? 0.508
Note: *p<0.1; **p<0.05; ***p<0.01

SEs clustered by subject.



How do people react to uncertain information signals?

Method:

e Estimate inference and base-rate use (Benjamin, 2019).



How do people react to uncertain information signals?

Method:

e Estimate inference and base-rate use (Benjamin, 2019).

Results:

e Significant over-inference (¢ ~ 1.4).

e Contrary to result of Benjamin (2019): ¢ < 1.
e Potential reason: introduction of information uncertainty.

e Significant base-rate neglect (d ~ 0.75).
e Evidence of confirmation bias if signal confirms prior.

e Individual belief updates are noisy.



Analysis: Inference and Base-Rate Use

e Use log-likelihood ratios to analyze inference bias (Benjamin, 2019).
e Estimate inference bias and base-rate neglect jointly:

p(se|R
(st|B

/n(bt(R\sl.,....,st)
bt(B|sla "'7St)

~

p:(R)
+(B

)=a+ B In( )+ B2 - In( )+

)]
o
~—

e b(:) is a reported belief, and
e p(s|R) is the probability of seeing s given true state R.

e Interpretation:
e (31 = 1 indicates perfect Bayesian inference.
e (31 = 0 indicates no updating at all.
e (3, = 1 indicates no base-rate neglect.
e (3, = 0 indicates full base-rate neglect.



Robustness Checks - Experimental Design

Anchoring:

e Do not show previously reported belief.

e Finding: No significant influence on updating with retractions or
regular updating.

e Other: Too low belief of people that previously under-reacted no
longer significant. However, not enough power to find any effect of
anchoring.

Backward revision of beliefs:

e Do not show entire history of signals, only previous belief.

e Findings: No significant influence on updating with retractions or

regular updating.



Regular Updating - Inference and Base-Rate Use

Table 2: Updating with Uncertain Signals

Dependent variable:

Observed Log-Posterior-Ratio

oLS Linear Mixed Effects
1) (2 (3)
Constant —0.034 —0.032 —0.032
(0.025) (0.022) (0.022)
Signal 1.516*** 1.505%** 1.344%***
(0.060) (0.060) (0.079)
Prior 0.704*** 0.739%** 0.701%**
(0.032) (0.022) (0.024)
Signal Confirms Prior 0.425%**
(0.133)
Observations 5,040 5,040 5,040
Adjusted R2 0.493
Akaike Inf. Crit 18,674.110 18,667.390

Note:

*p<0.1; ¥*p<0.05; ***p<0.01
SEs clustered by subject.
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Analysis: Compressed histories

e Method introduced by (Goncalves et al., 2022).

e A compressed history is given by the exact sequence of signals minus
the retracted signal.

e Allows for a clean comparison between people who have seen the
same sequence with and without a retraction.

o We estimate: by = o+ B1 - re + Fy(ry + Fe(n,) + €

e H(R) refers to the number of seen retractions. Example: RBB would
be one red retraction and 2 blue retractions in that order.

e C(H:;) refers to the compressed history of signals H;.

e F(-) denotes the fixed effects for each.

e Interpretation: A positive coefficient 5 for any combinations of red
retracted balls indicates continued influence of retracted signals and
vice versa.

e Goncalves et al. (2022) find 5 > 0 for a single red retraction.



Regression: Initial update explains retraction updating

Table 3: Impact of Retractions on Beliefs

Dependent variable:

Belief minus Bay. Post.

Constant —0.005
(0.005)
Belief minus Bay. Post. Previously 0.634"**
(0.053)
Observations 1,015
Adjusted R? 0.325
Note: *p<0.1; **p<0.05; ***p<0.01

SEs clustered by subject.



Impact of Retractions - Individual Differences
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Impact of Retractions - Categorized by Number of Observations

1.004
0.754
g . .
2 Belief after Retraction
]
c .
5 Unbiased
8 0.50 1 Biased towards initial signal
‘c Biased away from initial signal
g Wrong update
<
(2]
0.254
0.004

Correctly reacted (+- 1%pt) Over-reacted (>1%pt)  Under-reacted (<1%pt)*
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Impact of Retractions - Compressed History Analysis

Tmpact of Retractions

Dependent variable:

Reported Belief
All histories All histories Excluding confirmation histories

[0) @ 3)

Retraction 0011 -0.008 0,014
0.009)  (0.009) 0.010)

Retraction History: R 0.006 0.003 0.005
©0.010) (0.0 0.012)

Retraction History: B 0003 -0.008 -0.001
0.009)  (0.011) 0.012)

Retraction History: RR 0,007 0.003
(0.016) (0.020)

Retraction History: BB 0.029° 0.005
(0.016) 0.018)

Retraction History: RB 0.014 0.011
©.017) (0.020)

Retraction History: BR -0.011 0022
©.017) ©0.021)
Retraction History: RRR 0.035 0.054"*
(0.025) ©0.021)

Retraction History: BBB -0.055" -0.033
(0.028) (0.024)

Retraction History: RRB 0.057 0.075"
(0.043) (0.039)
Retraction History: BBR 0.039 0.061""
(0.027) 0.022)

Retraction History: RBB 0011 0031
(0.029) (0.025)

Retraction History: BRR 0.023 0.045°
(0.030) (0.026)

Retraction History: RBR 0.001 0.021
(0.031) (0.028)
Retraction History: BRB 0.041 0.062""
(0.033) (0.029)

Compressed History FEs? Yes Yes

Round FEs? Yes No
Observations 6.660 3,765
Adjusted R? 0.497 0.396

Note:

: *'p<0.05; **p<0.01



Are retractions different to 'regular’ signals?

Method:

e Retraction of previous signal = new opposite signal.

e Compare two-round updating of regular signals in all histories with
mixed signals.

e Example: Compare belief after signals (b, r) to belief after signals
(b, b retracted).



Are retractions different to 'regular’ signals?

Method:

e Retraction of previous signal = new opposite signal.

e Compare two-round updating of regular signals in all histories with
mixed signals.

e Example: Compare belief after signals (b, r) to belief after signals
(b, b retracted).

Findings:

e Significant differences between retractions and 'regular’ signals.

e On average, people over-react to opposite colored new signal (while
no mistake with retractions).
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e Subject types do not predict the reaction to a retraction.
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Alternative Mechanisms

Subject types or initial reaction?

e Subjects can be categorized into types based on their reaction to
uncertain signals.

e Subject types do not predict the reaction to a retraction.

Does anchoring explain the finding?

e Treatment that does not display previously reported belief.

e No significant differences to main treatment.

Are people trying to correct a prior mistake?

e Prior mistake: Misreported belief prior to uncertain signal.

e No, if anything the opposite is true.



Subject Types

Table 4: Impact of Retractions on Beliefs

Dependent variable:

Belief biased towards initial signal

Constant 0.001
(0.015)
Type: Not categorized —0.007
(0.018)
Type: Majority Over-reported 0.031
(0.021)
Type: Majority Under-reported 0.009
(0.018)
Type: Majority Wrong —0.035
(0.118)
Observations 1,015
Adjusted R? 0.002
Note: *p<0.1; **p<0.05; ***p<0.01

SEs clustered by subject.
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Are reactions to retractions biased to offset previous mistake?

Table 5: Impact of Retractions on Beliefs

Dependent variable:

Belief biased towards initial signal

Constant —0.006
(0.006)
Initial belief over-report (t-1) 0.6997 **
(0.063)
No anchor treatment 0.012
(0.012)
No anchor treat * initial belief over-report (t-1) —0.126
(0.111)
Belief over-report before (t-2) —0.161%**
(0.044)
Observations 1,015
Adjusted R2 0.348
Note: *p<0.1; **p<0.05 ***p<0.01

SEs clustered by subject



Decision Time by Updating Problem

Are retractions more difficult to process?

e Measured by decision time.
e Mechanism suggested by Goncalves et al. (2022).

e No significant difference in decision time in our sample.



Decision Time by Updating Problem
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Retractions are different to 'regular’ signals

Influence of Initial Reaction on Update after Opposite Ball
Mean belief before vs. after opposite regular signal & 95% Cl
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n=1362 n=197 n =465 n =552
All Retractions/ Opposite Signals Correctly reacted (+- 1%pt) Over-reacted (>1%pt) Under-reacted (<1%pt)*

Reaction to initial signal (comp. to Bayesian)
* not including observations with previous update in wrong direction.



Impact of Verifications on Regular Updating

Updating with Regular Signals

Dependent variable:

Observed Log-Posterior-Ratio

) @) 3)
Constant 0046" 0045 -0.044"
0022)  (0.02
Signal 134477 134277
(0130)  (0.130)  (0.130)
Prior 0919""" 0.920™"  0.905™""
(0.066)  (0.066)  (0.069)
Prior * |0.5 - Prior| -1L.0477T -1.048™ 10107
0151)  (0.151)  (0.155)
Prior * Round 0.034""" 0.034™"  0.033""
(0.003)  (0.003)  (0.003)
Signal * Round 0056 0057 0063

(0.038) (0.038) (0.038)
Signal * # Previously Verified Signals -0.182°

(0.109)
Signal * # Previous Retractions -0.140
(0.116)
Signal * # Previous Confirmations -0.261"
(0.131)
Signal * # Previous Same Retractions 0.031
(0.127)
Signal * # Previous Same Confirmations 0254
Signal * # Previous Other Retractions
Signal * # Previous Other Confirmations -0.302°
(0.161)
Observations 4995 4995 4995
Log Likelihood -9.057.651 9,058,339 -9,055.329
Akaike Inf. Crit. 18,143.300 18,146.680 18,144.660
Bayesian Inf. Crit 18,234.530 18,244.420 18,255.430

Note: *p<0.1; **p<0.05; **p<0.01



Analysing Confirmations

Rational Posterior

e Simply 'forget’ the initial uncertain signal.

e Update knowing signal is informative, using initial prior belief.

Analysis:

e Difference to Bayesian beliefs after confirmation signal.

e Control for influence of initial reaction to uncertain signal.



How do people react to confirmations?

Results:

e Slight under-reaction for Bayesian initial reports.
e As with retractions, initial update explains reaction to confirmation.

e Also more expected as confirmations change rational beliefs in the
same direction as the initial signal.

e Only small differences to regular updating.



Confirmations are similar to 'regular’ signals

Influence of Confirmations
In grey: two consecutive regular signals of same color

Belief biased towards initial signal (%pts)

T
- T 1
1

All Correctly reacted (+- 1%pt) no change Over-reacted (>1%pt) Under-reacted (<1%pt)*
Reaction to initial signal (comp. to Bayesian)
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