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Abstract

In this note, we extend Aumann’s agreement theorem to a framework where beliefs are mod-

elled by conditional probability systems á la Battigalli and Siniscalchi (1999). We prove two

independent generalizations of the agreement theorem, one where the agent’s share some com-

mon conditioning event, and one where they may not.

1. Introduction

According to the famous agreement theorem, if two agents have a common prior, and their posteriors

for an event are commonly believed at some state that receives positive probability by the prior, then

they necessarily agree on the same posterior beliefs (Aumann, 1976).1 The main contribution of this

result is twofold: on the one hand, it has been been crucial for epistemically characterizing solution

concepts such as for instance Nash equilibrium (Aumann and Brandenburger, 1995), while at the

same time, it has helped us to understand the role of asymmetric information on betting, trading and

speculation (Milgrom and Stokey, 1982; Sebenius and Geanakoplos, 1983).2

Recent advancements in the theory of games with incomplete information, as well as in the epistemic

approach to game theory, have recognized that it is often important to take into account the players’

beliefs conditional on “unlikely” – i.e., null – events. For instance, the standard characterizations

∗This note supersedes two previous papers by the same author, titled “Strong belief and agreeing to disagree” and

“Hierarchies of conditional beliefs derived from commonly known priors” respectively.
†Department of Economics (AE1), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands;

Homepage: http://www.elias-tsakas.com/home.html; E-mail: e.tsakas@maastrichtuniversity.nl
1Notice that Aumann’s original result is slightly weaker, as it is in fact stated in terms of knowledge which is stronger

than belief.
2For a survey on the agreement theorem, see Bonanno and Nehring (1997).
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of iterated admissibility in normal form games (Brandenburger et al., 2008), or rationalizability in

extensive form games (Battigalli and Siniscalchi, 2002) rely on this type of beliefs. In fact, there are

two ways of modeling beliefs given null events in game theory – lexicographic probability systems and

conditional probability systems – both of them generalizing the standard probabilistic beliefs. In a

recent paper, Bach and Perea (2013) prove Aumann’s agreement theorem with lexicographic beliefs.

In this paper, we complete the analysis by extending the agreement theorem to the framework of

conditional probability systems.

We prove two results, both of them assuming a common prior. First, we focus on a single condi-

tioning event which is shared by the two agents, and we show that if the posterior belief given this

conditioning event are commonly believed, they necessarily coincide, as long as this conditioning event

receives positive probability by the common prior. Then, we switch attention to cases where the two

agents have different collections of conditioning events, and their posterior belief given each of these

conditioning events are commonly believed. In this case we show that the two agents will agree on

their posteriors if their collections of conditioning events are balanced (Geanakoplos, 1989) and cover

the same states of nature.

2. Preliminaries

2.1. Conditional probability systems

Fix an underlying measurable space of uncertainty (X,A) and a collection of nonempty conditioning

events B ⊆ A (not necessarily an algebra). A mapping µ : A × B → [0, 1] is called a conditional

probability system (CPS) on (X,A,B) whenever it satisfies the following conditions:

(C1) µ(B|B) = 1, for all B ∈ B,

(C2) µ(·|B) ∈ ∆(X,A), for all B ∈ B,

(C3) µ(A|C) = µ(A|B) · µ(B|C), for all A ∈ A and B,C ∈ B with A ⊆ B ⊆ C.

Conditional probability systems were originally introduced by Rênyi (1955). Let C(X,A,B) denote

the space of all CPS’s on (X,A,B). Whenever it is obvious which σ-algebra we use, we omit A and

we simply write C(X,B). For an arbitrary measurable space Y , let C(X × Y,B) := C(X × Y,B × Y ),

where B × Y := {B × Y |B ∈ B} contains the cylinders in X × Y generated by B.

We say that a CPS µ ∈ C(X,A,B) is derived from the prior p ∈ ∆(X,A) whenever,

µ(A|B) =
p(A ∩B)

p(B)
(1)
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for all A ∈ A, and for all B ∈ B with p(B) > 0. Notice that not every CPS can be derived from a

prior, as illustrated by the following example, which is similar to the ones in Halpern (2002, Ex. 2.2)

and Halpern (2010, Ex. 3.8).

Example 1. Take X = {x1, x2, x3}, A = 2X and B = {{x1, x2}, {x2, x3}, {x3, x1}}. Define the CPS,

µ ∈ C(X,B) by µ({x1}|{x1, x2}) = 1, µ({x2}|{x2, x3}) = 1 and µ({x3}|{x3, x1}) = 1. Suppose –

contrary to what we want show – that µ is derived from some p ∈ ∆(X). Observe that p({xk}) > 0 for

at least one k ∈ {1, 2, 3}, and without loss of generality let p({x1}) > 0. The latter implies p({x1, x2}) >
0, and since µ is derived from p, it follows that p({x2}) = µ({x2}|{x1, x2}) · p({x1, x2}) = 0. Now,

suppose that p({x3}) > 0. Then, using the same argument as above, we conclude that p({x1}) = 0,

which contradicts our initial assumption. Hence, it is necessarily the case that p({x3}) = 0, implying

µ({x3}|{x3, x1}) = p({x3})/p({x3, x1}) = 0, which contradicts µ({x3}|{x3, x1}) = 1. Therefore, there

is no prior from which this CPS can be derived. /

We say that B is treelike whenever the following conditions hold (Halpern, 2010):

(T1) For every B ∈ B there exists a partition {B1, . . . Bn} ⊆ B of B such that for any C ∈ B with

B ∩ C 6= ∅, either B ⊆ C or C ⊆ Bk for some k ∈ {1, . . . , n}.

(T2) There is a partition P ⊆ B such that for all B ∈ B there is some P ∈ P with B ⊆ P .

If B is treelike, every µ ∈ C(X,A,B) is also called treelike. Observe that in the previous example, B
is not treelike, as there are conditioning events that are neither disjoint nor subset of one another.

Proposition 1. If µ ∈ C(X,A,B) is treelike, then µ is derived from some prior p ∈ ∆(X,A).

We say that B is balanced whenever there exists a collection (λB)B∈B of real numbers such that∑
B∈B

λB1[B](x) = 1 (2)

for all x ∈ [B∗] :=
⋃
B∈B[B] (e.g., see Geanakoplos, 1989; Tsakas and Voorneveld, 2011), where

1[B] : X → {0, 1} is the indicator function, i.e., 1[B](x) = 1 if ω ∈ [B], and 1[B](x) = 0 otherwise.

Remark 1. Obviously, whenever B is treelike, it is also balanced. Indeed, if we take the partition P
from Condition (T2) and we set λB = 1 for all B ∈ P and λB = 0 otherwise, Equation (2) will be

trivially satisfied. However, the converse is not necessarily true, e.g., the collection B from Example

1 is balanced – by taking λB = 1/2 for all B ∈ B – but not treelike. The latter also implies that

balancedness does not guarantee the existence of a prior. /
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2.2. Hierarchies of conditional beliefs

Following Battigalli and Siniscalchi (1999) we extend conditional probability systems to an interactive

setting. Accordingly, let Θ be a finite underlying space of uncertainty (together with the discrete

algebra) and I = {a, b} be the set of our agents.3 For each i ∈ I, take a collection of conditioning

events Bi. In dynamic games, Θ is often seen as the set of terminal histories and Bi is interpreted as

the collection of i’s information sets (e.g., see Alós-Ferrer and Ritzberger, 2016). Then, we consider a

type-based (epistemic) model
(
Θ, (Bi)i∈I , (Ti)i∈I , (λi)i∈I

)
, where Ti is a finite space of types and

λi : Ti → C(Θ × Tj,Bi) a conditional belief mapping.4 For notation simplicity, λti(·|B) := λi(ti)(·|B)

denotes ti’s beliefs over Θ × Tj given the conditioning event B × Tj. If Bi is treelike for every i ∈ I,

the type-based model is also called treelike. Standard belief hierarchies are encoded in a type-based

model with a single conditioning event Bi = {Θ} and λi : Ti → ∆(Θ× Tj) (Harsanyi, 1967-68).

We define the product space Ω := Θ × Ta × Tb, henceforth called the state space. We naturally

define θ(ω) := ProjΘ ω and ti(ω) := ProjTi ω. Then, for an element (resp., subset) of a space in the

product, we define its extension in Ω, by putting the corresponding element (resp., subset) within

brackets, e.g., for each θ ∈ Θ we write [θ] := {ω ∈ Ω : θ(ω) = θ}, and likewise for each F ⊆ Θ× Tj we

write [F ] := {ω ∈ Ω : (θ(ω), tj(ω)) ∈ F}.
Now, let us extend ti’s conditional beliefs from λti ∈ C(Θ× Tj,Bi) to πti ∈ C(Ω,Bi), where for an

arbitrary E ⊆ Ω and an arbitrary B ∈ Bi we obtain

πti(E|B) := λti
(
{(θ, tj) ∈ Θ× Tj : (θ, ti, tj) ∈ E}

∣∣ B). (3)

Let us now define two events of particular interest. Fix an arbitrary event E ⊆ Ω and a probability

qi ∈ [0, 1]. Then, for each B ∈ Bi, we define the event

[qi]
B := {ω ∈ Ω : πti(ω)(E|B) = qi}. (4)

Moreover, we define the event

[qi] :=
⋂
B∈Bi

[qi]
B. (5)

We denote the event that i (fully) believes in E by

Ki(E) :=
⋂
B∈Bi

{
ω ∈ Ω : πti(ω)(E|B) = 1

}
. (6)

3Our entirely analysis can be generalized to a compact metrizable space of uncertainty and a finite set of agents.
4Tsakas (2014) extends Battigalli and Siniscalchi’s (1999) construction to also accommodate uncertainty about the

collection of conditioning events. To do so, we introduce a function that associates each type with a collection of

conditioning events.
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Obviously, by definition Ki([ti]) = [ti], i.e., our agents satisfy the usual introspection axioms. Now, we

say that E is mutually believed at the states in K(E) := Ka(E) ∩Kb(E). Moreover, for each m > 0

we inductively define the event that E is m-fold mutually believed by Km+1(E) := K(Km(E)) with

K1(E) := K(E). Finally, we define the event that E is commonly (fully) believed by

CK(E) :=
∞⋂
k=1

Km(E). (7)

Now, generalizing the definition we introduced in the single-agent case, we say that i’s (conditional)

beliefs are derived from a prior p ∈ ∆(Ω) if, for all ti ∈ Ti and for all F ⊆ Ω

πti(F |B) =
p
(
F ∩ [B] ∩ [ti]

)
p
(
[B] ∩ [ti]

) , (8)

for all B ∈ Bi with p
(
[B] ∩ [ti]

)
> 0. We say that p ∈ ∆(Ω) is a common prior if the conditional

beliefs of every i ∈ I are derived from p.

Remark 2. Obviously, if Ti = {ti} is a singleton, (8) reduces to (1), i.e., the two (seemingly) distinct

definitions of a prior are consistent with each other. Furthermore, if Bi = {Θ}, our definition of a

common prior reduces to the standard one, which has been studied extensively in the literature (e.g.,

see Aumann, 1976; Bonanno and Nehring, 1999; Feinberg, 2000; Halpern, 2002). /

3. Generalized agreement theorem

According to Aumann’s famous agreement theorem, in the framework with standard beliefs, if the two

agents share a common prior and their posteriors about some given event are commonly believed at

some state that receives positive probability by the prior, then these posteriors necessarily coincide.

In this section we extend Aumann’s idea to a setting with conditional probability systems.

We prove two (independent) extensions of Aumann (1976). First, we show that whenever the

two agents share some conditioning event and their conditional beliefs given this event are commonly

believed, then they necessarily coincide. Notice that we do not require common belief in the posteriors

given other conditional events.

Theorem 1. Fix a type-based model
(
Θ, (Bi)i∈I , (Ti)i∈I , (λi)i∈I

)
and take some B ∈ Ba ∩ Bb. Let

p ∈ ∆(Ω) be a common prior and take qa ∈ [0, 1] and qb ∈ [0, 1] such that CK([qa]
B∩ [qb]

B)∩Supp(p)∩
[B] 6= ∅. Then, qa = qb.

Our assumption of the conditioning event B receiving positive probability by the common prior is

a crucial one, as illustrated by the following example.
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Example 2. Let Θ = {θ1, θ2, θ3} be the underlying space of uncertainty, with Bi = {{θ1}, {θ2, θ3}}
be the common collection of conditioning events of each i ∈ I = {a, b}. Moreover, consider the type-

based epistemic model (Θ,Ba,Bb, Ta, Tb, λa, λb) such that Ta = {t0a}, Tb = {t1b , t2b}, with λt0a(·|{θ1})
being uniformly distributed over {(θ1, t

1
b), (θ1, t

2
b)} and λt0a(·|{θ2, θ3}) being uniformly distributed over

{(θ2, t
1
b), (θ2, t

2
b)}, while at the same time λtkb ({θ1, t

0
a}|{θ1}) = 1 and λtkb ({θ3, t

0
a}|{θ2, θ3}) = 1 for each

k ∈ {1, 2}. Notice that the conditional beliefs are derived from the common prior p ∈ ∆(Θ× Ta × Tb)
which is uniformly distributed over {(θ1, t

0
a, t

1
b), (θ1, t

0
a, t

2
b)}. Now, consider the event A = {θ1, θ2}×Ta×

Tb, and observe that it is commonly believed that a puts probability 1 to A both given {θ1} and given

{θ2, θ3}, whereas b puts probability 1 to A given {θ1} and probability 0 to A given {θ2, θ3}. Hence,

a and b completely disagree on their probabilistic assessment over A given the conditioning event

{θ2, θ3}. That is, disagreement occurs only given the conditioning event that receives 0 probability

by the common prior, whereas the two agents agree given the conditional event that receives positive

probability by the common prior. /

Obviously Aumann’s theorem follows directly from the previous result by setting Ba = Bb = {Θ}.
In this case, CK([qa] ∩ [qb]) ∩ Supp(p) 6= ∅ directly implies qa = qb as in Aumann (1976).

Second, we show that even if the agents have different conditional events, as long as the two

collections cover the same states of nature and the conditional beliefs given each event are commonly

believed, then they necessarily coincide. That is, in our second result we allow for additional classes

of conditioning events, but at the same time we are more restrictive in the interactive beliefs about

the posteriors.

Theorem 2. Fix a balanced type-based model
(
Θ, (Bi)i∈I , (Ti)i∈I , (λi)i∈I

)
with B∗a = B∗b =: B∗. Let

p ∈ ∆(Ω) be a common prior and take some qa ∈ [0, 1] and qb ∈ [0, 1], such that CK([qa] ∩ [qb]) ∩
Supp(p) ∩ [B∗] 6= ∅. Then, qa = qb.

The previous result is closely related to a version of the agreement theorem for nonpartitional

information structures (Geanakoplos, 1989, Thm. 6). Moreover, note that it can be directly extended

to epistemic models where different ti ∈ Ti may have a different (balanced) Bti , similarly to Tsakas

(2014). The only requirement in this case would be that B∗ti = B∗ for all ti ∈ Ti and all i ∈ I, i.e., all

collections of conditioning events cover the same natural states in Θ.

Corollary 1. Fix a treelike type-based model
(
Θ, (Bi)i∈I , (Ti)i∈I , (λi)i∈I

)
. Let p ∈ ∆(Ω) be a common

prior and take some qa ∈ [0, 1] and qb ∈ [0, 1], such that CK([qa] ∩ [qb]) ∩ Supp(p) 6= ∅. Then, qa = qb.
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A. Proofs

Proof of Proposition 1. First of all observe that since B covers X, since P ⊆ B is a partition of X. Then,

consider an arbitrary collection (αP )P∈P or positive reals such that
∑

P∈P αP = 1. For each A ∈ A define

p(A) :=
∑
P∈P

αP · µ(A|P ). (A.1)

Verifying that p is a probability measure in ∆(X,A) is trivial. Moreover, notice that for every A ∈ A and

every B ∈ B with p(B) > 0, it is the case that

p(A ∩B)

p(B)
=

∑
P∈P αP · µ(A ∩B|P )∑
P ′∈P αP ′ · µ(B|P ′)

= µ(A|B) ·
∑

P∈P αP · µ(B|P )∑
P ′∈P αP ′ · µ(B|P ′)

(A.2)

= µ(A|B),

with (A.2) following from (C3) since A ∩B ⊆ B ⊆ P , thus completing the proof.

Proof of Theorem 1. Define TBi := {ti ∈ Ti : ti(ω) = ti for some ω ∈ CK([qa]
B ∩ [qb]

B) ∩ Supp(p) ∩ [B]},

which is by hypothesis nonempty. Since the event [qi]
B is measurable with respect to the partition {[ti]|ti ∈

Ti}, either [ti] ⊆ [qi]
B or [ti] ∩ [qi]

B = ∅. Now, for an arbitrary ti ∈ TBi , it is necessarily the case that

∅ 6= [ti] ∩ CK([qi]
B) ⊆ [ti] ∩Ki([qi]

B) ⊆ [ti] ∩ [qi]
B. Hence, for each ti ∈ TBi ,

qi = πti(E|B)

= p
(
E|[B] ∩ [ti]

)
.

The second equality follows from p([B] ∩ [ti]) > 0, which is by definition true for all ti ∈ TBi . Now, define the

set M := B × TBa × TBb . Hence,

qi =
∑
ti∈TB

i

qi · p([B] ∩ [ti]|M)

=
∑
ti∈TB

i

p
(
E|[B] ∩ [ti]

)
· p([B] ∩ [ti]|M)

= p(E|M).

Finally, since p(E|M) does not depend on i ∈ I, it is the case that qa = qb.

Proof of Theorem 2. Step 1. Define T ∗i := {ti ∈ Ti : ti(ω) = ti for some ω ∈ CK([qa] ∩ [qb]) ∩ Supp(p) ∩

[B∗]}, which is by hypothesis nonempty. Then, define the set M∗ := B∗ × T ∗a × T ∗b . Then, following Tsakas

and Voorneveld (2011, Proof of Lemma), we define Qi as the coarsest partition of B∗ such that generates Bi,

i.e., formally for every θ ∈ B∗, the element of Qi that contains θ is defined by Qi(θ) :=
⋂
B∈Bi:θ∈B B. Thus,
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we obtain

p(E|M∗) =
∑
Q∈Qi

p(E|Q× T ∗a × T ∗b ) · p(Q× T ∗a × T ∗b |M∗)

=
∑
Q∈Qi

( ∑
B∈Bi:B⊇Q

λB

)
· p(E|Q× T ∗a × T ∗b ) · p(Q× T ∗a × T ∗b |M∗) (A.3)

=
∑
B∈Bi

λB
∑

Q∈Qi:Q⊆B
p(E|Q× T ∗a × T ∗b ) · p(Q× T ∗a × T ∗b |M∗)

=
∑
B∈Bi

λB
∑

Q∈Qi:Q⊆B
p(E|Q× T ∗a × T ∗b ) · p(Q× T ∗a × T ∗b |B × T ∗a × T ∗b ) · p(B × T ∗a × T ∗b |M∗)

=
∑
B∈Bi

λB · p(B × T ∗a × T ∗b |M∗) · p(E|B × T ∗a × T ∗b ), (A.4)

with (A.3) following from the fact that Bi is balanced. Before moving forward, let us point out that p(Q ×

T ∗a × T ∗b ) or p(B × T ∗a × T ∗b ) might in principle be equal to 0 for some Q ∈ Qi or B ∈ Bi respectively. In such

cases, the conditional probabilities given these null events take arbitrary values.

Step 2. Now, similarly to the proof of Theorem 1, it is the case that [ti] ⊆ [qi] for all ti ∈ T ∗i , thus implying

πti(E|B) = qi for all B ∈ Bi and all ti ∈ T ∗i .

Step 3. Now take an arbitrary B ∈ Bi such that p(E|B × T ∗a × T ∗b ) > 0. Then, there exists some ti ∈ T ∗i
such that p([B] ∩ [ti]) > 0, and therefore since p is a common prior, we obtain p(E|B × T ∗a × T ∗b ) = qi for all

B ∈ Bi with p(E|B × T ∗a × T ∗b ) > 0. Hence, by (A.4) it follows that

p(E|M∗) = qi
∑
B∈Bi

λB · p(B × T ∗a × T ∗b |M∗)

= qi
∑
B∈Bi

λB
∑
Q∈Qi

p(B × T ∗a × T ∗b |Q× T ∗a × T ∗b ) · p(Q× T ∗a × T ∗b |M∗)

= qi
∑
Q∈Qi

p(Q× T ∗a × T ∗b |M∗)
∑
B∈Bi

λB · p(B × T ∗a × T ∗b |Q× T ∗a × T ∗b )

= qi
∑
Q∈Qi

p(Q× T ∗a × T ∗b |M∗) (A.5)

= qi,

with (A.5) following again from the fact that Bi is balanced. Indeed, the conditional probability can be seen

as an indicator function, with p(Q × T ∗a × T ∗b |M∗) = 1 if Q ⊆ B and p(Q × T ∗a × T ∗b |M∗) = 0 otherwise.

Finally, notice that p(E|M∗) does not depend on i ∈ I, thus completing the proof.

Proof of Corollary 1. Recall from Remark 1 that every treelike Bi is also balanced. Moreover, by (T2) it

follows that B∗a = B∗b = Θ for all i ∈ I. Hence, CK([qa]∩ [qb])∩Supp(p) 6= ∅ directly implies CK([qa]∩ [qb])∩

Supp(p) ∩ [B∗] 6= ∅. Thus, all the conditions of Theorem 2 are satisfied, and therefore qa = qb.
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