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Abstract

The present paper extends the standard model of pairwise communication among Bayesian

agents to cases where the structure of the communication protocol is not commonly known.

We show that, even under standard strict conditions on the structure of the protocols and the

nature of the transmitted signals, a consensus may never be reached if very little asymmetric

information about the protocol is introduced.
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1 Introduction

Common knowledge is a very central component of game theory. The concept was formalized by

Aumann (1976), who showed, in his seminal paper, that if two people have the same prior beliefs,

and their posteriors for an event are common knowledge, then they necessarily agree on the same

posterior beliefs. Many well-known results rely on common knowledge of some elements of the game,

e.g., common knowledge of rationality leads to correlated equilibrium (Aumann, 1987), common

knowledge of everybody’s willingness to participate in a trade plan precludes trading (Milgrom and

Stokey, 1982), common knowledge of rationality and the opponents’ conjectures about everybody’s

strategy in a normal form game suffices for Nash equilibrium (Aumann and Brandenburger, 1995).

In most cases common knowledge was a priori taken for granted. Geanakoplos and Polemarchakis

(1982) were the first ones to study how common knowledge emerges in a dynamic environment where

individuals start with asymmetric information. They show that if two individuals communicate

their probabilistic beliefs back and forth, they will eventually agree on a — commonly known —

probability assessment. Their setting has been the stepping stone for further development of models

of communication in populations with Bayesian agents. The main aim of this literature is to study the

conditions for reaching a consensus in groups of people through different communication mechanisms.

A usual assumption in the literature was that communication takes place through public an-

nouncement of the signals, which is quite restrictive. Parikh and Krasucki (1990) relaxed this as-

sumption by introducing a model of pairwise private communication: They showed that under some

connectedness assumption on the structure of the communication protocol — roughly, everybody

talks to everybody either directly or via others — a consensus is always reached. A number of subse-

quent papers studied the possibility of agreeing in environments with pairwise communication, under

different assumptions about the signal functions, the protocol structure, and information structure

(Krasucki, 1996; Heifetz, 1996; Koessler, 2001; Houy and Menager, 2008).

A standard implicit assumption — and very crucial for the results — is that the structure of the

communication protocol is commonly known, i.e., it is common knowledge who talks to whom at

each period. In this paper we relax this assumption by introducing uncertainty about conversations

that took place between third parties. Consider the following example: Three individuals — Ann,

Bob and Carol — privately talk about the probability they assign to some event. Communication

takes place as follows: Ann talks to Bob, who talks to Carol, who talks back to Bob, who talks to

Ann, and so on. If this structure is commonly known, the three individuals will eventually agree on

a common assessment (Krasucki, 1996). However, it is not straightforward whether this would still

be the case if Carol did not know whether Ann had already talked to Bob in the first period or not.

First, notice that in order to address the previous question we need to formally model interactive
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knowledge about the protocol. The existing models do not serve this purpose, as the structure of

the protocol is not formally an event in the state space, and therefore we cannot formally refer to

knowledge or common knowledge about it. Our contributions are the following:

� Firstly, in Section 3, we start by enlarging the state space through adding an additional dimen-

sion describing the protocol structure. This process induces a generalized state space which

incorporates the description of the protocol as part of the state, and therefore allows us to

express the protocol as an event; hence, knowledge about the protocol is well-defined. We

continue by showing that our generalization is a natural one as it preserves the information

processing that individuals implicitly used in the standard state space. Moreover (see the ex-

ample in Section 3), it helps to capture parts of the agents’ reasoning process that seem hard

to incorporate unless one explicitly includes the protocol structure in the formal model.

� Secondly, Theorem 1 establishes that the existing consensus results heavily rely on the implicit

assumption about the protocol being common knowledge. Namely, we show that a consensus

may not be reached, even if1 (a) agents are like-minded, (b) signals are union-consistent, and

(c) it is common knowledge that the protocol is fair and satisfies information exchange2. Fur-

thermore, in the example we provide, even though the protocol is not commonly known, the

corresponding graph3 is: This is quite surprising as all existing results on consensus provide

sufficient conditions on the structure of the graph, rather than on the protocol itself.

� Thirdly, Corollary 1 proves that even if we strengthen the conditions of Theorem 1, by substi-

tuting union-consistency with balanced union-consistency, as it is often done in the literature

(Geanakoplos, 1989; Menager, 2008), the agents may still never reach a consensus.

� The main technical reason for the negative results above is that union-consistent signal func-

tions on the original state space need not translate to union-consistent signal functions on the

extended state space. Therefore, in Proposition 1 we provide sufficient conditions in terms

of an even stronger union-consistency property (the so-called logical sure-thing principle; see

Aumann et al., 2005) which does assure that, even if the protocol is not commonly known,

consensus is reached eventually.

The paper is organized as follows: Section 2 introduces the (standard) notation and terminology

used throughout the paper. Section 3 generalizes the state space. The main results are presented

in Section 4. Section 5 contains sufficient conditions for a consensus, and relates our results to the

1See Section 2 for precise definitions.
2A protocol satisfies information exchange whenever, i talks to j if and only if j talks to i.
3Every protocol induces a graph summarizing how information is transmitted: Each individual corresponds to a

vertex, and there is a directed edge from i to j if i talks to j infinitely often.
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existing literature. Some proofs are in the appendix.

2 Notation and preliminaries

2.1 Information and knowledge

Recall the standard model of knowledge (Aumann, 1976): We consider a finite state space Ω and

a finite population N = {1, ..., n} with typical elements i and j. Every state ω ∈ Ω is a complete

description of all the natural facts that occur at some instance.

Every individual i ∈ N is endowed with an information partition Pi of Ω, with Pi(ω) being

the element of the information partition that contains ω ∈ Ω: It is the set of states that i deems

possible at ω.

We define knowledge as usual: i knows a natural event E ⊆ Ω at some state ω whenever

Pi(ω) ⊆ E. An event E ⊆ Ω is common knowledge at ω, whenever everybody knows it, everybody

knows that everybody knows it, and so on. Aumann (1976) showed that E is commonly known at

ω if and only if (P1 ∧ · · · ∧ Pn)(ω) ⊆ E, where P1 ∧ · · · ∧ Pn denotes the finest common coarsening

of the partitions and (P1 ∧ · · · ∧ Pn)(ω) is its element that contains ω.

2.2 Signals and consensus

Let A, with typical element α, be a finite non-empty set of signals, which contains the values of some

parameter, e.g., the subjective probability assessments assigned to some event. A signal (action)

function fi : Ω→ A determines the signal that agent i transmits at every ω ∈ Ω. We assume that

i’s signal is Pi-measurable, implying that i knows her own signal: fi(ω
′) = fi(ω) for every ω′ ∈ Pi(ω).

A consensus has been reached at some state ω if all individuals transmit the same signal at ω, i.e.,

if there is some α ∈ A such that fi(ω) = α for all i ∈ N .

Agents in the population are like-minded if there is a function f : 2Ω → A, called the virtual

signal function, such that fi(ω) = f(Pi(ω)) for every i ∈ N and ω ∈ Ω. Throughout the paper, we

assume that the agents are like-minded.

The function f satisfies union consistency4 (Cave, 1983) if for all non-empty, disjoint E1, E2 ⊆
Ω with f(E1) = f(E2), it holds that f(E1 ∪ E2) = f(E1). Henceforth, for illustration purposes, we

assume that f is real-valued.

4Bacharach (1985) used the term sure-thing principle for the same property.
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2.3 Communication and updating

Suppose that every individual i ∈ N starts with a prior information partition P 0
i over Ω, which is

transparent to everybody. The information partition of agent i ∈ N at time t ∈ N is denoted by

P t
i . At every t ∈ N, a conversation between two individuals may take place: When i talks to j at t,

we say that i is the sender and j the receiver (of a P t
i -measurable signal), and we write st = i and

rt = j. In this case, j updates her information from P t
j to P t+1

j .

Updating is carried out in the standard way: Let f t
i (ω) = f(P t

i (ω)) denote the signal that i

sends if her information partition is P t
i and the state is ω. The receiver associates every α ∈ A

with the (possibly empty) class of states, {ω ∈ Ω : f t
i (ω) = α}, which corresponds to to the event

“i has said α”. This type of reasoning induces a collection of signal-equivalent classes. It is

straightforward verifying that this collection is a partition of Ω, known as i’s working partition at

time t (Parikh and Krasucki, 1990), and denoted by V t
i , with

V t
i (ω) := {ω′ ∈ Ω : f t

i (ω
′) = f t

i (ω)}. (1)

The fact that V t
i partitions Ω implies that there is no ambiguity about the transmitted signal. That

is, from j’s point of view, every state corresponds to a unique signal.

Then j updates her information in the following standard way (Parikh and Krasucki, 1990): For

all ω ∈ Ω,

P t+1
j (ω) =

 P t
j (ω) if j 6= rt,

P t
j (ω) ∩ V t

i (ω) if j = rt, where i = st.
(2)

That is, the receiver hears f t
i (ω) at ω, thus ruling out all states which are not consistent with this

signal. In other words, j’s information, before having heard from i, is P t
j (ω), and upon hearing

f t
i (ω) = α, j updates5 to P t+1

j (ω) = {ω′ ∈ P t
j (ω) : f t

i (ω
′) = α}, by conditioning with respect to

V t
i (ω).

The sequence of senders and receivers {(st, rt)}∞t=0 is called a protocol and determines who talks6

to whom at every time. The protocol induces a graph on N : There is a directed edge from i to j, if

i talks to j infinitely often, i.e., if there are infinitely many t ∈ N with (st, rt) = (i, j).

5An equivalent way of writing the refining mechanism is the following

P t+1
j =

 P t
j if j 6= rt,

P t
j ∨ V t

i if j = rt, where i = st,

where the operator ∨ denotes the coarsest common refinement (join) of the two partitions (Krasucki, 1996; Heifetz,

1996).
6We adopt the following notational convention: st = rt corresponds to “nobody talking to anybody at time t”.
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Parikh and Krasucki (1990) called a protocol fair if the graph of directed edges is strongly

connected, i.e., if there is a path of directed edges which starts from some individual, passes from

all the vertexes (individuals), returning to its origin. In other words, everybody communicates with

everybody directly or indirectly.

A protocol satisfies information exchange if, for all distinct i, j ∈ N with a directed edge

from i to j, there is a directed edge from j to i, i.e., i talks to j infinitely often if and only if j

talks back to i infinitely often. Krasucki (1996) showed that communicating union-consistent signals

through a fair protocol which satisfies information exchange leads to a consensus. The underlying

idea behind this result is that two agents who talk back and forth will eventually agree with each

other, and therefore a consensus is guaranteed by the fairness of the protocol. In fact, if the protocol

violates information exchange, a consensus may never be reached unless we impose further structure

on the nature of the signals, as illustrated by Parikh and Krasucki (1990, Ex. 2).

An implicit — but crucial — assumption underlying all results in the literature, is that the

protocol is commonly known among the individuals in N . What happens otherwise is not very clear.

We address this question in the following sections.

3 The generalized state space

In this section, we present a case of pairwise communication without a commonly known protocol,

and illustrate why the standard framework, which does not contain a description of the protocol as

part of the state, may not suffice for capturing all possible contingencies.

Before moving forward with the example, let us first stress the fact that introducing uncertainty

about the protocol does not affect the main principles of how people update: When an individual

receives a signal α ∈ A, she updates her information by conditioning her actual information set with

respect to the states where — according to her — the sender would have said α. When the protocol

is commonly known, the states where, according to the receiver, α would have been said, coincide

with the ones where the sender actually says α. On the other hand, when there is an information

asymmetry between the sender and the receiver about the actual protocol, they may interpret the

signal differently, i.e., they may associate different states to α. The following example illustrates

a case where the standard model is not rich enough to capture the different interpretation of the

signals, thus leading to failure to update.

Example. Let N = {Ann (a), Bob (b), Carol (c)} be a population of like-minded individuals, and

consider the state space Ω = {ω1, ..., ω4}, together with a uniformly distributed prior. Let the random
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variable X : Ω→ R be such that

X(ω1) = 3, X(ω2) = 1 and X(ω3) = X(ω4) = 4,

and let the agents communicate the conditional expectation of X, given their information. That is,

for every E ⊆ Ω, let

f(E) := E[X|E], (3)

be the union-consistent, virtual signal function. The prior information partitions over Ω are

P 0
a =

{
{ω1, ω2}2 ; {ω3}4 ; {ω4}4

}
P 0
b =

{
{ω1}3 ; {ω2, ω3, ω4}3

}
P 0
c =

{
{ω1, ω2, ω3}8/3 ; {ω4}4

}
with the indexes denoting the signals that the individuals would transmit given every information

set. Suppose that the actual communication takes place according to the Round-Robin protocol,

i.e., Ann talks to Bob, who talks to Carol, who talks to Ann, and so on. However, Carol does

not know whether Ann talks to Bob at the first period or not, and this is common knowledge. The

communication structure at all other periods is also commonly known.

We focus on the way Ann interprets Carol’s signal at the third period. Ann knows that Carol

does not know whether Ann has talked to Bob at t = 0 or not. Therefore, Ann knows that, from

Carol’s point of view, Bob’s (non-partitional) collection of potential information sets at t = 1 is{
{ω1}3 ; {ω2}1 ; : Ann has said “2” and Bob has conditioned wrt {ω1, ω2} at t = 0

{ω3, ω4}4 ; : Ann has said “4” and Bob has conditioned wrt {ω3, ω4} at t = 0

{ω1}3 ; {ω2, ω3, ω4}3

}
: Ann has not talked and Bob has not updated at t = 0

(4)

This differs from
{
{ω1}3; {ω2}1; {ω3, ω4}4

}
, Bob’s actual information partition at t = 1. By (4),

Ann knows that from Carol’s point of view, the set of signals that Bob could possibly send are “1”,

“3” and “4”, and therefore Ann knows that Carol’s collection of information sets, after having heard

Bob, is{
{ω2}1 ; : Bob has said “1” and Carol has conditioned wrt {ω2} at t = 1

{ω1, ω2, ω3}8/3 ; {ω4}4 ; : Bob has said “3” and Carol has conditioned wrt {ω1, ..., ω4} at t = 1

{ω3}4 ; {ω4}4

}
: Bob has said “4” and Carol has conditioned wrt {ω3, ω4} at t = 1

Now, suppose that the actual state of the world is ω1, where Carol says “8/3”. According to the

standard approach — described by Equation (2) — Ann would condition with respect to {ω1, ω2, ω3},
and therefore would not update her information. However, if we take a closer look at Ann’s knowledge
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about the protocol, we conclude that she can infer the actual state of the world, by reasoning as

follows:

Ann infers, from Carol having said “8/3”, that in the previous period, t = 1, Bob has said “3”

to Carol. However, according to Ann, the way Carol has interpreted Bob’s signal is not precise, as

Carol (see (4)) has associated “3” with the information sets {ω1} and {ω2, ω3, ω4}, instead of only

{ω1}, which belongs Bob’s actual information partition. This last fact is known by Ann, who uses

this information and conditions with respect to {ω1}, thus learning the true state. /

From the previous discussion, it becomes clear that the usual approach fails to fully capture Ann’s

reasoning at t = 2. The reason is that it does not take into account the fact that the receiver (Ann)

interprets “8/3” differently than the sender (Carol), thus failing to capture Ann’s updating. In order

to overcome this problem, we explicitly incorporate the structure of the protocol into the state. That

way we explicitly distinguish the following two events:

E1 : Bob says “3” after having heard Ann saying “2”,

E2 : Bob says “3” after not having heard anything.

The first event, E1, corresponds to the actual protocol, according to which Ann talks to Bob at

t = 0, and is associated with {ω1}, whereas E2 corresponds to the protocol without communication

between Ann and Bob, and is associated with {ω1, ..., ω4}. Obviously, the standard model does not

allow Ann, who knows the actual protocol, to disregard the states associated with E2. On the other

hand, by incorporating the protocol into the state, we allow Ann to distinguish between E1 and E2,

and therefore condition with respect to {ω1} which is associated with E1.

Formally, let Z denote a finite set of protocols, with typical element z. Let st(z) and rt(z) denote

the sender and the receiver at time t, given the protocol z. We endow Z with a partition I0
i for

every individual. For every z ∈ Z, let I0
i (z) denote the element of I0

i that contains z: It is the

set of protocols that i cannot distinguish from z before the communication begins. Knowledge of

the protocol is defined as usual: Individual i knows the event G ⊆ Z at z whenever I0
i (z) ⊆ G.

Common knowledge of the protocol is defined analogously.

It is intuitively straightforward that i can always distinguish between two protocols that induce

different communication structure at the times when she participates in the communication. Formally,

let Si(z) := {t : st(z) = i} and Ri(z) := {t : rt(z) = i} denote the times when i acts as a sender and

as a receiver respectively, given the protocol z. The following assumption is imposed throughout the

paper.

Assumption. For all i ∈ N , if z′ ∈ I0
i (z), then

(
st(z

′), rt(z
′)
)

=
(
st(z), rt(z)

)
for every t ∈ Si(z) ∪

Ri(z).
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That is, each individual knows (i) when she is spoken to and by whom and, (ii) when she speaks

and to whom.

Let Θ := Ω × Z be the generalized state space , each element of which fully describes all

natural facts and also determines the protocol structure. Every individual inherits a generalized

information partition Π0
i over Θ, which is derived from P 0

i and I0
i , as follows: For each (ω, z), let

Π0
i (ω, z) := P 0

i (ω)× I0
i (z). (5)

The partition Π0
i obviously satisfies projΩ Π0

i (ω, z) = P 0
i (ω) and projZ Π0

i (ω, z) = I0
i (z), where proj

denotes the projection of a subset of Θ on the corresponding coordinate: The private information

induced by Π0
i is consistent with the information induced by both P 0

i and I0
i . Obviously, when the

protocol is commonly known, the Z-dimension becomes irrelevant, and we are back to the standard

setting, where Θ is degenerated to Ω, and Π0
i is degenerated to P 0

i .

At each time t ∈ N, agent i ∈ N has the generalized information partition Πt
i. The generalized

signal function hti : Θ → R ∪ {∅} is such that at every generalized state (ω, z) the value of the

signal is

hti(ω, z) =

 ∅ if i 6= st(z),

f(projΩ Πt
i(ω, z)) if i = st(z).

(6)

That is, i does not transmit any signal at (ω, z) if she is not assigned — by the protocol z — to be

the sender at t. If, on the other hand, i is assigned to speak according to z, she sends the signal that

corresponds to the natural states that cannot be ruled out at (ω, z). Observe that generalized signals

contain information only about natural facts, and not about the protocol. This is because in the

standard approach — described by the heuristic treatment above — which we want to describe with

our model, the protocol structure is not even an event, and therefore individuals cannot formally

talk about it.

Remark 1. Notice that the generalized signal function may not be union-consistent, even if the

virtual signal function is. This follows from the fact that projΩ Πt
i(ω, z) may be a union of two

information sets with a non-empty intersection. As it turns out, the failure to transfer union-

consistency from the usual to the generalized signals may have important implications, such as

failure to reach an agreement through bilateral communication. We return to this issue in detail in

Section 5. /

Let W t
i denote i’s generalized working partition of Θ at t, with W t

i (ω, z) being the element

of the partition which contains (ω, z), i.e.,

W t
i (ω, z) = {(ω′, z′) ∈ Θ : hti(ω

′, z′) = hti(ω, z)} (7)
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contains the generalized states that yield the same signal as (ω, z) at t.

Information updating takes place in the standard way (Parikh and Krasucki, 1990); see also

equation (2) above: For every (ω, z) ∈ Θ,

Πt+1
j (ω, z) =

 Πt
j(ω, z) if j 6= rt(z),

Πt
j(ω, z) ∩W t

i (ω, z) if j = rt(z), where i = st(z).
(8)

That is, j updates her information only at generalized states that assign her to be the receiver. We

say that a consensus has been reached at (ω, z) at time t whenever hti(ω, z) = α for all i ∈ N .

Below, we illustrate that the generalized state space, which incorporates the protocol into the

description of the state, captures Ann’s reasoning at t = 2, thus solving the problem we presented

above.

Example (cont.). Let z1 be the actual Round-Robin protocol, and z2 be the alternative protocol

according to which Ann does not talk to Bob at t = 0. Ann and Bob can tell the difference, Carol

can not: I0
a = I0

b =
{
{z1}; {z2}

}
and I0

c =
{
{z1, z2}

}
. For notational simplicity, let θkj := (ωj, zk).

Then, the partitions of the generalized state space become:

Π0
a =

{
{θ1

1, θ
1
2}2 ; {θ1

3}4 ; {θ1
4}4 ; {θ2

1, θ
2
2}2 ; {θ2

3}4 ; {θ2
4}4

}
Π0

b =
{
{θ1

1}3 ; {θ1
2, θ

1
3, θ

1
4}3 ; {θ2

1}3 ; {θ2
2, θ

2
3, θ

2
4}3

}
Π0

c =
{
{θ1

1, θ
1
2, θ

1
3, θ

2
1, θ

2
2, θ

2
3}8/3 ; {θ1

4, θ
2
4}4

}
At t = 0, Ann talks to Bob only according to z1, and therefore Bob updates to

Π1
b =
{
{θ1

1}3 ; {θ1
2}1 ; {θ1

3}4 ; {θ1
4}4 ; {θ2

1}3 ; {θ2
2, θ

2
3, θ

2
4}3

}
.

At t = 1, Bob talks to Carol according to both protocols, and therefore Carol updates to

Π2
c =
{
{θ1

1, θ
2
1, θ

2
2, θ

2
3}8/3 ; {θ1

2}1 ; {θ1
3}4 ; {θ1

4}4 ; {θ2
4}4

}
.

Likewise, at t = 2, Carol talks to Ann according to both protocols, and therefore Ann updates to

P 3
a =
{
{θ1

1}3 ; {θ1
2}1 ; {θ1

3}4 ; {θ1
4}4 ; {θ2

1, θ
2
2}2 ; {θ2

3}4 ; {θ2
4}4

}
.

Notice that, when Ann hears “8/3”, she rules out the states (ω2, z1) and (ω3, z1). The reason is that

Ann would deem ω2 and ω3 possible only if z2 was the actual protocol. However, since she knows

that this is not the case, she rules these states out, thus learning the true state (ω1, z1), which is

consistent with our heuristic analysis of her reasoning in the Example above. /
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4 Failing to agree when the protocol is not commonly known

Krasucki (1996) showed that if a population of individuals communicate their union-consistent signals

through a fair protocol that satisfies information exchange, a consensus is eventually reached. The

following result shows that this is no longer true if the protocol is not commonly known, even if it

remains common knowledge that the protocol is fair and satisfies information exchange.

Theorem 1. If the protocol is not common knowledge, then a consensus may never be reached, even

if (a) agents are like-minded, (b) signals are union-consistent, and (c) it is common knowledge that

the protocol is fair and satisfies information exchange.

Proof. The following example proves the result. Let N = {a, b, c, d}, and Ω = {ω1, ..., ω6} together

with a uniform prior. Let X : Ω→ R be a random variable such that

X(ω1) = 2, X(ω2) = X(ω6) = 5, X(ω3) = X(ω5) = 8 and X(ω4) = 4.

The individuals communicate conditional expected values of X, i.e., the union-consistent virtual

signal function is

f(E) = E[X|E],

for each E ⊆ Ω. The prior information partitions over Ω are

P 0
a =

{
{ω1, ω2, ω3, ω4, ω5, ω6}16/3

}
P 0
b =

{
{ω1}2 ; {ω2, ω3, ω4, ω5, ω6}6

}
P 0
c =

{
{ω1, ω2, ω3, ω6}5 ; {ω4, ω5}6

}
P 0
d =

{
{ω1, ω2, ω5, ω6}5 ; {ω3, ω4}6

}
.

There are two protocols differing only in the conversations that take place at t = 0:

0 1 2 3 4 5 6 7 · · ·
z1 c→ a a→ b b→ a a→ c c→ a a→ d d→ a a→ b · · ·
z2 d→ a a→ b b→ a a→ c c→ a a→ d d→ a a→ b · · ·

Note that the conversations that take place at every t ≥ 1 are common knowledge, whereas what

happens at t = 0 is only known to a, c and d. Therefore — in line with the Assumption — a, c

and d can distinguish the protocols, whereas b cannot: I0
i =

{
{z1}; {z2}

}
if i ∈ {a, c, d} and

I0
b =
{
{z1, z2}

}
.
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Let, for notational simplicity, θkj := (ωj, zk). The prior generalized information partitions, are

depicted below:

Π0
a =

{
{θ1

1, θ
1
2, θ

1
3, θ

1
4, θ

1
5, θ

1
6}16/3 ; {θ2

1, θ
2
2, θ

2
3, θ

2
4, θ

2
5, θ

2
6}16/3

}
Π0

b =
{
{θ1

1, θ
2
1}2 ; {θ1

2, θ
1
3, θ

1
4, θ

1
5, θ

1
6, θ

2
2, θ

2
3, θ

2
4, θ

2
5, θ

2
6}6

}
Π0

c =
{
{θ1

1, θ
1
2, θ

1
3, θ

1
6}5 ; {θ1

4, θ
1
5}6 ; {θ2

1, θ
2
2, θ

2
3, θ

2
6}5 ; {θ2

4, θ
2
5}6

}
Π0

d =
{
{θ1

1, θ
1
2, θ

1
5, θ

1
6}5 ; {θ1

3, θ
1
4}6 ; {θ2

1, θ
2
2, θ

2
5, θ

2
6}5 ; {θ2

3, θ
2
4}6

}
It is easy verifying that the generalized partitions at t = 7 have been updated to

Π7
a =

{
{θ1

1}2 ; {θ1
2, θ

1
5, θ

1
6}6 ; {θ1

3, θ
1
4}6 ; {θ2

1}2 ; {θ2
2, θ

2
3, θ

2
6}6 ; {θ2

4, θ
2
5}6

}
Π7

b =
{
{θ1

1, θ
2
1}2 ; {θ1

2, θ
1
3, θ

1
6, θ

2
2, θ

2
5, θ

2
6}13/2 ; {θ1

4, θ
1
5, θ

2
3, θ

2
4}20/3

}
Π7

c =
{
{θ1

1}2 ; {θ1
2, θ

1
3, θ

1
6}6 ; {θ1

4, θ
1
5}6 ; {θ2

1}2 ; {θ2
2, θ

2
3, θ

2
6}6 ; {θ2

4, θ
2
5}6

}
Π7

d =
{
{θ1

1}2 ; {θ1
2, θ

1
5, θ

1
6}6 ; {θ1

3, θ
1
4}6 ; {θ2

1}2 ; {θ2
2, θ

2
5, θ

2
6}6 ; {θ2

3, θ
2
4}6

}
All the intermediate steps are presented in the Appendix. Notice that no updating takes place after

t = 7, implying that a consensus is never reached at θ1
2 = (ω2, z1) for instance.

Remark 2. As the two possible protocols differ in finitely many periods — in fact, they only differ

in the first period — they correspond to the same graph. In other words, common knowledge of

the graph induced by the protocol does not suffice for a consensus, i.e., even very little asymmetric

information may lead to disagreement. This is quite interesting, as most existing results on consensus

rely on conditions on the structure of the graph, rather than the protocol. /

Remark 3. The fact that the example in the proof of Theorem 1 satisfies our Assumption, implies

that a possible failure to reach a consensus does not rely on individuals not knowing when or with

who they communicate. /

The previous result technically relies on the failure to generalize union consistency to non-

partitional information structures (on Ω) which may emerge, through communication and updating,

in the absence of common knowledge of the protocol (see the Example above). Similar negative

results have been proven in the literature of consensus and speculation, e.g., like-minded individuals

with non-partitional information structures may agree to disagree even if their signals are commonly

known (Geanakoplos, 1989). In these cases, the problem disappears as long as the information struc-

ture satisfies a standard balancedness condition (Geanakoplos, 1989): We say that a collection B of

subsets of Ω is balanced whenever there is a collection of real numbers {λB}B∈B such that∑
B∈B

λB1B(ω) = 1, for all ω ∈
⋃
B∈B

B, (9)
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with 1B(ω) denoting the indicator function. Then, we say that the virtual signal function f is

balanced union consistent whenever for all balanced collections B, if f(B) = α for all B ∈ B
then f(∪B∈BB) = α.

Obviously, balanced union consistency is stronger than union consistency. The natural question

that arises at this point is whether balanced union consistency suffices for a consensus when the

protocol is not commonly known. In other words, does Theorem 1 still hold after having strengthened

the sure-thing principle to balanced union consistency? The answer turns out to be positive, as shown

below.

Corollary 1. If the protocol is not common knowledge, then a consensus may never be reached,

even if (a) agents are like-minded, (b) signals are balanced union-consistent, and (c) it is common

knowledge that the protocol is fair and satisfies information exchange.

The proof is a direct consequence of the following lemma, which proves that conditional expecta-

tions are balanced union consistent, implying that the virtual signal function in the proof of Theorem

1 satisfies this property, and therefore balanced union consistency is not strong enough to guarantee

a consensus.

Lemma. Let Y : Ω→ R be a random variable on the finite probability space (Ω, π). Then, the virtual

signal function f , defined as f(E) := E[Y |E] for all E ⊆ Ω, is balanced union consistent.

Proof . See the Appendix7.

The previous results may be surprising, as information exchange is a very strong requirement,

which leads to consensus (Krasucki, 1996). This is because, in general, the signals exchanged by

two connected parties eventually become common knowledge between the two, and therefore an

agreement follows trivially (Cave, 1983). However, in the absence of common knowledge of the

protocol structure, the receiver of a signal may fail to interpret it unambiguously, which could in

principle lead to disagreement.

5 Discussion

5.1 Sufficient conditions for consensus

The most crucial step towards providing sufficient conditions for a consensus without a commonly

known protocol, is to identify the reasons behind the impossibility result of Theorem 1. Formally,

7This lemma is a generalization of Menager (2008, p. 726), who shows that conditional expectations are positively

balanced union consistent. Recall that a collection B is positively balanced if there is a collection of positive reals,

{λB}B∈B that satisfies Equation (9).
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lack of common knowledge of the protocol may lead to situations where union-consistency is not

transferred from the usual space to the generalized one, e.g., when b’s generalized information set

is Π7
b(θ

2
4) = {θ1

3, θ
1
4, θ

2
4, θ

2
5}, in the proof of Theorem 1, his signal is “20/3”, which differs from “6”

which is the (common) signal that would be sent in either of the (disjoint) information sets {θ1
3, θ

1
4}

and {θ2
4, θ

2
5}, whose union is Π7

b(θ
2
4). Hence, the consensus result of Krasucki (1996) does not apply

in the generalized state space.

The failure to transfer union-consistency from Ω to Θ is attributed to the fact that the property

holds only for disjoint subsets of Ω, e.g., in the proof of Theorem 1 it is violated for the non-disjoint

events {ω3, ω4} and {ω4, ω5}:

f({ω3, ω4}) = f({ω4, ω5}) 6= f({ω3, ω4, ω5}).

Extending union consistency to non-disjoint events leads to a new concept, that of the logical sure-

thing principle , which is not only formally, but also conceptually different from union consistency

(Aumann et al., 2005). We say that f : 2Ω → A satisfies the logical sure-thing principle whenever,

f(E1 ∪E2) = α for all E1, E2 ⊆ Ω such that f(E1) = f(E2) = α, even if E1 and E2 are not disjoint.

By strengthening union consistency to the logical sure-thing principle, we can extend Krasucki’s

consensus result to cases without a commonly known protocol.

Proposition 1. Consider a finite population of like-minded individuals, and let Θ := Ω × Z be a

finite generalized state space. If the virtual signal function satisfies the logical sure-thing principle,

and it is commonly known that the communication protocol is fair and satisfies information exchange,

a consensus will be eventually reached.

Proof. Let h(E) := f(projΩ E) for each E ⊆ Θ, and suppose that two disjoint subsets E1, E2 ⊆ Θ

are such that h(E1) = h(E2) = α, which by definition implies f(projΩE1) = f(projΩ E2) = α. It

follows, from the logical sure-thing principle, that f(projΩ E1 ∪ projΩ E2) = α, implying that

h(E1 ∪ E2) = f(projΩ E1 ∪ E2)

= f(projΩ E1 ∪ projΩ E2) = α,

which implies that h is union-consistent in Θ.

Let (ω, z) ∈ Θ, and suppose that i talks to j infinitely often according to z. Since Θ is finite,

there is some T ∈ N such that Πt
k = ΠT

k for all t ≥ T and every k ∈ N . Since, j does not update after

T every time she hears i’s signal, it follows that W T
i (ω, z) ∈ σ(ΠT

j ), where σ(·) denotes the σ-algebra

generated by the partition. Moreover, it follows from the definition of the generalized signal function

that W T
i (ω, z) ∈ σ(ΠT

i ). The last two points imply

W T
i (ω, z) ∈ σ(ΠT

j ) ∩ σ(ΠT
i ) = σ(ΠT

j ∧ ΠT
i ). (10)
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Since, z satisfies information exchange, it follows that j also talks to i infinitely often, and therefore

W T
j (ω, z) ∈ σ(ΠT

j ∧ ΠT
i ). (11)

Equations (10) and (11), together with the fact that (ω, z) ∈ ΠT
i (ω, z), imply that both hTi (ω, z) and

hTj (ω, z) are common knowledge between i and j:

(ΠT
j ∧ ΠT

i )(ω, z) ⊆ W T
i (ω, z) ∩W T

j (ω, z).

Then, given the fact that h is union-consistent in Θ, it follows directly from Cave (1983) that

hTi (ω, z) = hTj (ω, z). Finally, since the graph of z is strongly connected, a consensus has been

reached at (ω, z) by time T .

Providing sufficient conditions — weaker than the logical sure-thing principle — for a consensus

under asymmetric information about the protocol remains a question for future research.

5.2 Relationship to the existing literature

As we have already mentioned, the literature on communication and consensus almost unanimously

assumes common knowledge of the protocol. The only attempts to depart from such an environment

are those of Heifetz (1996) and Koessler (2001), who study a particular form of asymmetric infor-

mation about the protocol. Namely, they allow the transmitted signals to fail to be delivered to the

receiver with positive probability, which is obviously a special case of our setting.

In a more recent paper, Mueller-Frank (2010) models uncertainty about the structure of the

protocol by explicitly incorporating the protocol description into the state of the world, similarly

to our model. However, his results heavily rely on assuming that the individuals have a (common)

prior over the generalized state space, thus allowing the signals to also embody information about

the protocol. Putting this kind of additional structure to our model would lead to an agreement

result, as the generalized signal functions would become union-consistent. However, we refrain from

doing so, as our aim is to capture the learning process that takes place in cases similar to the one

presented in Section 3. Moreover, not introducing a prior on the protocol space is also consistent

with the interpretation that there is ambiguity about the protocol structure.

Appendix

Steps for proving Theorem 1. Below, we show how the generalized information partitions in the exam-

ple of Section 4 evolve over time until t = 7. As we have already shown, after t = 7 no further updating
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occurs, implying that the individuals never reach a consensus. For the sake of compactness, we present for

every t = 1, ..., 7 only the generalized partitions of individuals who update their information at that period.

At t = 0, individual c talks to a according to z1, and d talks to a according to z2. Therefore, a is the

only one who updates her (generalized) partition to

Π1
a =
{
{θ1

1, θ
1
2, θ

1
3, θ

1
6}5 ; {θ1

4, θ
1
5}6 ; {θ2

1, θ
2
2, θ

2
5, θ

2
6}5 ; {θ2

3, θ
2
4}6

}
.

At t = 1, individual a talks to b according to both protocols, and b updates to

Π2
b =
{
{θ1

1, θ
2
1}2 ; {θ1

2, θ
1
3, θ

1
6, θ

2
2, θ

2
5, θ

2
6}13/2 ; {θ1

4, θ
1
5, θ

2
3, θ

2
4}20/3

}
.

At t = 2, individual b talks back to a according to both protocols, and a updates to

Π3
a =
{
{θ1

1}2 ; {θ1
2, θ

1
3, θ

1
6}6 ; {θ1

4, θ
1
5}6 ; {θ2

1}2 ; {θ2
2, θ

2
5, θ

2
6}6 ; {θ2

3, θ
2
4}6

}
.

At t = 3, individual a talks to c according to both protocols, and c updates to

Π4
c =
{
{θ1

1}2 ; {θ1
2, θ

1
3, θ

1
6}6 ; {θ1

4, θ
1
5}6 ; {θ2

1}2 ; {θ2
2, θ

2
3, θ

2
6}6 ; {θ2

4, θ
2
5}6

}
.

At t = 4, individual c talks back to a according to both protocols. Since c’s generalized working partition is

Π4
a-measurable, a does not update, implying that Π5

a = Π4
a = Π3

a. At t = 5, individual a talks to d according

to both protocols, and d updates to

Π6
d =
{
{θ1

1}2 ; {θ1
2, θ

1
5, θ

1
6}6 ; {θ1

3, θ
1
4}6 ; {θ2

1}2 ; {θ2
2, θ

2
5, θ

2
6}6 ; {θ2

3, θ
2
4}6

}
.

Finally, at t = 6, individual d talks back to a according to both protocols. Since d’s generalized working

partition is Π6
a-measurable, a does not update implying that Π7

a = Π6
a = Π5

a.

As we already discussed, nobody updates her generalized information partition after t = 7, implying

that Πt
i = Π7 for all t > 7, and all i ∈ N . Therefore, a consensus is never reached at (ω2, z1).

Proof of Lemma. Let B be a balanced collection of events such that E[Y |B] = α for all B ∈ B, and define

B∗ :=
⋃

B∈B B. It suffices to show that E[Y |B∗] = α.

Define the partition D of B∗, with typical element D, as follows: For every ω ∈ B∗, let
⋂ {

B ∈ B :

ω ∈ B
}

be the element of D containing ω. Obviously, every B ∈ B is σ(D)-measurable. Then, E[Y |B∗] is

rewritten as

E[Y |B∗] =
∑

D⊆B∗

E[Y |D] · π(D|B∗).

It follows from B being balanced that there is a collection of real numbers {λB}B∈B such that∑
B∈B:D⊆B

λB = 1,

implying that

E[Y |B∗] =
∑

D⊆B∗

( ∑
B∈B:D⊆B

λB

)
E[Y |D] · π(D|B∗)

=
∑
B∈B

∑
D⊆B

λBE[Y |D] · π(D|B∗).
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Then, it follows from D ⊆ B ⊆ B∗ that π(D|B∗) = π(D|B) · π(B|B∗), implying that

E[Y |B∗] =
∑
B∈B

∑
D⊆B

λBE[Y |D] · π(D|B) · π(B|B∗)

=
∑
B∈B

λB · π(B|B∗)
∑
D⊆B

E[Y |D] · π(D|B)

=
∑
B∈B

λB · π(B|B∗) · E[Y |B].

It follows from E[Y |B] = α for all B ∈ B that

E[Y |B∗] = α
∑
B∈B

λB · π(B|B∗)

= α
∑
B∈B

λB
∑
D⊆B

π(B|D) · π(D|B∗)

= α
∑
B∈B

∑
D⊆B

λB · π(D|B∗)

= α
∑

D⊆B∗

( ∑
B∈B:D⊆B

λB

)
π(D|B∗)

= α
∑

D⊆B∗

π(D|B∗)

= α,

which completes the proof.
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