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Abstract

We introduce a new solution concept, called correlated-belief equilibrium. The difference

to Nash equilibrium is that, while each player has correct marginal conjectures about each

opponent, it is not necessarily the case that these marginal conjectures are independent. Then,

we provide an epistemic foundation and we relate correlated-belief equilibrium with standard

solution concepts, such as rationalizability, correlated equilibrium and conjectural equilibrium.

1. Introduction

Beliefs have recently become a very useful tool for game-theoretic analysis. One of the main advan-

tages from incorporating beliefs into our game-theoretic models is that they allow us to explicitly

distinguish between what players think that their opponents will do and what their opponents ac-

tually do. Thus, they help us better understand the implicit assumptions that are often present in

the definition of a solution concept. Take for instance Nash Equilibrium (NE), which is the most

well-known and widely-used game-theoretic solution concept. According to the standard definition,

a strategy profile is a NE if each player’s strategy is optimal given the opponents’ strategies (Nash,

1951). However, in a simultaneous-move game it is difficult to imagine that players respond to the

opponents’ actual strategies. Instead, it seems more natural to assume that they form beliefs about

their opponents’ strategies and then they respond to these beliefs. In this sense, one could say that

a NE implicitly postulates that players respond optimally to their beliefs about their opponents’
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strategies and these beliefs turn out to be correct. This alternative statement/interpretation of NE

in terms of beliefs has inspired the literature on the epistemic foundations for NE, e.g., in their lead-

ing paper Aumann and Brandenburger (1995, p. 1161) begin with the preliminary observation that

“if each player is rational and knows the strategy choices of the others, the players’ choices constitute

a Nash equilibrium in the game being played”.

Formally, a belief is modeled with a probability measure over the set of the opponents’ strategy

profiles. Note that this does not necessarily need to be a product measure, implying that the player

may in principle hold correlated beliefs, even if in reality her opponents choose their strategies

independently from each other. A player may hold correlated beliefs, for instance, either because she

thinks that her opponents use a correlating device (Aumann, 1974, 1987) or because she thinks that

their opponents’ beliefs are themselves correlated (Brandenburger and Friedenberg, 2008). Thus,

as long as the players actually choose their strategies independently from each other, the notion of

correct beliefs that is implicitly present in the definition of NE, requires each player (i) to have correct

marginal beliefs about each individual opponent, and (ii) to have independent marginal beliefs.

In this paper, we drop the requirement that players have independent marginal beliefs, while

maintaining the assumption that their marginal beliefs about each individual opponent are cor-

rect. This induces a new solution concept called correlated-belief equilibrium (CBE). Obviously, the

predictions made by CBE are a coarsening of the corresponding NE predictions. Moreover, it is

straightforward that the two solution concepts yield exactly the same strategy profiles in two-player

games.

Our first aim is to provide an epistemic justification for this solution concept. To do so, we begin

by looking into the history of the epistemic foundations for NE. In their seminal article, Aumann

and Brandenburger (1995) proved that mutual belief in rationality and common belief in conjectures

suffice for a NE if there is a common prior. This last assumption, while being often present in

many game-theoretic results, has been extensively criticized mostly on the basis of its conceptual

foundations being questionable (e.g., see Gul, 1998). In fact, Feinberg (2000) characterized the

common prior assumption by means of a no-bet condition. In particular, he showed that a common

prior exists if and only if the players cannot agree on any (zero-sum) bet. The fact that a common

prior is characterized in terms of all possible bets makes it a rather strong assumption. This is

because some bets are defined in terms of conditions that involve higher order beliefs, and in this

respect they may not even be verifiable based on hard evidence, e.g., consider the bet according to

which Bob has to pay Ann one monetary unit if she thinks that Carol will choose the strategy L

with probability more than 1/2, and she has to pay him one monetary unit otherwise. Obviously, in

this case there is no way to verify whether Ann reports her true beliefs or not, when she says that
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she does indeed find it more likely that Carol will choose L.

Having recognized how restrictive the common prior assumption is, Barelli (2009) replaced it with

a weaker condition, called action-consistency (A-consistency), which is characterized by the players

not agreeing to take any bet described in terms of the language generated by the pure strategy profiles.

In other words, A-consistency postulates that the players cannot agree on any (zero-sum) bet whose

outcome depends solely on which pure strategy profile is played in the game. Note that in this case

in order to decide who wins the side bet it is necessary to observe the realized pure strategy profile.

Let us now assume instead that the players cannot agree on any bet described in terms of the

language generated by any player’s individual pure strategies. That is, we postulate that the players

cannot agree on any (zero-sum) bet whose outcome depends solely on an arbitrary single player’s

pure strategy. Let us call this no-bet condition I-consistency. Obviously, I-consistency is weaker

than Barelli’s A-consistency, as it requires players not being able to agree on fewer bets than A-

consistency requires. Then, we show that by replacing A-consistency with I-consistency in Barelli’s

set of epistemic conditions (for NE) we provide sufficient epistemic conditions for CBE (see Theorem

1). We should point out that our epistemic conditions do not in general suffice for NE (see Example

2).

The previously-mentioned result justifies CBE by simply allowing for more priors than the ones

that would lead to a NE. In this sense, similarly to the literature on the epistemic conditions for NE,

it describes a set of belief hierarchies which would be consistent with CBE. Still, it does not explain

how players would end up forming such beliefs, and consequently why they would end up behaving

in accordance to the profiles that CBE predicts. We do this, by studying the relationship of CBE

with other solution concepts, and in particular with conjectural equilibrium, a solution concept with

well-established learning foundations which also permits false beliefs (e.g., see Hahn, 1977, 1978;

Battigalli, 1987; Battigalli and Guaitoli, 1997).

Conjectural equilibrium does not necessarily require each player’s belief to be correct in the prob-

ability it attaches to each pure strategy profile of the opponents. Instead, it assumes that each player

receives a signal – upon each pure strategy profile being realized – and it requires each player’s belief

not to contradict the empirical distribution of the received signals. If the signals are precise enough

to reveal the strategy profile being played, then conjectural equilibrium coincides with NE. Now,

notice that observing such precise signals would lead each player to learn not only each opponent’s

mixed strategy distribution, but also the fact that the opponents choose independently from each

other. On the other hand, in a CBE players are implicitly assumed to have learned each opponent’s

mixed strategy, without having necessarily learned that the opponents choose independently from

each other. Indeed, we show that CBE can be rewritten as a new variant of conjectural equilibrium
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with multiple signals, each of them revealing one opponent’s strategy (see Theorem 2). We also show

that CBE is not a special case of the standard conjectural equilibrium with a single signal function

for each player (see Example 3).

Besides the conceptual foundations of CBE, we relate the predictions that our concept makes

with other standard solution concepts. Starting with rationalizability, we prove that every CBE is

correlated rationalizable, i.e., it survives iterated elimination of strictly dominated strategies. This is

rather straightforward to see, as the correct-marginal-beliefs assumption that we maintain, together

with rationality, directly imply that the support of a CBE is a (correlated) best response set. On the

other hand, this is not the case for independent rationalizability. In fact, it turns out that CBE and

independent rationalizability neither refine nor coarsen each other. This is also natural to expect,

as the two generalize NE in different directions. Now, turning to correlated equilibrium, we show

that every CBE is essentially equivalent to a subjective correlated equilibrium. While we provide

a constructive proof of this result which clearly illustrates the relationship between the two, notice

that this also follows from the standard result of Brandenburger and Dekel (1987), who showed that

every correlated rationalizable strategy profile is essentially equivalent to a refinement of subjective

correlated equilibrium, viz., a posteriori equilibrium. Finally, we show that the same equivalence

does not hold for objective correlated equilibrium.

The paper is structured as follows: Section 2 introduces some preliminary definitions, in Section

3 we define CBE and we prove some basic properties, Section 4 contains our epistemic foundation of

the concept, while in Section 5 we provide the formal link to other solution concepts. All the proofs

are relegated to the Appendix.

2. Preliminaries

2.1. Product measures

For a measurable space Y , let ∆(Y ) denote the space of all probability measures over Y . If Y is

finite, then ∆(Y ) is identified as usual by the simplex over Y . Let Supp(ν) denote the support of

an arbitrary ν ∈ ∆(Y ). Now, take a finite collection of probability spaces (Yj, νj)
n
j=1, and denote

the respective product measure over
�n

j=1 Yj by
⊗n

j=1 νj. Moreover, let Π
(�n

j=1 Yj
)
⊆ ∆

(�n
j=1 Yj

)
denote the set of all product (probability) measures over

�n
j=1 Yj.
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2.2. Normal form games

Consider a finite normal form game
(
I, (Ai)i∈I , (ui)i∈I

)
, where I = {1, . . . , n} denotes the finite set

of players and Ai denotes the finite set of pure strategies of an arbitrary player i ∈ I with typical

element ai. As usual, let A :=
�

i∈I Ai and A−i :=
�

j 6=iAj, with typical elements a = (a1, . . . , an)

and a−i = (a1, . . . , ai−1, ai+1, . . . , an) respectively. Moreover, let ui : A→ R denote player i’s utility

function.

A randomization over a player’s pure strategies is called (mixed) strategy. Let Σi := ∆(Ai) denote

the set of player i’s mixed strategies with typical element σi. As usual, σi(ai) is the probability that

σi attaches to ai. Furthermore, let Σ :=
�

i∈I Σi denote the set of mixed strategy profiles with typical

element (σ1, . . . , σn). As long as players are assumed to choose their strategies independently, we

identify the mixed strategy profile (σ1, . . . , σn) ∈ Σ with the product measure σ :=
⊗

i∈I σi. Likewise,

let Σ−i :=
�

j 6=i Σj denote the set of the strategy profiles chosen by i’s opponents with typical element

(σ1, . . . , σi−1, σi+1, . . . , σn). Then again, as long as i’s opponents choose their strategies independently,

we identify (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ Σ−i with the product measure σ−i :=
⊗

j 6=i σj.

Define i’s (objective) expected utility from the mixed strategy profile (σ1, . . . , σn) by

Ui(σi, σ−i) :=
∑
ai∈Ai

σi(ai)
∑

a−i∈A−i

σ−i(a−i) · ui(ai, a−i) (1)

=
∑
a∈A

σ(a) · ui(a).

Then, we say that σi is a best response to (σ1, . . . , σi−1, σi+1, . . . , σn) and we write σi ∈ BRi(σ−i)

whenever it is the case that Ui(σi, σ−i) ≥ Ui(σ
′
i, σ−i) for all σ′i ∈ Σi. Finally, recall that a strategy

profile (σ1, . . . , σn) is a Nash Equilibrium (NE) whenever σi ∈ BRi(σ−i) for all i ∈ I.

2.3. Beliefs

A belief – often called conjecture – of player i ∈ I is a probability measure µi ∈ ∆(A−i). Notice that

µi is not necessarily a product measure over A−i, thus implying that player i may believe that her

opponents’ strategies are correlated, even if in reality they are chosen independently. The following

definition formalizes what it means for a player to have independent (marginal) beliefs.

Definition 1. Player i has independent (marginal) beliefs whenever µi ∈ Π(A−i). On the other

hand, we say that player i has correlated beliefs whenever µi ∈ ∆(A−i) \ Π(A−i).

While we allow players to have correlated beliefs, we do not impose any assumption regarding the

source of correlation. That is, player i may hold correlated beliefs either because she believes that

her opponents j and k actually use a physical correlating device similarly to Aumann (1974, 1987),
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or because she believes that j and k have themselves correlated belief hierarchies like for instance in

Brandenburger and Friedenberg (2008). The former type of correlation is called extrinsic correlation,

whereas the latter is called intrinsic correlation.

We define i’s (subjective) expected utility from the mixed strategy σi ∈ Σi given the conjecture

µi ∈ ∆(A−i) by

Ui(σi, µi) :=
∑
ai∈Ai

σi(ai)
∑

a−i∈A−i

µi(a−i) · ui(ai, a−i) (2)

=
∑
a∈A

(σi ⊗ µi)(a) · ui(a).

As usual, we say that σi ∈ Σi is a rational/optimal strategy given the belief µi ∈ ∆(A−i), and we

write σi ∈ BRi(µi), whenever it is the case that Ui(σi, µi) ≥ Ui(σ
′
i, µi) for all σ′i ∈ Σi. Then, it is

straightforward to verify that a mixed strategy profile (σ1, . . . , σn) is a NE if and only if for every

i ∈ I there is a conjecture µi ∈ ∆(A−i) such that σi ∈ BRi(µi) and µi = σ−i. Whenever it is the

case that µi = σ−i we say that player i has correct beliefs.

3. Definition and basic properties

The correct beliefs assumption, which is implicitly present in the definition of NE, essentially postu-

lates that each player (i) correctly guesses each opponent’s mixed strategy, and (ii) has independent

beliefs. Formally, player i has correct beliefs whenever µi satisfies the following two conditions:

Correct marginal beliefs (CMB): margAj
µi = σj for all j 6= i.

Independent (marginal) beliefs (IB): µi ∈ Π(A−i).

In this paper, we partially relax the correct beliefs assumption, by dropping IB while maintaining

CMB. That is, while we still assume that each player has a correct marginal belief about each

individual opponent, we do not require her to have independent marginal beliefs. As a result we

obtain a new solution concept, which we call correlated-belief equilibrium.

Definition 2. A strategy profile (σ1, . . . , σn) is a correlated-belief equilibrium (CBE) whenever

there exists a tuple of conjectures (µ1, . . . , µn) such that for all i ∈ I,

(a) σi ∈ BRi(µi),

(b) margAj
µi = σj for all j 6= i.

It is obvious that the set of CBE is a coarsening of the set of NE. The following result formally

proves that this is the case.
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Proposition 1. Every NE is a CBE.

Though rather straightforward, it is worthwhile to mention that the existence of a CBE follows

directly from the previous result.

Corollary 1. Every finite normal form game has a CBE.

In general the converse of Proposition 1 is not true, as illustrated by the following example. In

particular, it turns out that CBE may predict strictly more strategy profiles than NE does.

Example 1. Consider the following three-player game, with I = {Ann (a), Bob (b), Carol (c)}.
Ann chooses the matrix, Bob the row and Carol the column, i.e., Aa = {L,R}, Ab = {A,B} and

Ac = {C,D}. Furthermore, the payoffs are written in the respective order, i.e., first Ann, then

Bob and then Carol. Now consider the mixed strategy profile (σa, σb, σc) where σa = (1 ~ L),

A

B

C D

1,1,1

0,0,0

0,0,0

1,1,1

A

B

C D

1,2,2

1,2,2

1,2,2

1,2,2

L R

σb = (1
2
~A ; 1

2
~B) and σc = (1

2
~C ; 1

2
~D). Note that this is not a NE, as Ann has an incentive

to deviate to (1~R), which would yield expected payoff equal to 1, instead of the 1/2 that σa yields.

In other words, σa is not a rational strategy, if Ann has independent beliefs. However, σa can be

sustained as a rational strategy if her conjecture is µa =
(

1
2
~ (A,C) ; 1

2
~ (B,D)

)
. In this case, Ann

has correct marginal beliefs, but not independent beliefs, viz., while µa is such that margAi
µa = σi

for each i ∈ {b, c}, it is not the case µa /∈ Π(Ab × Ac). Finally, notice that σi ∈ BRi(σ−i) for every

i ∈ {b, c}, thus implying that (σa, σb, σc) is a CBE. /

Still, some partial converse results can be established. First, we show that in two-player games

the set of NE coincides with the set of CBE. This is not surprising, as the only difference between a

CBE and a NE is that the latter requires the players to have independent beliefs. However, if there

are only two players in the game, each of them has a unique opponent and therefore the marginal

beliefs are trivially independent.

Proposition 2. In two-player games every CBE is a NE.

Second, we show that the set of pure strategy NE coincides with the set of pure strategy CBE.

Again, the reason is rather obvious, viz., if every player chooses a pure strategy, the only conjecture

with correct marginal beliefs is equal to the product measure of the opponents’ (pure) strategies.

Proposition 3. Every pure-strategy CBE is a NE.
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4. Epistemic foundations

In this section, we provide sufficient epistemic conditions for CBE, thus obtaining a foundation for

CBE. In particular, our conditions weaken the standard epistemic foundations for NE by Aumann

and Brandenburger (1995) and Barelli (2009).

4.1. Epistemic models

A belief hierarchy describes a player’s belief about the opponents’ strategies (first order beliefs), belief

about the opponents’ strategies and first order beliefs (second order beliefs), and so on. Formally,

for an arbitrary player i consider the following sequence of (Polish) spaces:1 For each player i ∈ I,

let Θ0
i := A−i, and for each k > 0 recursively define Θk

i := Θk−1
i ×

(�
j 6=i ∆(Θk−1

j )
)
. Then, a belief

hierarchy of player i is a sequence of Borel probability measures (µ1
i , µ

2
i , . . . ) ∈

�
k≥0 ∆(Θk

i ) satisfying

coherency and common certainty in coherency, with Hi ⊆
�

k≥0 ∆(Θk
i ) being the set of all such belief

hierarchies.2 As usual, µki ∈ ∆(Θk−1
i ) denotes the k-th order beliefs, and µ1

i ∈ ∆(A−i) coincides with

i’s conjecture.

Belief hierarchies are typically represented using type space models. A type space model is a

tuple
(
(Ti)i∈I , (λi)i∈I

)
, where Ti is a Polish space of player i’s types, and λi : Ti → ∆(A−i× T−i) is a

continuous function, with T−i :=
�

j 6=i Tj. Throughout the paper we consider countable type space

models. This is without loss of generality, as our analysis can be directly generalized to arbitrary type

space models. Each type ti ∈ Ti is associated with a belief hierarchy hi(ti) :=
(
µ1
i (ti), µ

2
i (ti), . . .

)
∈

Hi, where the k-th order beliefs assign probability

µki (ti)(E) :=

∫
(a−i,t−i)∈A−i×T−i : (aj ,µ1j (tj),...,µk−1

j (tj))j 6=i∈E
dλi(ti) (3)

to an arbitrary Borel subset E ⊆ Θ0
i ×

(�
j 6=i Proj∆(Θ0

j )×···×∆(Θk−2
j ) Hj

)
.

For a given type space model, S :=
�

i∈I(Ai × Ti) is the set of states (of the world) with

typical element s. Each Borel subset of S is called an event. Note that a state specifies each

player’s pure strategy as well as her entire belief hierarchy. In particular, for each i ∈ I, there

1Recall that a space is Polish if it is separable and completely metrizable. Recall that the countable product of

Polish spaces is also Polish. Moreover, if Y is Polish, so is ∆(Y ) endowed with the topology of weak convergence. For

further details on Polish spaces, we refer to Aliprantis and Border (1994).
2Recall that a belief hierarchy (µ1

i , µ
2
i , . . . ) is coherent whenever it is the case that margΘk−2

µk
i = µk−1

i for all

k > 1, and we denote the space of i’s coherent belief hierarchies by H1
i . Then, for each ` > 0 we recursively define

H`
i :=

{
(µ1

i , µ
2
i , . . . ) ∈ H1

i : µk+2
i

(
Θ0

i ×
(�

j 6=i Proj∆(Θ0
j )×···×∆(Θk

j )H
`−1
j

))
= 1 for all k ≥ 0

}
as the set of belief

hierarchies satisfying `-fold certainty in coherency, and we say that a belief hierarchy satisfies common certainty in

coherency if it is an element of Hi :=
⋂

`≥1H
`
i (Harsanyi, 1967-68; Mertens and Zamir, 1985; Brandenburger and

Dekel, 1993).
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exists a function ãi : S → Ai, defined by ãi(s) := ProjAi
{s} for an arbitrary s ∈ S. Then, let

[ai] := {s ∈ S : ãi(s) = ai} denote the event that player i has chosen the pure strategy ai ∈ Ai,

and as usual define the events [a] :=
⋂
i∈I [ai] and [a−i] :=

⋂
j 6=i[aj]. Likewise, there exists a function

t̃i : S → Ti, defined by t̃i(s) := ProjTi{s} for an arbitrary s ∈ S. Then, let [ti] := {s ∈ S : t̃i(s) = ti}
denote the event that player i’s type is ti ∈ Ti. Now, each state is indirectly associated with a belief

hierarchy, via the function µ̃ki := µki ◦ t̃i, i.e., at a state s ∈ S, player i’s k-th order beliefs are given

by µ̃ki (s) := µki (t̃i(s)), while i’s belief hierarchy at s is denoted by h̃i(s) :=
(
µ̃1
i (s), µ̃

2
i (s), . . .

)
. Once

again, i’s conjecture coincides with the first order beliefs, i.e., at each s ∈ S, player i’s conjecture is

denoted by µ̃i(s) := µ̃1
i (s). Then, let [µi] := {s ∈ S : µ̃i(s) = µi} denote the event that player i’s

conjecture is µi. Finally, the event

Ri :=
{
s ∈ S : ãi(s) ∈ BRi

(
µ̃i(s)

) }
(4)

contains the states where player i is rational.

Now, for every s ∈ S define the Borel probability measure β̃i(s) ∈ ∆(S), such that for an arbitrary

Borel event E ⊆ S,

β̃i(s)(E) := λi
(
t̃i(s)

)(
ProjA−i×T−i

(
E ∩ [ãi(s)] ∩ [t̃i(s)]

))
(5)

denotes the probability that player i attaches to E at the state s. Note that player i is implicitly

assumed to know both her own strategy and her own type at every state, which is why she attaches

probability 0 to every event that contradicts her actual strategy-type profile.

We say that player i believes in E at all states that belong to the event

Bi(E) := {s ∈ S : β̃i(s)(E) = 1}. (6)

Moreover, we say that E is mutually believed if everybody believes in it, and we write

B(E) :=
⋂
i∈I

Bi(E). (7)

Finally, we say that E is commonly believed if everybody believes in it, everybody believes that

everybody believes in it, and so on. Formally, for each m ≥ 1 we recursively define m-th order

mutual belief in E by Bm(E) := Bm−1(B(E)) where B0(E) := B(E). Then, the states that belong

to the event

CB(E) :=
⋂
m≥0

Bm(E) (8)

are those at which E is commonly believed.
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4.2. Epistemic conditions for Nash equilibrium

In their seminal paper, Aumann and Brandenburger (1995) provided a set of sufficient epistemic

conditions for NE, by showing that in a complete information game, common belief of conjectures

and mutual belief in rationality suffice for a NE, whenever there is a common prior. Recall that a

Borel probability measure q ∈ ∆(S) is a common prior if for every player i ∈ I and for every s ∈ S
with q

(
[ãi(s)] ∩ [t̃i(s)]

)
> 0 it is the case that β̃i(s)(E) = q

(
E ∩ [ãi(s)] ∩ [t̃i(s)]

)
/q
(
[ãi(s)] ∩ [t̃i(s)]

)
for every Borel E ⊆ S. Then, Aumman and Brandenburger’s result is formally stated as follows.3

Theorem A (Aumann and Brandenburger, 1995). Let (µ1, . . . , µn) be a tuple of conjectures and

suppose that there is a common prior q ∈ ∆(S) that attaches positive probability to a state s ∈ S

such that s ∈ B(R1 ∩ · · · ∩ Rn) ∩ CB
(
[µ1] ∩ · · · ∩ [µn]

)
. Then, there exists a mixed strategy profile

(σ1, . . . , σn) ∈ Σ such that

(i) margAi
µj = σi for all j 6= i and for all i ∈ I,

(ii) (σ1, . . . , σn) is a NE.

In a more recent paper, Barelli (2009) generalized Aumann and Brandenburger’s epistemic con-

ditions, by substituting the common prior assumption and common belief in conjectures with weaker

conditions respectively. Formally, Barelli (2009) relaxed the common prior assumption, by introduc-

ing the weaker notion of action-consistency. Accordingly, consider the set of A-measurable random

variables, FA := {f : S → R | ã(s) = ã(s′)⇒ f(s) = f(s′)}. Henceforth, a function f ∈ FA is called

A-verifiable, as the value of f at some state reveals the strategy profile being played at this state.

Then, a probability measure q ∈ ∆(S) is called action-consistent (A-consistent) whenever it is

the case that ∑
s∈S

q(s) · f(s) =
∑
s∈S

q(s)
(∑
s′∈S

β̃i(s)(s
′) · f(s′)

)
(9)

for every i ∈ I and every f ∈ FA. In fact, whenever A is finite, Equation (9) implies

q
(
[a]
)

=
∑
s∈S

β̃i(s)
(
[a]
)
· q(s) (10)

for every i ∈ I and every a ∈ A.

Then, Barelli (2009) characterized of A-consistency in terms of A-verifiable bets. We define a

bet as a collection {fi}i∈I of random variables such that
∑

i∈I fi(s) = 0 for all s ∈ S. A bet is

A-verifiable whenever fi ∈ FA for all i ∈ I. Then, it can be shown that there is an A-consistent

3In their paper, Aumann and Brandenburger (1995) prove a slightly more general version of this result, viz., they

do not require common belief of the payoff functions, which we implicitly assume here.
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probability measure in ∆(S) if and only if there is no mutually beneficial A-verifiable bet, i.e.,

formally, q ∈ ∆(S) is A-consistent if and only if there exists no A-verifiable bet {fi}i∈I such that∑
s′∈S β̃i(s)(s

′) · fi(s′) ≥ 0 for all s ∈ Supp(q) and for all i ∈ I, with at least one inequality

being strict. Furthermore, for some A-consistent measure q ∈ ∆(S), the conjectures are said to

be constant in the support of q whenever there exists a profile of conjectures (µ1, . . . , µn) such that(
µ̃1(s), . . . , µ̃n(s)

)
= (µ1, . . . , µn) for all s ∈ Supp(q).

Then, Barelli (2009) generalized Aumann and Brandenburger’s epistemic conditions for NE, by

simultaneously replacing their common prior assumption with A-consistency, and common belief of

the conjectures with constant conjectures in the support of the A-consistent distribution. Formally,

Barelli’s result is stated as follows.

Theorem B (Barelli, 2009). Let (µ1, . . . , µn) be a tuple of conjectures and suppose that there is an

A-consistent q ∈ ∆(S) such that
(
µ̃1(s), . . . , µ̃n(s)

)
= (µ1, . . . , µn) for all s ∈ Supp(q). Moreover,

assume that there is some state s ∈ Supp(q) such that s ∈ B(R1 ∩ · · · ∩ Rn). Then, there exists a

mixed strategy profile (σ1, . . . , σn) ∈ Σ such that

(i) margAi
µj = σi for all j 6= i and for all i ∈ I,

(ii) (σ1, . . . , σn) is a NE.

To see that Barelli’s conditions are weaker than Aumann and Brandenburger’s, first observe that

a common prior is always A-consistent. This is not surprising given the existing characterizations

of the two concepts. In particular, a common prior essentially says that the players will not agree

to take any bet that is defined in terms of events in the Borel σ-algebra S of events in S (Feinberg,

2000), whereas A-consistency essentially says that the players will not agree to take any bet that is

defined in terms of events in the sub-σ-algebra SA which is generated by the collection {[a]|a ∈ A}
(Barelli, 2009). Obviously, the former is more restrictive than the latter – by the fact that SA ⊆ S
– which is in accordance to our observation that a common prior is A-consistent.

Finally, in the existence of a common prior, constant conjectures in the support of the (action-

consistent) common prior directly implies common belief of the conjectures.

4.3. Epistemic conditions for correlated-belief equilibrium

According to Barelli’s characterization, an A-consistent probability measure exists if and only if there

is no mutually beneficial bet that is described in terms of all players’ pure strategies. Now, let us

relax this condition by instead assuming that players are not able to agree on a bet which is described

in terms of a single player’s pure strategies. In order to do this, we first define, for an arbitrary i ∈ I,

11



the set of Ai-measurable random variables, FAi
:= {f : S → R | ãi(s) = ãi(s

′) ⇒ f(s) = f(s′)}.
Henceforth, a function f ∈ FAi

is called Ai-verifiable, as the value of f at some state reveals the

pure strategy chosen by player i at this state.

Definition 3. A probability measure q ∈ ∆(S) is called Ai-consistent whenever it is the case that∑
s∈S

q(s) · f(s) =
∑
s∈S

q(s)
(∑
s′∈S

β̃j(s)(s
′) · f(s′)

)
(11)

for every j ∈ I and every f ∈ FAi
. Moreover, we say that q ∈ ∆(S) is I-consistent, whenever it is

Ai-consistent for every i ∈ I.

Similarly to Barelli (2009), it can be shown that whenever Ai is finite, Equation (11) implies

q
(
[ai]
)

=
∑
s∈S

β̃j(s)
(
[ai]
)
· q(s) (12)

for every j ∈ I and every ai ∈ Ai. Hence, if q is I-consistent, (12) holds for every i ∈ I. Then,

following the same steps as in Barelli (2009, Prop. 5.3), it can be shown that there is an Ai-

consistent probability measure in ∆(S) if and only if there is no mutually beneficial Ai-verifiable

bet, viz., q ∈ ∆(S) is Ai-consistent if and only if there exists no Ai-verifiable bet {fj}j∈I such that∑
s′∈S

β̃j(s)(s
′) · fj(s′) ≥ 0 (13)

for all s ∈ Supp(q) and for all j ∈ I, with at least one inequality being strict. Thus, q ∈ ∆(S) is

I-consistent if and only if there is no Ai-verifiable bet satisfying (13) for any i ∈ I.

The intuition behind the previous characterization of Ai-consistency is the players will not agree

to take any bet that is defined in terms of events in the sub-σ-algebra SAi
which is generated by the

collection {[ai]|ai ∈ Ai}. That is, I-consistency essentially says that the players will not agree on any

bet that is described in terms of events in SA1 , and they will not agree on any bet that is described

in terms of events in SA2 , and . . . , and and they will not agree on any bet that is described in terms

of events in SAn . Notice that for every i ∈ I it is the case that SAi
⊆ SA, thus implying that every

A-consistent prior is also I-consistent.

Then, the following result proves that if we replace A-consistency with I-consistency in Barelli’s

Theorem, the marginal conjectures will form a CBE rather than a NE. Thus, we provide sufficient

epistemic conditions for CBE.

Theorem 1. Let (µ1, . . . , µn) be a tuple of conjectures and suppose that there is an I-consistent

q ∈ ∆(S) such that
(
µ̃1(s), . . . , µ̃n(s)

)
= (µ1, . . . , µn) for all s ∈ Supp(q). Moreover, assume that

there is some state s ∈ Supp(q) such that s ∈ B(R1 ∩ · · · ∩ Rn). Then, there exists a mixed strategy

profile (σ1, . . . , σn) ∈ Σ such that
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(i) margAi
µj = σi for all j 6= i and for all i ∈ I,

(ii) (σ1, . . . , σn) is a CBE.

Note that I-consistency does not force players to agree on the probabilities they attach an ar-

bitrary event in SA, e.g., Ann and Bob do not need to have the same conjecture about Carol and

David jointly. However, it is still the case that under I-consistency all players other than i necessarily

agree on the probabilities they attach to each event in SAi
, e.g., Ann and Bob necessarily have the

same marginal conjecture about Carol, as well as the same marginal conjecture about David. This,

explains why in a CBE players can have different conjectures, but not different marginal conjectures.

On the other hand, under A-consistency, players agree not only on their marginal beliefs, but also on

their joint beliefs – as everybody’s conjectures are product measures – and therefore A-consistency

suffices for NE.

Still, it is natural to ask whether our (weaker) conditions of Theorem 1 also suffice for NE.4 It

turns out that this is not the case, as shown in the following example.

Example 2. Recall the game in Example 1, and consider the CBE σa = (1~L), σb = (1
2
~A ; 1

2
~B)

and σc = (1
2
~ C ; 1

2
~ D). Now, consider a type space model

(
(Ti)i∈I , (λi)i∈I

)
with a unique type

for each player. i.e., Ti = {ti} for each i ∈ {a, b, c}, where

λa(ta) =
(1

2
~
(
(A, tb), (C, tc)

)
;

1

2
~
(
(B, tb), (D, tc)

))
,

λb(tb) =
(1

2
~
(
(L, ta), (C, tc)

)
;

1

2
~
(
(L, ta), (D, tc)

))
,

λc(tc) =
(1

2
~
(
(L, ta), (A, tb)

)
;

1

2
~
(
(L, ta), (B, tb)

))
.

Moreover, consider the probability measure q ∈ ∆(S) defined by

q =
(1

2
~
(
(L, ta), (A, tb), (C, tc)

)
;

1

2
~
(
(L, ta), (B, tb), (D, tc)

))
and notice that it is I-consistent, while at the same time the conjectures are constant in the support

of q. Thus, the conditions of Theorem 1 are satisfied, and as expected (σa, σb, σc) is a CBE. However,

recall from Example 1 that (σa, σb, σc) is not a NE, thus implying that the conditions of Theorem

1 do not suffice for NE. Of course, the reason is that q is not A-consistent. Indeed, consider the A-

measurable (indicator) function f : S → R with f(s) = 1 for all s ∈ Supp(q) and f(s) = 0 otherwise,

and notice that while
∑

s∈S q(s) · f(s) = 1, it is also the case that
∑

s∈S q(s)
(∑

s′∈S β̃i(s)(s
′)
)

= 1/2

for i ∈ {b, c}, thus implying that Equation (9) does not hold for every player. /

4Recall that both Aumann and Brandenburger (1995), as well as the subsequent generalizations including Barelli

(2009), provide sufficient but not necessary conditions for NE.
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Remark 1. Obviously, in two player games, it suffices to simply require mutual belief in conjectures

similarly to Aumann and Brandenburger (1995, Thm. A). The reason is that – as we have already

mentioned – in two player games the set of CBE coincides with the set of NE. /

Remark 2. In a recent paper, Bach and Tsakas (2014) further generalized Barelli’s result – and

a fortiori the one of Aumann and Brandenburger (1995) – by replacing his epistemic conditions

with respective pairwise epistemic conditions imposed only for some pairs of players. A similar

generalizations can be done for CBE, by assuming pairwise mutual belief in rationality, pairwise

I-consistency and pairwise constant conjectures in the supports of the I-consistent distributions.

However, due to space limitations, we omit the presentation of this result. /

Remark 3. Notice that throughout this section, for notation simplicity, we have focused entirely on

complete information games, even though our result can be directly extended to type spaces with

uncertainty about the payoff functions, as long as these are mutually believed. /

5. Relationship to other solution concepts

5.1. Conjectural equilibrium

CBE is not the first equilibrium concept in the literature that allows for correlated beliefs. In fact,

this idea was already present in conjectural equilibrium, which was introduced by Hahn (1977, 1978),

later formalized by Battigalli (1987) and further developed by Battigalli and Guaitoli (1997) and Gilli

(1999).5 The underlying idea behind all these papers is that a player’s beliefs do not need to coincide

with the product measure induced by the opponents’ actual mixed strategy profile. Instead, beliefs

should only be confirmed for some events in A−i.

Formally, for an arbitrary player i ∈ I, let ψi : A → Mi be a signal function with Mi being

an arbitrary set of signals. Whenever the pure strategy profile a ∈ A is played, player i does not

necessarily observe it – even after the strategies have been realized – and instead receives the signal

ψi(a), thus considering possible the pure strategy profiles in

ψ−1
i (mi) := {a ∈ A : ψi(a) = mi}. (14)

A natural example of a signal function is the own utility function, viz., suppose that player i observes

only his own utility, but not the pure strategy profile that induced it. Then, for an arbitrary ai ∈ Ai,
5This literature consists of a whole family of related solution concepts, such as for instance rationalizable conjectural

equilibrium (Rubinstein and Wolinsky, 1994; Esponda, 2013), self-confirming equilibrium (Fudenberg and Levine, 1993)

and subjective equilibrium (Kalai and Lehrer, 1993), just to mention a few.
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let

ψ−1
i (mi|ai) := {a−i ∈ A−i : ψi(ai, a−i) = mi} (15)

be the set of the opponents’ pure strategy profiles which together with ai would induce the signal mi.

A conjectural equilibrium captures the idea each player responds rationally to a (possibly wrong)

conjecture about the strategies chosen by their opponents. Still, this conjecture – though possibly

wrong – is not contradicted by the signal that the player observes after the actions have been realized.

Formally, for a profile of signal functions ψ = (ψ1, . . . , ψn), we say that a strategy profile (σ1, . . . , σn)

is a ψ-conjectural equilibrium, if for every i ∈ I there is a belief µi ∈ ∆(A−i) such that

(a) µi
(
ψ−1
i (mi|ai)

)
= σ−i

(
ψ−1
i (mi|ai)

)
for all mi ∈Mi and for all ai ∈ Supp(σi),

(b) σi ∈ BRi(µi).

The underlying idea is that an arbitrary player i ∈ I observes a large sample of realized combi-

nations of the own action and the corresponding signal,
(
ai, ψi(a)

)
. Then, the probability that the

conjecture µi assigns to each signal (conditional on each own pure strategy) is equal to the empir-

ical frequency of this signal (conditional on each own pure strategy). Therefore, i’s conjecture is

confirmed by the observed sample.

If the signal function of each player induces the discrete partition over A, i.e., if ψi(a) 6= ψi(a
′)

for any a, a′ ∈ A, a strategy profile is a conjectural equilibrium if and only if it is a NE. Moreover,

it is straightforward that for any given signal functions (ψ1, . . . , ψn) the set of conjectural equilibria

lies between NE and correlated rationalizability, similarly to what happens with CBE.6 The natural

question arising then is whether there exists some ψ such that the set of CBE coincides with the set

of ψ-conjectural equilibria. The following example shows that this is not necessarily the case, thus

implying that CBE is not a special case of conjectural equilibrium.

Example 3. Consider the following three-player game, with I = {Ann (a), Bob (b), Carol (c)}.
Ann chooses the matrix, Bob the row and Carol the column, i.e., Aa = {L,R}, Ab = {A,B}
and Ac = {C,D}. Furthermore, the payoffs are written in the respective order, i.e., first Ann,

then Bob and then Carol. Now take the mixed strategy profile (σa, σb, σc) where σa = (1 ~ L),

σb = (1
2
~A ; 1

2
~B) and σc = (1

2
~C ; 1

2
~D), and observe that it is a CBE. In fact, it is the only

CBE with Ann choosing L. Then, let us show that there is no ψ = (ψa, ψb, ψc) such that the set of

ψ-conjectural equilibria coincide with the set of CBE. In particular, we show that for every ψ, either

there is a ψ-conjectural equilibrium that is not a CBE, or it is the case that (σa, σb, σc) is not a ψ-

conjectural equilibrium. First, observe that in order for (σa, σb, σc) to be a ψ-conjectural equilibrium

6The latter is formally proven in the next section.
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2,0,0

0,1,1

0,1,1

2,0,0

A

B

C D

2,0,0

2,1,1

2,1,1

2,0,0

L R

it must be the case that Supp(µa) ⊆ {(A,C), (B,D)}. Moreover, notice that ψa must be such that

ψa(L,A,D) = ψa(L,A,C) or ψa(L,A,D) = ψa(L,B,D), and likewise ψa(L,B,C) = ψa(L,A,C) or

ψa(L,B,C) = ψa(L,B,D). Otherwise, (σa, σb, σc) will not be a ψ-conjectural equilibrium. This is

because, σ−a(A,D) > 0 whereas µa(A,D) = 0, and likewise σ−a(B,C) > 0 whereas µa(B,C) = 0.

Let us assume that ψa(L,A,D) = ψa(L,A,C). This is without loss of generality due to symmetry.

Then, irrespective of what ψb and ψc are, it is the case that (L,A,D) is a ψ-conjectural equilibrium

but not a CBE. Indeed, verify that this is the case by taking µ′a = (1 ~ (A,C)), µ′b = (1 ~ (L,D))

and µ′c = (1 ~ (L,A)). Hence, we conclude that there is no signal structure ψ that makes the set of

ψ-conjectural equilibria coincide with the set of CBE. /

While CBE is not a special case of conjectural equilibrium, there still seems to exist a very close

link between the two. Indeed, as we show below, a CBE is indeed equivalent to a new variant of

conjectural equilibrium with multiple signals.

Let us begin by defining for each player i ∈ I the collection Ψi := {ψ1
i , . . . , ψ

i−1
i , ψi+1

i , . . . , ψni } of

signal functions such that for an arbitrary j ∈ I the signal function ψji : A → Mi reveals j’s pure

strategy, i.e., ψji (a1, . . . , an) = ψji (a
′
1, . . . , a

′
n) if and only if aj = a′j. Then, we say that (σ1, . . . , σn) is

a Ψ-conjectural equilibrium if for every i ∈ I there is a belief µi ∈ ∆(A−i) such that

(a) µi
(
ψ−1
i (mi|ai)

)
= σ−i

(
ψ−1
i (mi|ai)

)
for all ψi ∈ Ψi and all mi ∈Mi and all ai ∈ Supp(σi),

(b) σi ∈ BRi(µi).

Theorem 2. A strategy profile is a CBE if and only if it is a Ψ-conjectural equilibrium.

The previous result provides a natural characterization of CBE. Indeed, recall that a conjectural

equilibrium allows the players’ conjectures to be false, but still requires them to be consistent with

the observed data which arrive in the form of signals. Thus, a Ψ-conjectural equilibrium postulates

that each players receives separate data for each opponent’s strategy and confirms her marginal

conjectures. However, she is not able – using these independently received signals – to test whether

her opponents’ strategies are statistically independent or not, which is why her beliefs might be

correlated. But then, this is exactly what happens in a CBE, viz., players are correct in their
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marginal beliefs about every opponent, but perhaps wrong when assessing the possibility of their

opponents’ strategies being correlated.

5.2. Rationalizability

In this section we study the relationship between CBE and the different forms of rationalizability.

First, we relate CBE to correlated rationalizability, and subsequently to independent rationalizability.

There are two equivalent definitions of correlated rationalizability. First, according to the iterative

definition a strategy profile is correlated rationalizable whenever it survives the iterated elimination

of strictly dominated strategies (IESDS).7 Alternatively, according to the fixed point definition a

strategy profile is correlated rationalizable if it belongs to a product of justifiable strategy sets, with

the property that each justifiable strategy of each player is a best response to a (possibly correlated)

belief over the opponents’ justifiable strategy profiles (Brandenburger and Dekel, 1987). Formally,

a set of justifiable strategies is called best response set and is defined as follows: Consider some

Di ⊆ Ai for each player i ∈ I with the property that, for every ai ∈ Di there exists a conjecture

µi ∈ ∆
(�

j 6=iDj

)
such that ai ∈ BRi(µi). Then, we say that D1×· · ·×Dn satisfies the best response

property (with each Di being a best response set), and every (σ1, . . . , σn) ∈
�

i∈I ∆(Di) is called

correlated rationalizable .

It is well-known that every NE is a correlated rationalizable strategy profile. In fact, this is also

true for every CBE, as the supports of the mixed strategies played in a CBE have the best response

property, as shown below.

Proposition 4. Every CBE is correlated rationalizable.

Clearly, the converse is not true, e.g., in two player games it is often the case that Nash equilibria

form a strict subset of the set of correlated rationalizable strategy profiles.

In general, notice that the (fixed point) definition of correlated rationalizability incorporates

two assumptions, viz., each player is rational, and moreover each player correctly believes that

every opponent plays a justifiable strategy. In this sense, CBE lies between NE and correlated

rationalizability. Indeed, CBE postulates only CMB, whereas correlated rationalizability does not

require eiether IB or CMB.

Now, we turn our attention to independent rationalizability, which strengthens correlated ratio-

nalizability in the sense that it requires each player to have independent beliefs (Bernheim, 1984;

Pearce, 1984). Formally, independent rationalizability is defined as follows: Consider some Di ⊆ Ai

7Recall that IESDS yields the strategy profiles that can be played under rationality and common belief in rationality

(Brandenburger and Dekel, 1987; Tan and Werlang, 1988).
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for each player i ∈ I with the property that, for every ai ∈ Di there is some µi ∈ Π
(�

j 6=iDj

)
such

that ai ∈ BRi(µi). Then, we say that D1×· · ·×Dn satisfies the independent best response property

(with each Di being an independent best response set), and every (σ1, . . . , σn) ∈
�

i∈I ∆(Di) is said

to be independently rationalizable .

It is well known that there is a monotonic relationship in the strategy profiles that are predicted

by NE, independent rationalizability and correlated rationalizability, in the respective order. Indeed,

the following figure illustrates the relationship between the different solution concepts that we have

discussed so far, together with the additional implicit condition that needs to be imposed in order

to go from one to the other.

Correlated rationalizability

⇓ (+CMB)

Correlated-belief equilibrium

Independent rationalizability

⇓ (+CMB)

Nash equilibrium=⇒

=⇒
(+IB)

(+IB)

What is not straightforward from the previous figure is the relationship between independent

rationalizability and CBE, as the two concepts relax different assumptions of NE, viz. in comparison

with NE, CBE relaxes IB, whereas independent rationalizability relaxes CMB. In fact, it turns

out that none of the two concepts refines the other. Indeed, it is straightforward that not every

independently rationalizable strategy profile is always a CBE, e.g., in two-player games, the set of

CBE coincides with the set of NE, and therefore there are games with independently rationalizable

strategy profiles that are not CBE. Furthermore, it follows from the following example that there are

games where a CBE is not independently rationalizable.

Example 4. Consider the following three-player game, with I = {Ann (a), Bob (b), Carol (c)}.
Again, Ann chooses the matrix, Bob the row and Carol the column, i.e., Aa = {L,M,R}, Ab =

{A,B} and Ac = {C,D}. Furthermore, the payoffs are written in the respective order, i.e., first

Ann, then Bob and then Carol. Now, consider the mixed strategy (σa, σb, σc) where σa = (1 ~ L),

A

B

C D

1,1,1

0,0,0

0,0,0

1,1,1

A

B

C D

2,2,2

1,2,2

1,2,2

0,2,2

A

B

C D

0,2,2

1,2,2

1,2,2

2,2,2

L M R

σb = (1
2
~ A ; 1

2
~ B) and σc = (1

2
~ C ; 1

2
~ D), and observe that this is a CBE. Indeed, if
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we consider the conjectures µa =
(

1
2
~ (A,C) ; 1

2
~ (B,D)

)
, µb =

(
1
2
~ (L,C) ; 1

2
~ (L,D)

)
and

µc =
(

1
2
~ (L,A) ; 1

2
~ (L,B)

)
, both conditions of Definition 2 are satisfied. However, notice that

(σa, σb, σc) is not independently rationalizable, as the pure strategy L of Ann is not a best response

to any product measure over A−a = {A,B} × {C,D}. /

It follows from the previous discussion that the strategy profiles that can be played under the

different solution concepts satisfy the inclusion relationships shown in the following figure. In general,

whether these inclusions are weak or strict depends on the game in hand.

Nash equilibria

Independently rationalizable profiles

Correlated-belief equilibria

Correlated rationalizable profiles

Thus, a natural question that arises at this point is whether the shaded area is empty or not. In

other words, is it the case that a CBE is a NE if and only if it is independently rationalizable? It

turns out that this is not the case in general. To see this, consider Example 1, and observe that every

strategy profile is independently rationalizable, while at the same time there exists a CBE which is

not a NE.

At first glance, this last observation looks somewhat surprising. The reason is that the conditions

imposed in a CBE, together with those imposed by independent rationalizability, seem to suffice

for a NE. However, if we take a closer look, we realize that there may exist some independently

rationalizable CBE (σ1, . . . , σn) such that for some i ∈ I the only product measure νi over the

opponents’ justifiable strategy profiles, which also satisfies σi ∈ BRi(νi), induces different marginal

conjectures than µi, and therefore (σ1, . . . , σn) is not a NE. For instance, in Example 1, the only

product measures over {A,B}× {C,D} that make L a rational strategy, put probability 1 to (A,C)

or probability 1 to (B,D). However, none of these product measures induces the same marginal

conjectures as µa, and therefore the independently rationalizable CBE is not a NE.
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5.3. Correlated equilibrium

So far, correlation has entered the picture only in the form of players having correlated conjectures.

However, it is sometimes the case that the players’ actual strategies are indeed correlated. Obviously,

in this case the set of possible objective distributions (over A) increases. Having recognized this

possibility Aumann introduced the concept of correlated equilibrium, which generalizes NE both in

terms of strategy profiles, as well as in terms of expected payoff vectors (Aumann, 1974, 1987).

In this case, correlation takes place via some correlating random device
(
Ω, (Pi)i∈I , (πi)i∈I

)
, where

Ω is a finite state space and Pi is i’s information partition over Ω.8 The probability measure πi ∈ ∆(Ω)

describes player i’s prior beliefs. If there is some π ∈ ∆(Ω) such that πi = π for all i ∈ I, we say that

there is a common prior, and the correlating device is called objective. Otherwise, we say that the

correlating device is subjective. The Pi-measurable function âi : Ω→ Ai determines the pure strategy

that player i undertakes upon observing the event Pi(ω), with Âi being the set of all (Pi-measurable)

contingent strategy plans. As usual, define Â :=
�

i∈I Âi and Â−i :=
�

j 6=i Âj with typical elements

â and â−i respectively. Obviously, each â ∈ Â can be thought as a (P1∨· · ·∨Pn)-measurable function,

mapping each ω to the pure strategy profile
(
â1(ω), . . . , ân(ω)

)
.9

A tuple
(
Ω, (Pi)i∈I , (πi)i∈I , (âi)i∈I

)
, consisting of a subjective (resp. objective) correlating device

and a contingent strategy profile, is called a subjective (resp. objective) correlated strategy profile.

For each player’s prior, a correlated strategy profile induces the probability distribution pi := (πi ◦
â−1) ∈ ∆(A) over the set of strategy profiles, i.e., player i’s prior attaches probability

pi(a) := πi
(
{ω ∈ Ω : â(ω) = a}

)
(16)

to each a ∈ A. Of course, pi is not necessarily a product measure over A. In this respect it becomes

obvious that the set of correlated strategy profiles induces strictly more distributions over A than

the set of mixed strategy profiles does.

Player i’s expected utility from
(
Ω, (Pi)i∈I , (πi)i∈I , (âi)i∈I

)
is equal to

Ui(âi, â−i) :=
∑
ω∈Ω

πi(ω) · ui
(
âi(ω), â−i(ω)

)
=

∑
a∈A

pi(a) · ui(a). (17)

Then, we say that âi is a best response to â−i, and we write âi ∈ BRi(â−i), whenever it is the

case that Ui(âi, â−i) ≥ Ui(â
′
i, â−i) for all â′i ∈ Âi. A subjective (resp., objective) correlated strategy

8Note that the state space Ω conceptually differs from the state space S defined earlier in that each ω ∈ Ω

corresponds to a realization of a physical randomizing device, whereas each s ∈ S corresponds to a description of each

player’s strategy and belief hierarchy.
9As usual, (P1 ∨ · · · ∨ Pn) denotes the coarsest common refinement of the partitions (Pi)i∈I .
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profile
(
Ω, (Pi)i∈I , (πi)i∈I , (âi)i∈I

)
is a subjective (resp., objective) correlated equilibrium if

âi ∈ BRi(â−i) for all i ∈ I.

Note that in a correlated equilibrium players are allowed to have correlated beliefs. However, the

(possibly correlated) beliefs are not arbitrary. Instead they are derived from the correlating device.

In this respect, player i has correct beliefs about how the strategies of her opponents are actually

correlated, whereas in a CBE players do not in general have correct beliefs about the source of

correlation that they consider. This implies that in principle there seem to exist games where CBE

is a weaker concept than correlated equilibrium. However, as Proposition 5 below indicates, this is

not the case, viz., the strategy profiles played in an arbitrary CBE can also be played in a subjective

correlated equilibrium.

Proposition 5. Suppose that (σ1, . . . , σn) is a CBE. Then, there exists a subjective correlated equi-

librium
(
Ω, (Pi)i∈I , (πi)i∈I , (âi)i∈I

)
such that margAi

pi = σi for all i ∈ I.

Of course, the converse of the previous result does not hold in general, e.g., in two-player games,

every CBE is a NE, and therefore there may exist correlated equilibria with the property that the

marginal distributions do not form a CBE. This is not very surprising as in a correlated equilibrium

– unlike what happens in a CBE – we allow players to believe that their own strategy is correlated

with their conjecture. Yet, in order to prove Proposition 5, we construct a correlating device that

rules out this type of correlation, viz., we take the prior πi of every player to be equal to the product

measure σi ⊗ µi. Thus, intuitively the predictions of a CBE can be obtained as predictions of a

special class of subjective correlated equilibria, namely those that satisfy independence between each

player’s own strategy σi and own conjecture µi.

An important implication of Proposition 5 is that the (subjective) correlation that is incorporated

in the conjectures in a CBE can be shifted to (objective) correlation induced by a correlating device

in a subjective correlated equilibrium. Of course, this could be also done indirectly, by combining

the well-known result of Brandenburger and Dekel (1987) with our Proposition 4. In particular,

Brandenburger and Dekel (1987) proved that correlated rationalizability is equivalent to a refinement

of subjective correlated equilibrium, viz., a posteriori equilibrium. Therefore, since an arbitrary

CBE is correlated rationalizable (Prop. 5), it must also be the case that there exists an a posteriori

equilibrium inducing the same strategies as the CBE. Still, our constructive proof of Proposition 5

clearly illustrates the differences in the degree of correlation that may appear in a CBE and in a

subjective correlated equilibrium.

Finally, a natural question that arises at this point is whether the previous result also holds for an

objective correlated equilibrium. As it turns out, this is not the case, as illustrated in the following

example.
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Example 5. Consider the following game, with I = {Ann (a), Bob (b), Carol (c), David (d)}. Ann

chooses the matrix horizontally, Bob the matrix vertically, Carol the row and David the column, i.e.,

Aa = {X, Y }, Ab = {L,R}, Ac = {A,B} and Ad = {C,D}. Moreover, the payoffs are written

in the respective order, i.e., first Ann, then Bob, then Carol and then David. Now, consider the

A

B

C D

1,2,3,4

0,2,3,4

0,2,3,4

1,0,3,4

A

B

C D

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

A

B

C D

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

A

B

C D

1,2,3,4

1,2,3,4

1,2,3,4

1,2,3,4

L R

Y

X

mixed strategy profile (σa, σb, σc, σd) with σa = (1 ~ X), σb = (1 ~ L), σc = (2
3
~ A ; 1

3
~ B)

and σd = (2
3
~ C ; 1

3
~ D). Note that this strategy profile is a CBE. Indeed, if we consider the

conjectures µa =
(

2
3
~(L,A,C) ; 1

3
~(L,B,D)

)
, µb =

(
1
3
~(X,A,C) ; 1

3
~(X,A,D) ; 1

3
~(X,B,C)

)
,

µc =
(

2
3
~ (X,L,C) ; 1

3
~ (X,L,D)

)
and µd =

(
2
3
~ (X,L,A) ; 1

3
~ (X,L,B)

)
, both conditions of a

CBE are satisfied. In fact, notice that µa and µb are the only conjectures that satisfy the required

conditions for Ann and Bob respectively. Now, suppose that there exists an objective correlated

equilibrium
(
Ω, (Pi)i∈I , π, (âi)i∈I

)
with margAi

p = σi for all i ∈ I. Then, it is necessarily the case

that Ann plays X and Bob plays L at all states ω ∈ Supp(π), and therefore p assigns probability 1 to

{X}×{L}×{A,B}×{C,D}. Moreover, both Ann and Bob are rational, in the sense that X (resp.

L) is a best response to margAa
p (resp. to margAb

p). However, this cannot be the case as there

is no probability measure p ∈ ∆(A) with the property that margAa
p = µa and margAb

p = µb hold

simultaneously. Therefore, we reach a contradiction, implying that there is no objective correlated

equilibrium inducing the same marginal distributions as the CBE (σa, σb, σc, σd). /

The intuition behind the conclusion of the previous example becomes clear if we go back to

our informal discussion on the conditions that characterize the concept of correlated equilibrium.

Indeed, recall that – unlike what happens in a CBE – in a correlated equilibrium players are required

to have correct beliefs about how the strategies of the opponents are correlated, and these beliefs are

actually restricted by the correlating device. Now, in the case of subjective correlated equilibrium,
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this restriction is not very severe as it is canceled out by the flexibility that the different priors

provide. On the other hand, in an objective correlated equilibrium this flexibility disappears, and

therefore, in some games, CBE may yield predictions that objective correlated equilibrium does not

for any common prior, like for instance in Example 5.

A. Proof of Section 3

Proof of Proposition 1. Let (σ1, . . . , σn) be a NE, and for each i ∈ I define µi := σ−i. Then,

(σ1, . . . , σn) is a CBE, as it is the case that margAj
µi = σj (by construction of µi) and σi ∈ BRi(µi)

(by the fact that (σ1, . . . , σn) is a NE).

Proof of Corollary 1. Every NE is a CBE (by Prop. 1) and a NE always exists (Nash, 1951).

Therefore, a CBE always exists.

Proof of Proposition 2. Suppose that (σ1, σ2) is a CBE. Then, it follows from condition (b) in

Definition 2 that µi = σj. Furthermore, it follows from σi ∈ BRi(µi) that σi ∈ BRi(σj), thus

implying that (σ1, σ2) is a NE.

Proof of Proposition 3. Suppose that (a1, . . . , an) is a CBE, implying that for every i ∈ I there

exists some µi ∈ ∆(A−i) such that margAj
µi(aj) = 1 for all j 6= i. Hence, it follows that µi(a−i) =∏

j 6=i margAj
µi(aj), and therefore ai ∈ BRi(a−i), which proves that (a1, . . . , an) is a NE.

B. Proofs of Section 4

Proof of Theorem 1. Fix an arbitrary i ∈ I, and define σi ∈ ∆(Ai) by σi(ai) := q
(
[ai]
)

for each

ai ∈ Ai. Now, observe that for every j 6= i, it follows by (12) that

q
(
[ai]
)

=
∑
s∈S

β̃j(s)
(
[ai]
)
· q(s)

=
∑
s∈S

margAi
µ̃j(s)(ai) · q(s)

= margAi
µj(ai),

thus completing the proof of part (i). Moreover, it follows directly from s ∈ B(R1 ∩ · · · ∩ Rn) that

ãj(s
′) ∈ BRj(µj) for every s′ ∈ [ti(s)]. Furthermore, for each aj ∈ Supp(σj) there is some s′ ∈ [ti(s)]

with aj(s
′) = aj. Therefore, we conclude that σj ∈ BRj(µj), which together with (i) implies that

(σ1, . . . , σn) is a CBE.
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C. Proofs of Section 5

Proof of Theorem 2. For an arbitrary pure strategy profile a−i ∈ A−i there exists a unique profile

of signals (mj
i )j∈I\{i} such that ψji (a−i) = mj

i for all j ∈ I \ {i}. Then, by the definition of ψji it is

the case that

(ψji )
−1(mj

i |ai) = {aj} ×
( ¡
k∈I\{i,j}

Ak

)
for every ai ∈ Ai. Hence, it is the case that

σj(aj) = σ−i
(
(ψji )

−1(mj
i |ai)

)
,

(margAj
µi)(aj) = µi

(
(ψji )

−1(mj
i |ai)

)
,

thus implying that σj = margAj
µi if and only if σ−i

(
(ψji )

−1(mj|ai)
)

= µi
(
(ψji )

−1(mj|ai)
)

for all

mj ∈Mj. The rest of the proof follows trivially by simply applying the definitions.

Proof of Proposition 4. Let (σ1, . . . , σn) be a CBE, and for each i ∈ I define Ci := Supp(σi) ⊆ Ai.

Then, by Definition 2, there is some µi ∈ ∆(A
i
) such that margAj

µi = σj, which implies that

µi ∈ ∆(C−i). Moreover, again by Definition 2, it is the case that σi ∈ BRi(µi), which completes the

proof.

Proof of Proposition 5. Let Ω := A and Pi :=
{
{ai}×A−i

∣∣ ai ∈ Ai }. Moreover, let πi := σi⊗µi.
Furthermore, for each (a1, . . . , an) ∈ Ω, define i’s contingent strategy by âi(a1, . . . , an) := ai, thus

completing the construction of a subjective correlated strategy profile. Now, we are going to prove

that this correlated strategy profile constitutes a subjective correlated equilibrium. In fact, notice

that for every i ∈ I, it is the case that

Ui(âi, â−i) = Ui(σi, µi)

≥ Ui(σ
′
i, µi)

for all σ′i ∈ Σi, since (σ1, . . . , σn) is a CBE. Moreover, for each â′i ∈ Âi there exists some σ′i ∈ Σi

such that Ui(â
′
i, â−i) = Ui(σ

′
i, µi) ≤ Ui(âi, â−i), thus implying that the correlated strategy profile

constructed above is a subjective correlated equilibrium. Finally, notice that, by construction, for

every a ∈ Ω it is the case that pi(a) = πi
(
â−1(a)

)
= πi(a). Therefore, it follows that

margAi
pi = margAi

πi

= margAi
(σi ⊗ µi)

= σi,

thus completing the proof.
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