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Abstract

For a fixed game and a type structure that admits a common prior, Action Independence states
that the conditional beliefs induced by the common prior do not depend on the player’s own
strategy. It has been conjectured that Action Independence can be behaviorally characterized
by means of a suitable no-betting condition (Dekel & Siniscalchi, 2015), but whether this
is indeed the case remains an open problem. In this paper, we prove this conjecture true
by focusing on strategy-invariant bets, which are bets that cannot be manipulated by the
players. In particular, first, we show that at least one of the common priors satisfies Action
Independence if and only if there exists no mutually acceptable strategy-invariant bet among
the players. Second, we show that, all common priors satisfy Action Independence if and only
if there exists no mutually acceptable strategy-invariant bet among the players and an outside
observer. These results give us a deeper understanding of existing foundations of solution
concepts using only epistemic conditions that are expressed in terms of type structures and
are therefore elicitable.

Keywords: Common Prior, No-Betting Condition, Endogenous Uncertainty, Action Inde-
pendence, Strategy-Invariant Bets.
JEL Classification Number: C70, D82.

1. Introduction

1.1 Motivation & Results

When using game-theoretic solution concepts in order to derive predictions, it is important to
have a proper understanding of the underlying assumptions upon which they rely. The epistemic
approach to game theory focuses on identifying the players’ beliefs that would lead each player to act
in accordance with these predictions. Such beliefs are the product of some—arguably reasonable—
restrictions on players’ belief hierarchies, called epistemic conditions. Most such restrictions are
related to rationality in some way or form, e.g., Rationality and Common Belief in Rationality
(Böge & Eisele, 1979; Brandenburger & Dekel, 1987; Tan & da Costa Werlang, 1988), which
expresses the idea that it is transparent across all the players that everybody is rational.

One notable exception is the Common Prior Assumption (henceforth, CPA), which posits
the existence of a common prior on the state space used as a platform to capture the players’
interactive beliefs.1 Intuitively, by means of the CPA it is possible to have beliefs of different
players be somehow consistent with each other. Indeed, this consistency is achieved by assuming
the existence of a probability measure—the common prior—over the state space representing all
parameters of interest (i.e., the strategy profiles and the players’ belief hierarchies), which happens
to be simultaneously consistent via conditioning with all players’ belief hierarchies, i.e., all the
information contained in the different belief hierarchies of different players is captured by this one
measure.
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Siniscalchi, and two anonymous referees for valuable comments and suggestions that ultimately lead to the present
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The interest in the CPA has largely stemmed from the fact that it plays a crucial role in the
epistemic characterization of well-known equilibrium solution concepts, such as Nash Equilibrium
by Aumann & Brandenburger (1995, Theorem B, Section 4), Objective Correlated Equilibrium by
Aumann (1987, Main Theorem, Section 3), and Bayes Correlated Equilibrium by Bergemann &
Morris (2016, Theorem 1, Section 2.2, p.495). This is not surprising, since equilibrium concepts
have inherently built-in the idea that players hold correct beliefs about each other, i.e., they have
to be somehow consistent with each other. And in fact the consistency imposed by the CPA suffices
in this respect.

However, there is a caveat. On the one hand, the CPA is conceptually well-founded when
uncertainty is exogenous, i.e., when belief hierarchies are about exogenous parameters that the
players do not control themselves (e.g., when belief hierarchies are about private values in an
auction), On the other hand, Dekel & Siniscalchi (2015) recently pointed out that it may not
always be an innocent assumption in presence of endogenous uncertainty, i.e., when beliefs are
about each other’s strategies. In particular, these authors worked with epistemic type structures,
the—by now benchmark—framework based on product state spaces, where players hold beliefs on
other players’ strategies and belief hierarchies, but do not over their own strategies. There, they
noticed that a common prior may postulate that a player’s beliefs depend on this same player’s
own strategy. This observation is clearly at odds with the predominant Bayesian view according to
which beliefs are updated only when new information arrives. All this is particularly relevant for
the epistemic characterization of equilibrium concepts, which employ the CPA under endogenous
uncertainty.

In response to this problem, Dekel & Siniscalchi (2015, Definition 12.15) proposed a condition
that a common prior must satisfy in order to rule out such phenomena, called Action Independence
or Aumann Independence or simply AI condition.2 According to this condition, the beliefs that a
player inherits from the epistemic type structure are the same as the conditional beliefs induced
by the common prior, irrespectively of the strategy chosen by the player.3 Then they went on to
emphasize the importance of providing a behavioral foundation for the AI condition and conjectured
that this should be possible by means of a suitable no-betting condition. Since then, this has
remained an open problem.

In this paper, we address this question and provide an affirmative answer. In particular, we
classify each epistemic type structure that admits a (not necessarily unique) common prior into
one of three categories: either all common priors satisfy the AI condition, or some common priors
satisfy the AI condition and some do not, or none of the common priors satisfies the AI condition.
We do so by means of our two main results. First, our Theorem 1 shows that there exists some
common prior satisfying the AI condition if and only if there exists no mutually acceptable bet
among the players. Second, assuming that there exists at least one common prior satisfying the
AI condition, Theorem 2 shows that all common priors satisfy the AI condition if and only if
there exists no mutually acceptable bet among the players and an outside observer. Combined,
the two results allow us to pin down each epistemic type structure into one of the three categories
mentioned above. Crucially, both our results restrict attention to strategy-invariant bets, i.e., bets
that pay for each type the same expected payoff irrespectively of the strategy chosen by this type.
In this way we avoid providing incentives that may affect the behavior of the players during the
upcoming game and—as a consequence—the bets we employ do not indirectly affect the underlying
epistemic type structures that aim to characterize.

Besides providing foundations for the AI condition per se, our results provide deeper insights
into existing epistemic foundations of solution concepts using epistemic type structures.4 Focusing
on Objective Correlated Equilibrium, a recent result shows that for every epistemic type structure
admitting a common prior that satisfies the AI condition, Rationality and Common Belief in
Rationality implies an Objective Correlated Equilibrium distribution (Dekel & Siniscalchi, 2015,

2“Action Independence” is the way in which this condition is called in Battigalli et al. (Work in Progress), while
“Aumann Independence” is the name used in Dekel & Siniscalchi (2015).

3In a private communication, Giacomo Bonanno directed us to Stalnaker (1998), where—in Footnote 5 at page
25—the author addresses the need to deal with the same issues covered by the AI condition in the framework he
employs.

4Using epistemic type structures allows us to express epistemic conditions using properties that can be elicited.
This is in contrast to alternative epistemic models (e.g., Aumann’s partitional model) where belief hierarchies are
attached to strategies and are—therefore—unelicitable. For a more detailed discussion of this issue, see Dekel &
Siniscalchi (2015, Sections 12.1.1 & 12.2.6).
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Theorem 12.4). However, the Objective Correlated Equilibrium distribution is obtained by taking
the marginal of the common prior over the strategy space. That is, the underlying epistemic type
structure does not contain enough information in order for the analyst to pin down how exactly
the players’ strategies are correlated. Instead, this last part depends on the common prior that
the analyst has chosen, among the possibly multiple common priors. But then, if an epistemic
type structure belongs to our second category (i.e., it admits some common priors that satisfy
the AI condition and some that do not), it can be the case that some common prior induces an
Objective Correlated Equilibrium distribution, while some other common prior does not (see the
declination of Example 1 in Section 4). This is exactly where our results come in handy: using
Theorem 2, we can conclude that, if all common priors admitted by an epistemic type structure
satisfy the AI condition, it will necessarily be the case that all of them induce an Objective
Correlated Equilibrium distribution. Hence, the conditions of Dekel & Siniscalchi (2015, Theorem
12.4) can now be expressed entirely in the language of epistemic type structures without any
reference to a specific common prior.

1.2 Related Literature

This paper belongs to a rather rich literature on the behavioral foundations of epistemic assump-
tions. Regarding the CPA, Aumann (1976), Milgrom & Stokey (1982), Sebenius & Geanakoplos
(1983), Morris (1994), Samet (1998), Bonanno & Nehring (1999), Feinberg (2000), Heifetz (2006)
focused on providing behavioral characterizations of the CPA. All these contributions dealt with ex-
ogenous uncertainty, i.e., the epistemic models they employed represented belief hierarchies about
exogenous parameters, as opposed to our case where belief hierarchies are defined on players’ strate-
gies. A notable exception is the work of Barelli (2009), where there is a behavioral characterization
of a weakening of the CPA called “Action Consistency”, that explicitly works in a game theoretic
setting. However, it has to be pointed out that, to capture interactive reasoning, Barelli (2009)
employs a framework where a player’s belief hierarchy is inextricably linked to a specific strategy
of hers.

1.3 Synopsis

The paper is structured as follows. Section 2 introduces the building blocks of our analysis, i.e.,
epistemic type structures, common priors, the AI condition, and bets on state spaces. In Section 3,
we obtain our characterization results. In Section 4, we analyze the implications of our results in
the study of Objective Correlated Equilibrium. Finally, in Section 5, we address various issues
related with our analysis. Proofs are relegated to Appendix A.

2. Theoretical Framework

2.1 Epistemic Type Structures

We begin by fixing a game in its strategic form Γ := 〈I, (Si, ui)i∈I〉 (henceforth, the game). As
usual, I is the set of players, which without loss of generality is assumed to contain only two
players, viz., I := {Ann(a),Bob(b)}. For every i ∈ I, we let Si be player i’s (finite) set of strategies
and ui : Sa × Sb → < the payoff function.

Given a game, a standard epistemic type structure (henceforth, type structure) attached on it
is a tuple

T := 〈I, (Ti, βi)i∈I〉

where Ti is player i’s finite set of types and βi : Ti → ∆(Sj × Tj) is her belief function. As it is
well-known, every type ti ∈ Ti of every player i ∈ I (inductively) encodes an infinite hierarchy of
beliefs (Brandenburger & Dekel, 1993, Section 2). We say that the type structure is non-redundant
if every type encodes a different infinite hierarchy of beliefs. Throughout the paper, without loss
of generality, we focus on non-redundant type structures (see Section 5.2).

Let Ω := Sa × Sb × Ta × Tb denote the state space induced by the type structure. For each
si ∈ Si and ti ∈ Ti, we define the events JsiK := {si}× Ti × Sj × Tj and JtiK := Si ×{ti}× Sj × Tj
respectively, with Jsi, tiK := JsiK ∩ JtiK.
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Definition 1 (Common Prior). A type structure T admits a common prior if there exists a
π ∈ ∆(Ω) such that, for every i ∈ I and every ti ∈ Ti,

i) π(JtiK) > 0,

ii) βi(ti)(sj , tj) = π(Jsj , tjK|JtiK), for all (sj , tj) ∈ Sj × Tj.

If there exists such π, then π is deemed a common prior of T , with T admitting it. The set of all
common priors of T is denoted by ΠT ⊆ ∆(Ω).

Obviously, not all type structures admit a common prior. Nevertheless, throughout this paper
we are only interested in type structures that admit at least one common prior. It is not difficult
to see that there may exist multiple common priors.

Example 1. Let Sa = {U,D} and Sb = {L,R}, and consider the type structure with type spaces
Ta = {ta} and Tb = {tb}, and belief functions illustrated below.

(L, tb) (R, tb)

βa(ta) 1/2 1/2

(U, ta) (D, ta)

βb(tb) 1/2 1/2

Note that this type structure admits multiple common priors. Indeed, it can be easily verified that
the probability measure in the following table constitutes a common prior for every ε ∈ [0, 1

2 ].

(L, tb) (R, tb)

(U, ta) 1/2− ε ε
(D, ta) ε 1/2− ε

Table 1: A family of common priors.

Notably, even this very simple type structure has uncountably many common priors. �

It has to be emphasized that we do not take π as a primitive of our epistemic model, as we do
not consider a (fictitious) ex-ante stage from which the players’ beliefs are updated conditioning
on the realization of the types (see the references in Footnote 1 for a discussion of this issue).
Instead, the only primitives of our model are the belief hierarchies that are encoded in the type
structure. In this sense, the common prior enriches our model by inserting additional information
to our model in terms of beliefs that are not described within the type structure. Take for instance
the previous example with ε = 0 and observe that the common prior essentially introduces new
beliefs for Ann, viz., according to this common prior, once Ann has chosen U , she believes that
Bob will choose L with probability 1. Clearly, we have to be careful in how we interpret and use
these additional beliefs, and—ideally—we want them to be inconsequential for our game-theoretic
analysis.

2.2 The AI Condition

As we have discussed in the previous section, a common prior often contains additional informa-
tion—beyond what is described by the type structure—due to the fact that players form conditional
beliefs given each of their own strategies. As a result, we have to be aware of the fact that, upon
having introduced a common prior, inconsistencies may arise. We illustrate this point in the
following example.

Example 1 (cont). First, recall that Ann’s only type puts equal probability to (L, tb) and (R, tb)
according to her belief function. Take the common prior induced by setting ε = 0. Now, observe
that, if Ann chooses to play U , her beliefs induced by the common prior attach probability 1 to
L. However, if she chooses to play D, her beliefs induced by the common prior attach probability
1 to R. �
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The inconsistency in the previous example is due to a conceptually awkward property of the
common prior. Namely, according to the chosen common prior, Ann updates her beliefs without
having received any new information. She does so after having conditioned with respect to an
endogenous variable, viz., her own planned strategy. This is clearly at odds with the standard
Bayesian view according to which updating is the result of taking into account new information.
This discrepancy was first identified by Dekel & Siniscalchi (2015, Example 12.4, pp.642–643), who
went on to propose the following property that a common prior must satisfy in order to avoid such
inconsistencies.

Definition 2 (AI Condition). The common prior π ∈ ΠT satisfies the AI condition if, for all
i ∈ I and all (si, ti), (s

′
i, ti) ∈ Si × Ti with π(Jsi, tiK) > 0 and π(Js′i, tiK) > 0,

π(Jsj , tjK|Jsi, tiK) = π(Jsj , tjK|Js′i, tiK), (2.1)

for every (sj , tj) ∈ Sj × Tj, with ΠAI
T ⊆ ΠT denoting the set of common priors that satisfy the AI

condition.

The acronym AI can stand for “Action Independence" or “Aumann Independence". It is not
difficult to verify that the only common prior in Example 1 that satisfies the AI condition is the
one obtained by setting ε = 1

4 . Indeed, for any other ε, it is the case that π(JL, tbK|JU, taK) =
1
2 − ε 6= ε = π(JL, tbK|JD, taK), implying that Ann’s beliefs depend on her own strategy.

An important remark is warranted here: the AI condition has a bite when the type structure
represents belief hierarchies about endogenous variables, viz., the players’ own strategies. Whenever
the type structure represents beliefs about exogenous variables (e.g., about the preferences of the
players), it is clearly the case that the choice of a player’s own strategy does not affect her own
beliefs about said exogenous variables.

Remark 1. A common prior π ∈ ΠT satisfies the AI condition if and only if, for all (sj , tj) ∈
Sj × Tj,

π(Jsj , tjK|Jsi, tiK) = βi(ti)(sj , tj)

for every i ∈ I and (si, ti) ∈ Si × Ti with π(Jsi, tiK) > 0, i.e., whenever conditional beliefs are
derived from a common prior that satisfies the AI condition, said conditional beliefs coincide with
those inherited from the type structure.

Following the previous remark—while assuming that the type structure T admits some (not
necessarily unique) common prior—we can classify ΠT into one of the following categories:

(Π1) all common priors satisfy the AI condition, i.e., ΠT = ΠAI
T 6= ∅;

(Π2) there are multiple common priors, some satisfying the AI condition and some not, i.e., ΠT )
ΠAI

T 6= ∅;

(Π3) there exists no common prior satisfying the AI condition, i.e., ΠAI
T = ∅.

Since the AI condition allows us to epistemically characterize equilibrium concepts such as Objec-
tive Correlated Equilibrium (Dekel & Siniscalchi, 2015, Theorem 12.4) or Nash Equilibrium (Dekel
& Siniscalchi, 2015, Theorem 12.7), we would like to know in which of the aforementioned cate-
gories each type structure is classified. This is actually the main research question of this paper,
which we address in the following sections.

2.3 Bets on the State Space

It is common practice to characterize (epistemic) properties in terms of appropriate no-betting
conditions in light of the fact that a player’s willingness to accept a bet is observable. There-
fore, these characterizations allow us to build testable hypotheses about the property of interest.
This approach dates back to the early contributions of Milgrom & Stokey (1982) and Sebenius &
Geanakoplos (1983), and the subsequent work of Samet (1998) and Feinberg (2000) among others,
which have led to a full characterization of common priors in models with exogenous uncertainty.
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In their recent review article, Dekel & Siniscalchi (2015) conjectured that a similar characterization
of the AI condition in terms of a suitable no-betting condition should be possible in type structures
that represent beliefs about endogenous variables.

A bet on the state space Ω is a profile of random variables g := (ga, gb), with gi ∈ <Ω for each
i ∈ I, such that ga + gb = 0, i.e., simply put, a bet is a zero-sum contingent claim.

Definition 3 (Willingness to bet). Player i ∈ I accepts g at some state in Jsi, tiK if

E[gi|si, ti] :=
∑
sj∈Sj

∑
tj∈Tj

gi(si, ti, sj , tj) · βi(ti)(sj , tj) ≥ 0.

Player i strictly accepts the bet at some state in Jsi, tiK if the previous inequality is strict.

Crucially, note that a player’s willingness to accept (resp., strictly accept) a bet at some state
depends on the beliefs she inherits from the type structure. That is, even if we fix a common prior
π ∈ ΠT , the player does not evaluate the bet using the conditional beliefs π(·|Jsi, tiK), but rather
using the conditional beliefs π(·|JtiK) which always coincide with βi(ti). This assumption follows
naturally from the fact that our primitive concept is a type structure and not a common prior that
is admitted by it. We illustrate this point in the context of Example 1.

Example 1 (cont). Take the bet that pays Ann the following amounts at each state.

(L, tb) (R, tb)

(U, ta) 20 −10
(D, ta) −10 10

It is clear that according to the beliefs that Ann inherits from the type structure, she (weakly)
accepts the bet at every state in JD, taK, as she attaches probability 1

2 to each of Bob’s strategy-
type pair thus yielding zero expected payoff at both states in JD, taK. If we instead used the
common prior to evaluate the bet, Ann’s willingness to accept it would depend on which—among
the multiple common priors—we would fix, viz., for ε = 1

4 her willingness to bet would be the same
as above, for ε < 1

4 she would reject the bet in JD, taK, whereas for ε > 1
4 she would strictly accept

it in JD, taK. But, again, which common prior is fixed from the set ΠT is an arbitrary modelling
choice that the analyst makes and it is not based on parameters one can elicit. �

Going a step further, even if we use the beliefs that come from the type structure to evaluate
the bet at each state, players can influence the outcome of the bet by suitably choosing their own
strategy. For instance, in the previous example, it is clear that Ann would prefer to choose U
to get access to the good payoff of 20. However, this would have implications for her behavior
in the underlying game Γ and—a fortiori—on the beliefs in our type structure. This would be
clearly undesirable, in the sense that the bet that we would be using to test a property of the type
structure (viz., the AI condition) would affect the type structure itself, i.e., we would be having a
Heisenberg type of effect. To avoid such a phenomenon, we restrict attention to bets that cannot
be manipulated by the players.

Definition 4 (Strategy-Invariant Bet). A bet g is called strategy-invariant (henceforth, SI)
for type ti ∈ Ti of player i ∈ I if

E[gi|si, ti] = E[gi|s′i, ti]
for every si, s′i ∈ Si. A bet is SI if it is SI with respect to every ti ∈ Ti and every i ∈ I.

The underlying idea is that, conditional on a type ti, player i receives the same expected payoff
irrespective of the strategy chosen. Hence, the bet does not interfere with the incentives that
the player faces in the underlying game and—given that this is the case for every type of every
player—the introduction of the bet does not affect the underlying type structure. For instance, in
the previous example, to obtain an SI bet we can replace Ann’s payoff of 20 with a payoff of 10.
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Indeed, notice that in such a case, Ann would receive 0 in expectation irrespective of whether she
chooses U or D and the same is true for Bob irrespective of whether he chooses L or R. Throughout
the rest of the paper, we focus exclusively on SI bets.

Definition 5 (No-Betting Condition). An SI bet g is mutually acceptable if, for every i ∈ I
and every (si, ti) ∈ Si × Ti,

E[gi|si, ti] ≥ 0,

with at least one inequality being strict.

That is, we call an SI bet mutually acceptable if every player accepts it at every state and
there exists at least one player who strictly accepts it at some state. Our main research question
then becomes whether we can classify type structures that admit a common prior into one of the
categories (Π1), (Π2), (Π3) based on the existence of mutually acceptable bets. The remaining of
the paper addresses this question.

3. Characterization Results

3.1 Is there a Common Prior satisfying the AI Condition?

We begin by identifying the type structures T which admit a common prior that satisfies the AI
condition. Formally, what we do first is to provide necessary and sufficient conditions in terms
of the existence of mutually acceptable SI bets so that ΠAI

T 6= ∅. In other words, our first result
indicates if the type structure belongs into one of the first two categories (viz., (Π1) or (Π2)) or
whether it belongs to the third category (viz., (Π3)). This result already answers affirmatively the
conjecture of Dekel & Siniscalchi (2015).

Theorem 1. Given a type structure T , the following hold.

i) If there exists some common prior that satisfies the AI condition (i.e., if ΠAI
T 6= ∅), then

there exists no mutually acceptable SI bet.

ii) If there exists no common prior satisfying the AI condition (i.e., if ΠAI
T = ∅), then there

exists a mutually acceptable SI bet.

The full proof of the result is relegated to Appendix A. For the time being, we provide some
intuition together with an illustration by means of examples.

The underlying idea behind the proof of part (i) is similar to the one in Sebenius & Geanakoplos
(1983). In particular, we begin with the observation (first made in Remark 1) that we can arbitrarily
replace the beliefs βi(ti) inherited from the type structure with the conditional beliefs π(·|Jsi, tiK)
given by a common prior that satisfies the AI condition. Hence, we can construct an auxiliary
Aumann structure over the same state space Ω with the common prior π such that, for every SI
bet, the willingness to accept the bet using the beliefs βi(ti) is the same as the willingness to
accept it using the beliefs π(·|Jsi, tiK) at every state and for every player. But then, by Sebenius
& Geanakoplos (1983, Proposition 2), no mutually acceptable bet exists in the auxiliary Aumann
structure and—a fortiori—not in our original type structure either. Let us provide an illustration.

Example 1 (cont). Consider the unique common prior that satisfies the AI condition, viz., let
ε = 1

4 , implying that π ∈ ΠAI
T is uniformly distributed in Ω. Take an SI bet that pays to Ann the

following amounts at each state.

(L, tb) (R, tb)

(U, ta) v1 v2

(D, ta) v3 v4
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Notice that in order for this bet to mutually acceptable, it must be the case that the following two
inequalities hold for Ann:

v1 + v2 ≥ 0,

v3 + v4 ≥ 0.

Likewise, it must be the case that the following two inequalities hold for Bob:

−v1 − v3 ≥ 0,

−v2 − v4 ≥ 0.

At the same time, one of the previous four inequalities must be strict. Clearly, this cannot occur.
If this was the case, by adding the respective sides of the four inequalities, we would obtain 0 > 0,
which is an obvious contradiction. �

Now, let us switch to part (ii) of the theorem. Here, the argument is slightly more involved. In
the first step we make use of earlier results by Samet (1998) and Feinberg (2000). In particular,
once again we construct an auxiliary Aumann structure over Ω with the conditional beliefs given
each information set Jsi, tiK being set the same as the ones given by βi(ti). The key observation is
that, since ΠAI

T = ∅, there exists no common prior in our auxiliary Aumann structure generating
these conditional beliefs. Hence, by Samet (1998, Claim, p.173) and Feinberg (2000, Theorem 2,
p.146), there exists a mutually acceptable bet in the Aumann structure. However, this bet is not
necessarily SI. Thus, with a sequence of transformations, we obtain a new SI bet which keeps the
willingness of every player to bet at every state unchanged. As a result, since the original bet was
mutually acceptable, so is this new SI bet, thus completing the proof. We illustrate the key ideas
with an example.

Example 2. Once again consider the strategy sets Sa = {U,D} and Sb = {L,R}, and take the
type structure with type spaces Ta = {ta} and Tb = {tb, t′b} and belief functions illustrated below.

(L, tb) (R, t′b)

βa(ta) 1/2 1/2

(U, ta) (D, ta)

βb(tb) 1 0
βb(t

′
b) 0 1

Observe that the only common prior that this type structure admits is the one below.

(L, tb) (R, t′b)

(U, ta) 1/2 0
(D, ta) 0 1/2

Clearly, this common prior does not satisfy the AI condition. Thus, let us begin by taking the
following auxiliary Aumann structure over Ω with the following information partitions (with Ann’s
partition on the left and Bob’s on the right) and the corresponding conditional beliefs given each
cell of the partition.

(D, ta)

(U, ta)

(L, tb) (R, t′b)

1/2

1/2

1/2

1/2

(D, ta)

(U, ta)

(L, tb) (R, t′b)

0

1

1

0

Notice that the conditional beliefs given each Jsi, tiK coincide with those given by the type structure.
However, these conditional beliefs cannot have been derived from a common prior, because, had
such a prior existed, it would have belonged to ΠAI

T , which we know is empty. Therefore, we can
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find a mutually acceptable bet in this Aumann space. Say this bet is the one that pays Ann the
amounts shown below.

(L, tb) (R, t′b)

(U, ta) v1 v2

(D, ta) v3 v4

Of course, if this bet is SI, then we are done. Thus, suppose it is not, implying—without loss of
generality—that

v1 + v2 > v3 + v4 ≥ 0.

Then take the constant
c :=

1

2
(v1 + v2)− 1

2
(v3 + v4) > 0

and subtract it from every payment in the upper information set of Ann. This will yield a new
transformed bet that pays Ann the amounts shown below.

(L, tb) (R, t′b)

(U, ta) v1 − c v2 − c
(D, ta) v3 v4

First of all, observe that the new bet is SI, as the expected payoff of Ann is the same at all states
within JtaK. At the same time, Bob has become better off, as our transformation only subtracted
payoffs from Ann and—a fortiori—added payoffs to Bob. Finally, observe that this transformation
does not affect whether the bet is SI for Bob’s types, i.e., the transformed bet is SI for any given type
of Bob if and only if the original one was SI (which—incidentally—it trivially was). This is because
we add the same constant payment to all states that correspond to any given strategy-type pair of
Ann. As a result, the new transformed bet that we obtain is both mutually acceptable and SI. For
the sake of illustration, such a bet could be one that pays ga(U, ta, L, tb) = ga(D, ta, R, t

′
b) = −1

and ga(D, ta, R, tb) = ga(U, ta, L, t
′
b) = 1. �

3.2 Do all Common Priors satisfy the AI Condition?

In the previous section we provided necessary and sufficient conditions that identify whether a type
structure admits a common prior that satisfies the AI condition. In particular, if the answer is
positive, we can conclude that the type structure is classified in category (Π1) or (Π2), i.e., either
all common priors satisfy the AI condition, or there are additional common priors that do not
satisfy the AI condition. In this section, we provide a second result that identifies—again in terms
of a no-betting condition—which of the two it is the case.

We begin with the premise that ΠAI
T 6= ∅, i.e., there exists a common prior satisfying the AI

condition, implying (by Theorem 1) that there exists no mutually acceptable SI bet between Ann
and Bob. Now, we extend our type structure by introducing a dummy player (henceforth, the
outside observer). The outside observer has a single strategy that is completely inconsequential to
anybody and his beliefs are given by a common prior π ∈ ΠT .

Formally, given a game Γ, the extended game is the tuple Γ := 〈I, (Si, ui)i∈I〉, where I := I∪{d}
is the original set of players augmented by the outsider observed, Si := Si for each i ∈ I and
Sd := {sd} for the outside observer, and finally ui(sa, sb, sd) := ui(sa, sb) for each original player
i ∈ I and ud(sa, sb, sd) := 0 for the outside observer, for each extended strategy profile (sa, sb, sd).

Now, take a standard type structure T (over the original game) admitting common priors and
fix an arbitrary π ∈ ΠT . Extend the type structure to

T π := 〈I, (T i, βi)i∈I〉,

such that T i := Ti for every original player i ∈ I and T d := {td} for the outside observer, with
βi(ti)(sj , tj , sd, td) := βi(ti)(sj , tj) for each i ∈ I and βd(td)(si, ti, sj , tj) := π(si, ti, sj , tj) for the
outside observer, for each original state (si, ti, sj , tj) ∈ Ω. That is, the original players inherit the
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beliefs from the original standard type structure, while the outside observer adopts the beliefs that
are given by the common prior. We deem this object the extended type structure.

It is straightforward to verify that the extended state space Ω = Sa×T a×Sb×T b×Sd×T d is
homeomorphic to the original state space Ω. Indeed, we simply need to take each (sa, ta, sb, tb) ∈ Ω
and augment it with the outside observer’s unique strategy-type pair to obtain the corresponding
state (sa, ta, sb, tb, sd, td) ∈ Ω. In this sense, with a slight abuse of notation and without loss of
generality, we keep using the original state space to also identify states in the extended state space.

An extended bet on the state space Ω is a profile of random variables g := (ga, gb, gd), with
gi ∈ <Ω for each i ∈ I, such that ga + gb + gd = 0. We keep restricting attention to SI bets and
notice that every extended bet is trivially SI for the outside observer: hence, we only need to make
sure that an extended bet is SI for the original players. Willingness (resp., strict willingness) to
accept a bet is naturally extended to the present framework, viz., player i ∈ I accepts g at some
state in Jsi, tiK if E[gi|si, ti] ≥ 0 and strictly accepts it if the inequality is strict. Then we can
naturally state the no-betting condition appropriate for this framework as follows: an extended SI
bet g is mutually acceptable if every player i ∈ I accepts it at every state and there exists at least
one player who strictly accepts it at some state.

We now state our second result, which allows us to identify whether the original type structure
T is classified in the category (Π1) or in the category (Π2), by means of the existence of a mutually
acceptable extended SI bet.

Theorem 2. Fix a standard type structure that admits a common prior that satisfies the AI
condition, i.e., ΠAI

T 6= ∅. Then the following hold.

i) If all common priors in ΠT satisfy the AI condition (i.e., if ΠAI
T = ΠT ), then there exists

no mutually acceptable extended SI bet.

ii) If there exists a common prior in ΠT that does not satisfy the AI condition (i.e., if ΠAI
T (

ΠT ), then there exists a mutually acceptable extended SI bet.

Once again, we relegate the formal proof to Appendix A and here we only provide some intuition.
Proving part (i) of the theorem follows directly from Theorem 1. In particular, pick an arbitrary

common prior (which, by hypothesis, satisfies the AI condition) and—once again—construct an
auxiliary Aumann model in which the conditional beliefs given each information set are derived
from said common prior. Hence, there is no mutually acceptable extended SI bet. Finally, observe
that the willingness to accept any extended SI bet in the auxiliary Aumann model is the same as
the willingness to accept the same bet using the beliefs that are derived from the extended type
structure, which completes our argument. We now provide an illustration of what above.

Example 3. Once again, let Sa = {U,D} and Sb = {L,R}, and consider the type structure with
type spaces Ta = {ta, t′a} and Tb = {tb, t′b}, and belief functions illustrated below.

(L, tb) (R, t′b)

βa(ta) 1 0
βa(t′a) 0 1

(U, ta) (D, t′a)

βb(tb) 1 0
βb(t

′
b) 0 1

Notice that the distribution below is a common prior admitted by the type structure for every
δ ∈ (0, 1).

(L, tb) (R, t′b)

(U, ta) δ 0
(D, t′a) 0 1− δ

In fact, these are all the common priors that our type structure admits. Now, it is clear that they
all satisfy the AI condition and it is not difficult to see that there exists no extended SI bet which
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is mutually acceptable. Indeed, take an arbitrary bet that pays Ann and Bob at each state the
following amounts.

(L, tb) (R, t′b)

(U, ta) va1 , v
b
1 va2 , v

b
2

(D, ta) va3 , v
b
3 va4 , v

b
4

Notice that, in order for Ann to (weakly) accept this bet, it must be the case that va1 ≥ 0 and
va4 ≥ 0 and, likewise for Bob, to (weakly) accept this bet we must have vb1 ≥ 0 and vb4 ≥ 0. But
then it is the case that the outside observer’s expected payoff is equal to

−δ(va1 + vb1)− (1− δ)(va4 + vb4) ≤ 0,

with equality holding if and only if va1 = va4 = vb1 = vb4 = 0. Hence, there exists no mutually
acceptable extended SI bet. �

Concerning part (ii) of the theorem, here our proof is constructive and proceeds as follows. First
of all, since there exists a common prior that satisfies the AI condition, there exists no mutually
acceptable SI bet between Ann and Bob (by Theorem 1). Nevertheless, since there also exists a
common prior π that does not satisfy the AI condition, it is necessarily the case that some player
(among the original players) evaluates a bet at some state using the beliefs that are inherited from
the type structure, which differ from the conditional beliefs given from the common prior π. On
the other hand, the outside observer does use π to evaluate a bet. This discrepancy allows us
to construct a bet that pays Ann and Bob 0 in expectation at every state, and yields a strictly
positive expected payoff to the outside observer. This is clearly a mutually acceptable extended SI
bet. We now provide an illustration of this point.

Example 1 (cont). Consider a common prior that does not satisfy the AI condition, e.g., let
ε = 0. Then consider the bet that pays Bob 0 at every state and pays Ann the amounts depicted
in the following table.

(L, tb) (R, tb)

(U, ta) −1 1
(D, ta) 1 −1

Obviously, Ann receives 0 in expectation at all states, as she uses the beliefs she inherits from the
type structure, which distribute probability uniformly across 1 and −1. On the other hand, the
outside observer uses the beliefs that come from the common prior, which put probability 1 to the
two states where Ann receives −1, and—as a result—the outside observer gets 1 in expectation,
i.e., he strictly accepts the bet. Therefore, this is a mutually acceptable extended SI bet. �

4. Objective Correlated Equilibrium & the AI Condition

We now focus on how our results allow us a deeper understanding of the role of the AI condition
for existing epistemic characterizations of Objective Correlated Equilibrium (henceforth, OCE).
According to the original characterization of Aumann (1987), common knowledge of rationality
together with a common prior yield an OCE distribution. However, Aumann’s model has the
feature that each type (viz., each partition cell in Aumann’s language) is exogenously endowed
with a strategy. As a result, the AI condition is automatically satisfied (which is why we do not
need to explicitly postulate it in Aumann’s theorem), but—at the same time—bundling each type
with a given strategy leads to the shortcoming that it is not always possible to elicit the belief
hierarchies of a player.5

5A referee pointed out the following additional problem of the model employed by Aumann: given a player’s
higher-order beliefs, the model does not rule out the possibility that there could be correlation between this player
beliefs over her own actions and her beliefs about the other players’ actions and higher-order beliefs.
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To deal with these issues, Dekel & Siniscalchi (2015) minimally modify Aumann’s conditions to
obtain the following result: a type structure expressing Rationality and Common Belief in Ratio-
nality6 together with a common prior that satisfies the AI condition leads to an OCE distribution.
Formally, take a type structure T that admits a common prior π ∈ ΠAI

T such that, for every i ∈ I
and every (si, ti) ∈ Si × Ti with π(Jsi, tiK) > 0, we have∑

sj∈Sj

π(JsjK|Jsi, tiK) · ui(s′i, sj) ≥
∑
sj∈Sj

π(JsjK|Js′i, tiK) · ui(s′i, sj),

for every s′i ∈ Si. Then margS π is an OCE distribution (Dekel & Siniscalchi, 2015, Theorem
12.4).7

Here we should crucially note that the choice of the common prior (among the multiple common
priors that exist) plays a significant role in the previous result. This is easily verified by the fact
that the common prior is directly used to obtain the OCE distribution. Thus, it might be the case
that the same type structure T induces an OCE for some common priors in ΠT and not for some
others. We now illustrate that this is indeed the case.

Example 1 (cont). Consider the standard symmetric coordination game below.

Ann

Bob
L R

U 1, 1 0, 0
D 0, 0 1, 1

We append on it the type structure originally described in this example, which we reproduce below.

(L, tb) (R, tb)

βa(ta) 1/2 1/2

(U, ta) (D, ta)

βb(tb) 1/2 1/2

First of all, given that we let RCBR denote the event in Ω that captures Rationality and Com-
mon Belief in Rationality, it has to be observed that in this type structure we have RCBR =
{(U, ta, L, tb), (U, ta, R, tb), (D, ta, L, tb), (D, ta, R, tb)}, i.e., RCBR does not rule out anything. Now,
given the family of common priors in Table 1, consider the common prior induced by ε = 1

2 repre-
sented below.

(L, tb) (R, tb)

(U, ta) 0 1/2
(D, ta) 1/2 0

Clearly, this common prior does not satisfy the AI condition. Moreover, it does not induce an OCE
distribution, as it leads the players to miscoordinate with probability 1. If instead we had chosen
from Table 1 another common prior that satisfied the AI condition (i.e., if we had chosen ε = 1

4 ), we
would have had a type structure expressing Rationality and Common Belief in Rationality along
with a common prior satisfying the AI condition. Thus, from Dekel & Siniscalchi (2015, Theorem
12.4), the resulting distribution of strategy profiles would have constituted an OCE. �

The conclusion is that the epistemic conditions for OCE cannot be expressed entirely within
a type structure, but a reference to the choice of the common prior has to be made. This is
exactly where our results come in handy: following Theorem 2, if the type structure under scrutiny
does not allow for side-betting with an outside observer, then all common priors satisfy the AI
condition and—as a result—all common priors that the type structure T admits do induce an
OCE distribution. We emphasize this point in the following corollary.

6See Dekel & Siniscalchi (2015, Section 12.3.1).
7To be more precise, Dekel & Siniscalchi (2015) also impose a minimality condition, which is not relevant for

our discussion, and therefore it is without loss of generality to omit explicit reference to it. As a side remark, this
minimality condition is equivalent to our assumption of working with type structures that are non-redundant.
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Corollary 1. Fix a standard type structure T such that there exists no mutually acceptable ex-
tended SI bet. Then, for every common prior π ∈ ΠT such that suppπ ⊆ RCBR, it is the case that
margS π is an OCE distribution.

Therefore, the result of Dekel & Siniscalchi (2015) would only make reference to the type
structure, implying that we obtain sufficient conditions for OCE using only properties that can be
elicited.

5. Discussion

5.1 Rationality and Common Belief in Rationality

As we have already mentioned, the reason behind our choice of focusing on SI bets is that they
allow us to isolate the betting element that could potentially arise in a game from the actual play
in the game. It is essentially due to this point that in this paper there is no actual reference to
specific games: by focusing on SI bets, we make irrelevant the specific game upon which the betting
can potentially take place, thus ending up to be in position to focus on the specific property of
the type structures (and infinite hierarchies of beliefs) we are actually interested in, namely, the
AI condition.

Indeed, the importance of our results lies in the fact that sidebetting on games is strictly
related to the presence of endogenous uncertainty, i.e., the players’ behavior has an impact on the
realization of the state of nature (i.e., the outcome). Focusing on SI bets prevent us from the
need to create a larger game to incorporate potential side bets in the actual game under scrutiny.
Indeed, SI side bets on a game do not alter the players’ incentives to choose a strategy instead of
another one in the actual play the game. That is, SI bets make players indifferent between different
strategies.

However, it is possible to argue that in an actual game, not all strategies are ‘equal’, in the
sense that a rational player should not choose some strategies. As a matter of fact, we feel this
would betray the exercise, since the rationality of a player in a game should not have any bite in
the analysis of her infinite hierarchies of beliefs by means of sidebets. Nevertheless, the question
stands if our results are true when the focus is on strategies that are consistent with the rationality
of the players and their mutual beliefs on their rationality. It is clear that all our results naturally
extend to a setting where the focus is on those strategies that correspond to the strategies chosen
in a type structure where the event Rationality and Common Belief of Rationality is nonempty.

5.2 Non-Redundancy and Elicitability

In Section 2.1, we explicitly assumed that we work with type structures that are non-redundant.
First let us stress that our results do not formally rely on the non-redundancy assumption. So,
why do we impose it? The reason is conceptual. In particular, bets are contingent claims that
allocate payments to each player conditional on strategy profiles and belief hierarchies. This is a
natural implicit assumption, as belief hierarchies can be elicited and strategies are directly observed.
Therefore, allowing for redundancies would lead to multiple types representing the same hierarchy
and—as a result—whenever we elicit said hierarchy, it would be ambiguous which type should be
used to determine the payments of bet. Hence, in such a case, we would need to also require bets to
be measurable with respect to the belief hierarchies, i.e., in presence of redundancies two different
types inducing the same belief hierarchy should originate the exact same payments. However, this
would make our model unnecessarily more complex, which is why we rule out redundancies in the
first place.

5.3 The n-Player Case

The extension of our results from the 2-player to the n-player case is straightforward. First of
all, the respective parts (i) of both Theorem 1 and Theorem 2 are direct applications of the early
contributions (Aumann, 1976; Milgrom & Stokey, 1982; Sebenius & Geanakoplos, 1983) where
things extend verbatim from 2 to n players. Thus, we now focus on the respective parts (ii) of
the two theorems. In Theorem 1, the proof proceeds in exactly the same way, except for how
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we transform the mutually acceptable bet (fi)i∈I (that we have obtained from Samet (1998) and
Feinberg (2000)) into an SI mutually acceptable bet. In particular, the idea is to distribute the
positive payoff ci(si, ti) that we subtract from player i at every state in Jsi, tiK to all other players
uniformly. This modification in the proof does not affect the validity of our argument. Finally,
regarding Theorem 2, the proof again proceeds as in the 2-player case, i.e., we construct a mutually
acceptable bet between the player who violates the AI condition and the outside observer, with all
the remaining actual players getting 0 everywhere.

5.4 Ex-Ante Trade & Extended Bets

It is possible to state Theorem 2 in terms of ex-ante trade.8 To do so, take the conditions of
Theorem 1 and replace ga + gb = 0 with the expectation Eπ[ga + gb] ≤ 0 for a given common prior
π. Incidentally, this is the same common prior we have assumed to induce the outside observer’s
beliefs in our construction of extended bets. That is, instead of g being a bet, it is now an investment
plan consisting of a state-contingent act for each player such that the sum of expected payoffs is
ex-ante non-positive. Since we do not require the respective payoffs to statewise add up to 0, we
can think of the outside observer (in the context of Theorem 2) as an auxiliary residual claimant
who receives the −(ga + gb). Then, obviously such an SI investment plan is mutually acceptable
(by the two players) if and only if the corresponding SI extended bet is mutually acceptable (by
the two players and the residual claimant).

5.5 Adding Exogenous Uncertainty

Throughout the paper we have focused explicitly on type structures that represent belief hierarchies
about strategies, i.e., models with only endogenous uncertainty. As a matter of fact, we can directly
generalize our framework so that players have beliefs over both strategies-type pairs of the opponents
and an exogenous parameter space (Dekel & Siniscalchi, 2015, Section 12.6.2). These models are
useful in the study of games with incomplete information and—for instance—they can be used to
provide an epistemic foundation to Bayes Correlated Equilibrium of Bergemann & Morris (2016).
As it turns out, all our results and proofs can be naturally extended to characterize the AI condition
in these models.

Appendix

A. Proofs

Proof of Theorem 1. Part (i): Assume that there exists a common prior π ∈ ΠAI
T . By the fact

that π ∈ ΠAI
T , it is the case that βi(ti)(sj , tj) = π(Jsj , tjK|Jsi, tiK) for every (si, ti) ∈ Si × Ti and

every (sj , tj) ∈ Sj × Tj (see Remark 1). Hence, for every SI bet g̃, we can rewrite i’s expected
payoff at each state in Jsi, tiK as

E[g̃i|si, ti] =
∑
sj∈Sj

∑
tj∈Tj

g̃i(si, ti, sj , tj) · π(Jsj , tjK|Jsi, tiK).

Now, we proceed by contradiction and assume that there exists a mutually acceptable SI bet g,
implying that E[gi|si, ti] ≥ 0 for every (si, ti) ∈ Si×Ti and every i ∈ I, with at least one inequality
being strict. Hence, by the fact that {Jsi, tiK|(si, ti) ∈ Si × Ti} is a partition of Ω, we obtain

0 ≤
∑
sj∈Sj

∑
tj∈Tj

π(Jsi, tiK) · E[gi|si, ti]

=
∑
si∈Si

∑
ti∈Ti

π(Jsi, tiK)
∑
sj∈Sj

∑
tj∈Tj

gi(si, ti, sj , tj) · π(Jsj , tjK|Jsi, tiK)

=
∑
si∈Si

∑
ti∈Ti

∑
sj∈Sj

∑
tj∈Tj

gi(si, ti, sj , tj) · π(si, ti, sj , tj),

8We are grateful to a referee for having pointed this out.
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with the inequality being strict for at least one of the two players. Thus, we finally add the
respective sides of the inequalities for the two players to obtain

0 <
∑
sa∈Sa

∑
ta∈Ta

∑
sb∈Sb

∑
tb∈Tb

(
ga(sa, ta, sb, tb) + gb(sa, ta, sb, tb)

)
· π(sa, ta, sb, tb) = 0,

which is the desired contradiction. Hence, there exists no mutually acceptable SI bet.
Part (ii): We begin by defining the following auxiliary Aumann structure 〈Ω, (Pi, πi)i∈I〉, where
Pi := { Jsi, tiK | (si, ti) ∈ Si × Ti } is the information partition of Si × Ti cylinders and, for each
player i ∈ I, πi ∈ ∆(Ω) is a probability measure such that the conditional beliefs given each
information set Jsi, tiK agree with the beliefs obtained from the type structure, i.e., we set

πi(Jsj , tjK|Jsi, tiK) := βi(ti)(sj , tj),

for every (sj , tj) ∈ Sj×Tj . Note that it is necessarily the case that πa 6= πb, otherwise there would
exist a common prior that satisfies the AI condition, which cannot be (by hypothesis). Therefore,
our auxiliary Aumann structure does not admit a common prior. Hence, by Samet (1998, Claim,
p.173) and Feinberg (2000, Theorem 2, p.146), there exists a mutually acceptable bet f := (fa, fb),
with fi ∈ <Ω for every i ∈ I, such that fa+ fb = 0. In particular, for every i ∈ I and every Jsi, tiK,
it is the case that ∑

sj∈Sj

∑
tj∈Tj

fi(si, ti, sj , tj) · πi(Jsj , tjK|Jsi, tiK) ≥ 0,

with at least one inequality being strict. By definition of πi, it follows that, for every i ∈ I and
every Jsi, tiK, it is the case that

E[fi|si, ti] ≥ 0,

with at least one inequality being strict. Now, if f is an SI bet, we are done. Thus, we assume
that it is not and we define a new bet g := (ga, gb) as follows. First, for each i ∈ I and each
(si, ti) ∈ Si × Ti, we let

ci(si, ti) := E[fi|si, ti]− min
s′i∈Si

E[fi|s′i, ti] ≥ 0.

Then, for each state (si, ti, sj , tj) ∈ Ω and each player i ∈ I, we define

gi(si, ti, sj , tj) := fi(si, ti, sj , tj)− ci(si, ti) + cj(sj , tj).

First of all, it is trivially verified that g is indeed a bet. Now, notice that, for any fixed ti ∈ Ti, we
obtain

E[gi|si, ti] = min
s′i∈Si

E[fi|s′i, ti] + cj(sj , tj),

for all si ∈ Si. Observe that E[gi|si, ti] = E[gi|s′i, ti] for all si, s′i ∈ Si, i.e., g is an SI bet. Moreover,
E[gi|si, ti] ≥ 0 for all (si, ti) ∈ Si× Ti. Finally, observe that, since f is not SI in the first place, we
obtain cj(sj , tj) > 0 for at least one player j ∈ I and at least one pair (sj , tj) ∈ Sj×Tj . Therefore,
there exists at least one pair (si, ti) of j’s opponent such that E[gi|si, ti] > 0. This implies that g
is mutually acceptable, which completes the proof. �

Proof of Theorem 2. Part (i): The proof is almost identical to the one of the first part of
Theorem 1. The only caveat is that there are three players now, Ann, Bob and the outside
observer. Nevertheless, the outside observer can only have one belief, viz., it is necessarily the case
that βd(td) = π for some π ∈ ΠAI

T . Now, suppose that there exists a mutually acceptable extended
SI bet. By following the exact same steps in the proof of Theorem 1, we obtain

0 <
∑
sa∈Sa

∑
ta∈Ta

∑
sb∈Sb

∑
tb∈Tb

(
ga(sa, ta, sb, tb) + gb(sa, ta, sb, tb) + gd(sa, ta, sb, tb)

)
·π(sa, ta, sb, tb) = 0,

which is an obvious contradiction.
Part (ii): The proof is constructive. Fix a common prior π ∈ ΠT \ΠAI

T , and take the extended type
structure such that the outside observer’s beliefs agree with this common prior, i.e., βd(td) = π.
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Since π is a common prior that does not satisfy the AI condition, there exists a Ej ⊆ Sj × Tj and
two strategy-type pairs (si, ti), (s

′
i, ti) ∈ Si × Ti such that

π(Ej |Jsi, tiK) > βi(ti)(Ej) > π(Ej |Js′i, tiK).

Obviously, this directly implies that

π
(
Ecj
∣∣Jsi, tiK) < βi(ti)(E

c
j ) < π

(
Ecj
∣∣Js′i, tiK),

where Ecj = (Sj × Tj) \ Ej . Now, we define the extended bet g as follows.

• At all states (s′′i , t
′′
i , s

′′
j , t

′′
j ) /∈ Jsi, tiK ∪ Js′i, tiK, set gk(s′′i , t

′′
i , s

′′
j , t

′′
j ) := 0 for every player k ∈ I.

• At all states (s′′i , t
′′
i , s

′′
j , t

′′
j ) ∈ Jsi, tiK ∪ Js′i, tiK, set gj(s′′i , t′′i , s′′j , t′′j ) := 0. Hence, for player i

and the outside observer we have gi(s′′i , t′′i , s′′j , t′′j ) = −gd(s′′i , t′′i , s′′j , t′′j ), where i’s payments
are shown in the table below.

Ej Ecj

(si, ti) v1 v2

(s′i, ti) v3 v4

That is, payments are measurable with the respect to the events in {{(si, ti)}, {(s′i, ti)}} ×
{Ej , Ecj}. Then we set i’s payments to be such that

βi(ti)(Ej) · v1 + βi(ti)(E
c
j ) · v2 = βi(ti)(Ej) · v3 + βi(ti)(E

c
j ) · v4 = 0,

with v1 < 0 and v4 < 0, and a fortiori v2 > 0 and v3 > 0.

By construction, both i’s and j’s expected payoffs from the bet are equal to 0 at all states, i.e.,

E[gi|s′′i , t′′i ] = E
[
gj
∣∣s′′j , t′′j ] = 0,

at all (s′′i , t
′′
i , s

′′
j , t

′′
j ) ∈ Ω. Hence, the bet g is SI for players i and j and moreover it is (weakly)

acceptable for both of them. Now, observe that

E[gd|sd, td] =− π(Jsi, tiK) ·
(
π(Ej |Jsi, tiK) · v1 + π

(
Ecj
∣∣Jsi, tiK) · v2

)
− π(Js′i, tiK) ·

(
π(Ej |Js′i, tiK) · v3 + π

(
Ecj
∣∣Js′i, tiK) · v4

)
> −π(Jsi, tiK) ·

(
βi(ti)(Ej) · v1 + βi(ti)(E

c
j ) · v2

)
− π(Js′i, tiK) ·

(
βi(ti)(Ej) · v3 + βi(ti)(E

c
j ) · v4

)
= 0,

which implies that the outside observer is strictly willing to accept the extended bet g. Thus,
overall g is a mutually acceptable extended SI bet, which completes the proof. �
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