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Introduction



Two general observations

• New information is sometimes not fully reliable at first.

• News reports (PewResearch, 2022).

• Factual claims in discussions (e.g. politicians or friends/family).

• Information leaks from anonymous sources.

• Academic research on new topics (e.g. Covid-19).

• Uncertain information is frequently confirmed or retracted later.
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Motivation

• Reaction to new information is well studied (Benjamin, 2019).

• It is unclear how people deal with information about information, i.e.

confirmations or retractions.

• Significant differences between people in their acceptance of

misinformation after retractions (Meyer et al., 2020).
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Research Questions

1. How do people update their belief when being told a previous signal

was fully uninformative?

• Continued Influence Effect in psychology and Goncalves et al. (2022)

show (small) average effect.

• Mechanism not clear.

2. How do people update their belief when being told a previous signal

was indeed informative? [Not part of today]

• No prior evidence.

Literature
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Framework



What do we want from our design?

Requirements:

• Introduce information uncertainty.

• Neutral setting without motivated beliefs.

• Verifications of previous information are unambiguous.

• Belief elicitation can be incentivized.

• Bayesian beliefs can be computed.

• (Results can be compared to the literature).

⇒ Modified ball and urn framework
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Modified ball and urn framework

Step 1:
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Modified ball and urn framework

Step 2:
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Hints Formal Notation

Two types of hints:

• Regular: Color of ball shown. Example:

• Check: Told if the previous ball was ’informative’ (I) or

’uninformative’ (U). The previous ball is again displayed.

Number of hints:

• 9 regular signals and 3 verifications.

• Verifications are always immediately after the respective ball.

• Which balls are verified varies per subject.
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Example Screen
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Results



Sample Overview

Sample:

• 606 subjects completed the experiment on Prolific.

• 46 were removed as outliers (pre-registered criteria).

• In total 6,720 observations.

• Median time to complete survey 17 minutes.

• Average payoff is 4.80€.

Sanity check:

• Beliefs and Bayesian posteriors are highly correlated (R2 = 0.51).
Regression More

8/15



How do people react to retractions?

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

0 10.5 0.6 0.8

Initial reaction:

Rational retraction:

9/15



How do people react to retractions?

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

0 10.5 0.6 0.8

Initial reaction:

Rational retraction:

9/15



How do people react to retractions?

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

0 10.5 0.6 0.8

Initial reaction:

Rational retraction:

9/15



How do people react to retractions?

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

0 10.5 0.6 0.8

Initial reaction:

Rational retraction:

9/15



How do people react to retractions?

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

0 10.5 0.6 0.8

Initial reaction:

Rational retraction:

Continued influence:

9/15



How do people react to retractions?

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Return to the prior belief before retracted signal.

Question: Influenced by initial update?

Example: retracted red ball

0 10.5 0.6 0.8

Initial reaction:

Rational retraction:

Reverse influence:

9/15



Initial Reaction vs Retraction
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Initial update explains reaction to retractions
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Initial update explains reaction to retractions
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Magnitude of initial mistake matters Regression
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Alternative Mechanisms

Robustness checks:

• Are retractions different to ’regular’ signals? ✓

• Are subjects consistent? ✗

• Anchoring? ✗

• Correction of previous mistake? ✗
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Summary



Summary

Findings:

• Initial reaction to uncertain signals determines how people respond

to their retraction (even in a neutral setting!):

• Overly trusting initially: continued influence of retracted information.

• Overly sceptical initially: reverse effect.

Implication:

• Misinformation (even if corrected immediately) is a potential reason

for persisting polarized beliefs.

• Correcting information ex-post is only (fully) effective if people

reacted correctly initially.

• Motivated beliefs are likely to amplify this effect.

14/15



Thank you for your attention!

Questions?
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Appendix



Literature

• Belief updating problems first studied in 60s and 70s.

• Phillips and Edwards (1966); Tversky and Kahneman (1971, 1974);

and many others.

• Benjamin (2019) – Meta study

• Strong evidence of under-inference and base-rate neglect.

• Does not mention information uncertainty.

• Psychology literature - Continued Influence Effect1

• People fail to ’unlearn’ retracted information.

• Framework: narratives with a causal structure.

• Cognitive ability partly explains the size of the effect.

• Goncalves et al. (2022)

• Subjects fail to ’unlearn’ from retractions even in a neutral setting.

• Mechanism: Retractions are harder to process than regular signals.

Back

1For an overview of the literature see Ecker et al. (2022).



Different Types of Information Signals

• Two states of the world: Θ = {Blue (B), Red (R)}
• Two possible signal realizations: S = {blue (b), red (r)}

• Two signals:

• Informative signal: πI (b|B) = πI (r |R) = 1− ε, with ε ≤ 0.5.

• Noisy signal: πN(b|B) = πN(b|R) = β, for some β ∈ [0, 1].

• Combining both signals: π(b|θ) = απI (b|θ) + (1− α)β

• For the experiment we set α = 0.4 and β = 0.5. Hence:

π(b|B) = π(r |R) = 0.6
Back



Sanity Check: Reported Beliefs vs Bayesian Posteriors
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Sanity Check: Reported Beliefs vs Bayesian Posteriors

Table 1: Correlation of Beliefs with Bayesian Posteriors

Dependent variable:

Reported Belief

Constant 0.132∗∗∗

(0.010)

Bayesian Posterior 0.724∗∗∗

(0.019)

Observations 6,720

Adjusted R2 0.508

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SEs clustered by subject.
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How do people react to uncertain information signals?

Method:

• Estimate inference and base-rate use (Benjamin, 2019).

Results:

• Significant over-inference (c ≈ 1.4).

• Contrary to result of Benjamin (2019): c < 1.

• Potential reason: introduction of information uncertainty.

• Significant base-rate neglect (d ≈ 0.75).

• Evidence of confirmation bias if signal confirms prior.

• Individual belief updates are noisy.

Methodology Regression



How do people react to uncertain information signals?

Method:

• Estimate inference and base-rate use (Benjamin, 2019).

Results:

• Significant over-inference (c ≈ 1.4).

• Contrary to result of Benjamin (2019): c < 1.

• Potential reason: introduction of information uncertainty.

• Significant base-rate neglect (d ≈ 0.75).

• Evidence of confirmation bias if signal confirms prior.

• Individual belief updates are noisy.

Methodology Regression



Analysis: Inference and Base-Rate Use

• Use log-likelihood ratios to analyze inference bias (Benjamin, 2019).

• Estimate inference bias and base-rate neglect jointly:

ln(
bt(R|s1, ..., st)
bt(B|s1, ..., st)

) = α+ β1 · ln(
p(st|R)
p(st|B)

) + β2 · ln(
pt(R)

pt(B)
) + ηt

• bt(·) is a reported belief, and

• p(s|R) is the probability of seeing s given true state R.

• Interpretation:

• β1 = 1 indicates perfect Bayesian inference.

• β1 = 0 indicates no updating at all.

• β2 = 1 indicates no base-rate neglect.

• β2 = 0 indicates full base-rate neglect.

Back



Robustness Checks - Experimental Design

Anchoring:

• Do not show previously reported belief.

• Finding: No significant influence on updating with retractions or

regular updating.

• Other: Too low belief of people that previously under-reacted no

longer significant. However, not enough power to find any effect of

anchoring.

Backward revision of beliefs:

• Do not show entire history of signals, only previous belief.

• Findings: No significant influence on updating with retractions or

regular updating.



Regular Updating - Inference and Base-Rate Use

Table 2: Updating with Uncertain Signals

Dependent variable:

Observed Log-Posterior-Ratio

OLS Linear Mixed Effects

(1) (2) (3)

Constant −0.034 −0.032 −0.032

(0.025) (0.022) (0.022)

Signal 1.516∗∗∗ 1.505∗∗∗ 1.344∗∗∗

(0.060) (0.060) (0.079)

Prior 0.704∗∗∗ 0.739∗∗∗ 0.701∗∗∗

(0.032) (0.022) (0.024)

Signal Confirms Prior 0.425∗∗∗

(0.133)

Observations 5,040 5,040 5,040

Adjusted R2 0.493

Akaike Inf. Crit. 18,674.110 18,667.390

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SEs clustered by subject.

Back



Regular Updating Types - Inference



Regular Updating Types - Base-Rate Use



Analysis: Compressed histories

• Method introduced by (Goncalves et al., 2022).

• A compressed history is given by the exact sequence of signals minus

the retracted signal.

• Allows for a clean comparison between people who have seen the

same sequence with and without a retraction.

• We estimate: bt = α+ β1 · rt + FH(R) + FC(Ht) + ϵt
• H(R) refers to the number of seen retractions. Example: RBB would

be one red retraction and 2 blue retractions in that order.

• C(Ht) refers to the compressed history of signals Ht .

• F (·) denotes the fixed effects for each.

• Interpretation: A positive coefficient β for any combinations of red

retracted balls indicates continued influence of retracted signals and

vice versa.

• Goncalves et al. (2022) find β > 0 for a single red retraction.

Back



Regression: Initial update explains retraction updating

Table 3: Impact of Retractions on Beliefs

Dependent variable:

Belief minus Bay. Post.

Constant −0.005

(0.005)

Belief minus Bay. Post. Previously 0.634∗∗∗

(0.053)

Observations 1,015

Adjusted R2 0.325

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SEs clustered by subject.

Back



Impact of Retractions - Individual Differences



Impact of Retractions - Categorized by Number of Observations



Impact of Retractions - Compressed History Analysis



Are retractions different to ’regular’ signals?

Method:

• Retraction of previous signal = new opposite signal.

• Compare two-round updating of regular signals in all histories with

mixed signals.

• Example: Compare belief after signals (b, r) to belief after signals

(b, b retracted).

Findings:

• Significant differences between retractions and ’regular’ signals.

• On average, people over-react to opposite colored new signal (while

no mistake with retractions). Figure
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Alternative Mechanisms

Subject types or initial reaction?

• Subjects can be categorized into types based on their reaction to

uncertain signals.

• Subject types do not predict the reaction to a retraction. More

Does anchoring explain the finding?

• Treatment that does not display previously reported belief.

• No significant differences to main treatment. Regression

Are people trying to correct a prior mistake?

• Prior mistake: Misreported belief prior to uncertain signal.

• No, if anything the opposite is true. Regression
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Subject Types

Table 4: Impact of Retractions on Beliefs

Dependent variable:

Belief biased towards initial signal

Constant 0.001

(0.015)

Type: Not categorized −0.007

(0.018)

Type: Majority Over-reported 0.031

(0.021)

Type: Majority Under-reported 0.009

(0.018)

Type: Majority Wrong −0.035

(0.118)

Observations 1,015

Adjusted R2 0.002

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SEs clustered by subject.
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Are reactions to retractions biased to offset previous mistake?

Table 5: Impact of Retractions on Beliefs

Dependent variable:

Belief biased towards initial signal

Constant −0.006

(0.006)

Initial belief over-report (t-1) 0.699∗∗∗

(0.063)

No anchor treatment 0.012

(0.012)

No anchor treat * initial belief over-report (t-1) −0.126

(0.111)

Belief over-report before (t-2) −0.161∗∗∗

(0.044)

Observations 1,015

Adjusted R2 0.348

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SEs clustered by subject.
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Decision Time by Updating Problem

Are retractions more difficult to process?

• Measured by decision time.

• Mechanism suggested by Goncalves et al. (2022).

• No significant difference in decision time in our sample. Graph



Decision Time by Updating Problem



Retractions are different to ’regular’ signals
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Impact of Verifications on Regular Updating
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Analysing Confirmations

Rational Posterior

• Simply ’forget’ the initial uncertain signal.

• Update knowing signal is informative, using initial prior belief.

Analysis:

• Difference to Bayesian beliefs after confirmation signal.

• Control for influence of initial reaction to uncertain signal.



How do people react to confirmations?

Results:

• Slight under-reaction for Bayesian initial reports.

• As with retractions, initial update explains reaction to confirmation.

• Also more expected as confirmations change rational beliefs in the

same direction as the initial signal.

• Only small differences to regular updating.



Confirmations are similar to ’regular’ signals
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