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Abstract

In this paper, we introduce a notion of epistemic equivalence between hierarchies of conditional

beliefs and hierarchies of lexicographic beliefs, thus extending the standard equivalence results

of Halpern (2010) and Brandenburger et al. (2007) to an interactive setting, and we show that

there is a Borel surjective function, mapping each conditional belief hierarchy to its epistemically

equivalent lexicographic belief hierarchy. Then, using our equivalence result we construct a

terminal type space model for lexicographic belief hierarchies. Finally, we show that whenever

we restrict attention to full-support beliefs, epistemic equivalence between a lexicographic belief

hierarchy and a conditional belief hierarchy implies that an arbitrary Borel event is commonly

assumed under the lexicographic belief hierarchy if and only if it is commonly strongly believed

under the conditional belief hierarchy. This is the first result in the literature directly linking

common assumption in rationality (Brandenburger et al., 2008) with common strong belief in

rationality (Battigalli and Siniscalchi, 2002).
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1. Introduction

A belief hierarchy describes an agents’s beliefs, beliefs about every other agent’s beliefs, and so on.

Belief hierarchies are an integral part of modern economic theory, often used for analyzing games

with incomplete information (Harsanyi, 1967-68), as well as for providing epistemic characterizations

for several solution concepts, such as rationalizability (Brandenburger and Dekel, 1987; Tan and

Werlang, 1988), Nash equilibrium (Aumann and Brandenburger, 1995) and correlated equilibrium

(Aumann, 1987), just to mention a few.1

A well-known problem of standard belief hierarchies is that they fail to capture conditional be-

liefs given zero probability events, and therefore they are not sufficiently rich to characterize solution

concepts, such as iterated admissibility in normal form games or rationalizability in extensive form

games, where unlikely yet possible events play a significant role. This difficulty has been circum-

vented in the literature by extending the notion of beliefs in two different ways that were developed

independently.

• According to the first approach, beliefs are captured by a lexicographic probability system (LPS),

which consists of a sequence of Borel probability measures, else called theories (Blume et

al., 1991a). The primary theory coincides with the standard beliefs, the secondary theory

captures the beliefs once the agent has for some reason discarded the primary theory, and so on.

Extending this construction to an interactive setting gives rise to a hierarchy of lexicographic

beliefs (L-hierarchy): The first order lexicographic beliefs consist of an LPS over the underlying

space of uncertainty, the second order lexicographic beliefs consist of an LPS over the underlying

space of uncertainty and the opponents’ first order lexicographic beliefs, and so on. Hierarchies

of lexicographic beliefs have been used to epistemically characterize several solution concepts in

normal form games, such as iterated admissibility (Brandenburger et al., 2008), self-admissible

sets (Brandenburger and Friedenberg, 2010), perfect equilibrium and proper equilibrium in

two-players normal form games (Blume et al., 1991b) and proper rationalizability (Asheim,

2001; Perea, 2011).

• According to the second approach, beliefs are captured by a conditional probability system

(CPS), which consists of a collection of conditioning events and a conditional Borel probability

measure given each conditioning event, in a way such that Bayes rule is satisfied whenever

possible. In dynamic games, a conditioning event typically corresponds to an information

set. Extending this idea to an interactive setting induces a hierarchy of conditional beliefs

1For an overview of the epistemic game theory literature we refer to the textbook by Perea (2012) or the review

article by Brandenburger (2007).
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(C-hierarchy): The first order conditional beliefs are described by a CPS over the underlying

space of uncertainty, the second order conditional beliefs consist of a CPS over the underlying

space of uncertainty and the opponents’ first order conditional beliefs, and so on. Conditional

belief hierarchies have been widely used to characterize solution concepts in dynamic games,

such as extensive form rationalizability (Battigalli and Siniscalchi, 2002) and extensive form

best response sets (Battigalli and Friedenberg, 2012).

Several authors have studied the relationship between the two models (Brandenburger et al., 2007;

Halpern, 2010). As it turns out, the two approaches are epistemically equivalent, in the sense that

there exists a surjective mapping from the space of CPS’s onto the space of LPS’s (Brandenburger

et al., 2007).2

In this paper, we extend this idea to an interactive setting, by introducing a notion of epistemic

equivalence between L-hierarchies and C-hierarchies, thus providing a stepping stone for understand-

ing the relationship between solution concepts whose epistemic characterizations use different types

of belief hierarchies. The importance of establishing a notion of epistemic equivalence has been

already pointed out in a different context (Brandenburger and Friedenberg, 2010).

Our extension is far from trivial, as the previously defined notion of epistemic equivalence relates

CPS’s and LPS’s that are defined on the same space. However, second order conditional beliefs

are described by a CPS over the underlying space of uncertainty and the opponents’ first order

conditional beliefs, whereas second order lexicographic beliefs are described by an LPS over the

underlying space of uncertainty and the opponents’ first order lexicographic beliefs. Thus, in order

to introduce a notion of epistemic equivalence between second order beliefs, we first need to translate

each Borel event in the space of first order lexicographic beliefs to a Borel event in the space of

first order conditional beliefs. In fact, we do this by showing that the surjective function that maps

CPS’s onto LPS’s is Borel measurable (Lemma 2). Then, second order conditional beliefs are mapped

surjectively onto second order lexicographic beliefs via a Borel function, which allows us in turn to

define epistemic equivalence between third order beliefs. Continuing inductively, we show that there

is a Borel surjective function, mapping each conditional belief hierarchy to a lexicographic belief

hierarchy (Theorem 1).

Using our main equivalence result, together with existence of a universal type space for C-
hierarchies (Battigalli and Siniscalchi, 1999, Prop. 2), we indirectly construct a terminal type space

model for lexicographic belief hierarchies, i.e., an LPS-based type space model that induces all L-

hierarchies (Theorem 3). To the best of our knowledge, this is the first such result in the literature,

and it provides a Bayesian foundation for hierarchies of lexicographic beliefs.

2For a precise definition of epistemic equivalence, see Definition 5.
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The natural analogue of probability-1 belief in a CPS is strong belief (Battigalli and Siniscalchi,

1999), while in an LPS the corresponding notion is assumption (Brandenburger et al., 2008). One

natural question arising then is whether our concept of epistemic equivalence also implies equivalence

between common strong belief and common assumption, i.e., if a Borel event is commonly strongly

believed under a conditional belief hierarchy, is it also commonly assumed under the epistemically

equivalent lexicographic belief hierarchy, and vice versa? Brandenburger et al. (2007) have already

shown that if we restrict attention to full-support beliefs in a single-agent framework, a Borel event

is strongly believed under a CPS if and only if it is assumed under the epistemically equivalent LPS.

Generalizing this result to our interactive setting, we prove that if beliefs are full-support, a Borel

event is indeed commonly strongly believed under a C-hierarchy if and only if it is commonly assumed

under the epistemically equivalent L-hierarchy (Proposition 4). Notice that this result applies not

only to events in the underlying space of uncertainty, but also to events that involve beliefs, such

as rationality, implying that it has interesting implications for solution concepts in games, e.g., for

clarifying the relationship between common assumption in rationality (Brandenburger et al., 2008)

and common strong belief in rationality (Battigalli and Siniscalchi, 2002).

The paper is structured as follows: Section 2 contains some necessary mathematical preliminaries;

Section 3 introduces the notions of conditional probability systems and lexicographic probability

systems, and presents the existing notion of epistemic equivalence between the two; Section 4 defines

conditional belief hierarchies and lexicographic belief hierarchies; Section 5 presents our main results;

Sections 6 concludes with a discussion. All proofs are relegated to the Appendix.

2. Preliminaries

We begin with some definitions and the basic notation.3 A topological space is called Polish whenever

it is separable and completely metrizable. Examples of Polish spaces include countable sets with the

discrete topology and Rn with the usual topology. A closed subset of a Polish space, the countable

product of Polish spaces and the topological sum of countably many Polish spaces are also Polish.

Let X be a Polish space, with the Borel σ-algebra F , and denote the space of Borel probability

measures on X by ∆(X). As usual, endow ∆(X) with the topology of weak convergence, which is the

coarsest topology that makes µ 7→
∫
fdµ continuous for every bounded and continuous real-valued

f . If X is Polish, ∆(X) is also Polish. For each µ ∈ ∆(X), let Supp(µ) denote the support of µ, i.e.,

the smallest closed subset of X that receives probability 1 by µ. Recall that the support is unique if

3For a more detailed presentation of the following concepts we refer to standard textbooks, such as Aliprantis and

Border (1994) or Kechris (1995).
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X is separable and metrizable.

3. Extended probability systems

3.1. Lexicographic probability systems

Let Nn(X) :=
∏n

k=1 ∆(X) denote the space of sequences of Borel probability measures of length n

together with the product topology of weak convergence.4 As a finite product of Polish spaces, Nn(X)

is Polish. Let N (X) :=
⊕∞

n=1Nn(X) be the topological sum of all Nn(X), i.e., it is the space of finite

sequences of Borel probability measures. SinceN (X) is the topological sum of countably many Polish

spaces, it is Polish too. For an arbitrary µ̃ = (µ1, . . . , µn) ∈ Nn(X), let Supp(µ̃) :=
⋃n
m=1 Supp(µm)

denote the support of µ̃. Let N+(X) denote the space of full-support sequences, i.e., we write

µ̃ ∈ N+(X) whenever it is the case that Supp(µ̃) = X.

Definition 1. A lexicographic probability system (LPS) over a measurable space X is a finite sequence

of Borel probability measures µ̃ := (µ1, . . . , µn) ∈ Nn(X) for some positive integer n, such that

(L1) there exist Borel events A1, . . . , An ⊆ X with µm(Am) = 1, and µ`(Am) = 0 for all ` 6= m.

We retain the usual interpretation of an LPS. Accordingly, µ1 is the individual’s primary theory

over X, µ2 the secondary theory, µ3 the tertiary theory, and so on. Intuitively, the primary theory,

which is the most important one, describes the agent’s usual beliefs about X. The secondary theory

describes the agent’s beliefs once she has decided for some reason to discard her primary theory.

Likewise, the tertiary theory describes the agent’s beliefs once she has discarded both the primary

and the secondary theory, and so on. Obviously, standard beliefs are a special case of an LPS with

length 1. The notion of the LPS was first introduced for finite spaces by Blume et al. (1991a), and

further studied by Brandenburger et al. (2008) and Halpern (2010).5

The property (L1) is called mutual singularity. For the time being let us focus on a countable

X with the discrete topology, in which case mutual singularity has a more natural interpretation.

First observe that in this case, mutual singularity is equivalent to requiring that the supports of the

different theories are disjoint. Now, in order to understand the intuition behind such a restriction

of non-overlapping supports, let us first interpret an LPS as a way to capture the notion of “a state

4For each pair
(
(µ1, . . . , µn), (ν1, . . . , νn)

)
∈ Nn(X)×Nn(X), take the pair (µm, νm) with the maximum Prohorov

distance, thus inducing a metric in Nn(X). Since the Prohorov metric induces the topology of weak convergence in

∆(X), the metric defined above is simply the product topology of weak convergence.
5Blume et al. (1991a) use the term “lexicographic conditional probability systems”, whereas Halpern (2010) uses

the term “mutually singular lexicographic probability systems” to describe the object introduced in Definition 1.
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being infinitely more likely than another state”. In particular, x ∈ X is said to be deemed infinitely

more likely than y ∈ X whenever it is the case that x ∈ Supp(µm) and y ∈ Supp(µ`) with m < `.6

Then, mutual singularity ensures that it cannot the case that x is deemed infinitely more likely than

x itself. Thus, mutual singularity allows the agent to partition X into classes of most likely elements,

second most likely elements, and so on.7

Note that this type of reasoning seems mostly plausible in cases where the agent can directly

observe verifiable events (e.g., see Heifetz et al., 2010). In particular, the primary theory corresponds

to the unconditional beliefs over X, with Supp(µ1) being the states deemed most likely by the agent.

The secondary theory then corresponds to the conditional beliefs given that the agent has learned

that no state in Supp(µ1) occurs, and so on.

Lexicographic probability systems (that satisfy mutual singularity) are axiomatized by Blume et

al. (1991a, Sect. 5), who present a preference-based foundation that relaxes the standard Archimedean

property.8 Accordingly, the agent’s preferences over two acts, are represented by first comparing the

unconditional expected utilities, i.e., the expected utilities under the primary theory. If these are

equal, then we compare conditional expected utilities given the set of states that receive zero prob-

ability by the primary theory, i.e., we compare the expected utilities under the secondary theory,

and so on. In the same paper, Blume et al. (1991a) also point out that in the existence of mutual

singularity, a link between LPS’s and CPS’s – which will be formally defined in the next section –

can be established.

Of course, while we find this way of modeling beliefs in general appealing, we still need to

recognize that mutual singularity can be rather restrictive in some cases. For instance, if we restrict

attention to mutually singular lexicographic beliefs, there exist games with the property that not

every self admissible set could arise under rationality and common assumption in rationality (e.g., see

Brandenburger et al., 2008, Fig. 2.6).9 Moreover, mutual singularity implicitly postulates a rather

radical way of forming alternative theories. Namely, in the presence of mutual singularity, once the

agent discards her primary theory, she rules out all states that were deemed possible by this theory.

Despite these limitations, in this paper we maintain mutual singularity for two reasons. First,

as we have already mentioned above, mutual singularity allows us to draw a relationship between

(hierarchies of) lexicographic beliefs and (hierarchies of) conditional beliefs, which is the main aim

of this project. In addition, we would like to stay in line with the natural predecessor of this paper

6Later in this section, we generalize this definition to capture the idea of a Borel event being infinitely more likely

than another Borel event in an arbitrary topological space.
7A similar type of reasoning is modeled with a plausibility ordering (e.g., see Perea, 2013).
8In the same paper, they also provide a weaker axiomatization for LPS’s that does not necessarily satisfy mutual

singularity.
9I would like to thank one of the referees for pointing this out.
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(Brandenburger et al., 2008). We further discuss mutual singularity in Section 6.

Let L(X) denote the space of lexicographic probability systems, while Ln(X) := L(X) ∩ Nn(X)

denotes the space of lexicographic probability systems of length n. Throughout the paper, whenever

an LPS µ̃ is of length n, we write Λ(µ̃) = n. Furthermore, let L+(X) := L(X) ∩N+(X) denote the

space of full-support LPS’s. Several papers in the literature restrict focus only to full-support LPS’s

in order to capture the idea of cautious agents who deem every state possible (e.g., Brandenburger

et al., 2008; Heifetz et al., 2010). However, in general an LPS may still have null states that are

deemed unlikely by each theory. In the present paper, we allow for such LPS’s. Finally, recall from

Brandenburger et al. (2008, Cor. C.2) that L(X) and L+(X) are Borel in N (X).

Now, we recall the notion of assumption, first introduced by Brandenburger et al. (2008). Fix an

LPS, µ̃ = (µ1, . . . , µn) ∈ L(X) and two disjoint Borel events A,B ∈ F . We say that A is infinitely

more likely than B under µ̃ whenever

(a) for each open T ⊆ X with A ∩ T 6= ∅, there is some m ∈ {1, . . . , n} such that µm(A ∩ T ) > 0,

(b) if µm(A ∩ T1) > 0 and µ`(B ∩ T2) > 0 for any open T1, T2 ⊆ X, then m < `.

Intuitively, A is infinitely more likely than B if it is the case that B is deemed likely only after A

has already been ruled out, e.g., if X is finite, every element of A appears before every element of B

in the LPS that describes the agent’s beliefs. Notice that the idea of an event being infinitely more

likely than another event is conceptually related to the notion of mutual singularity, in the sense

that A cannot be infinitely more likely than A itself. Similar notions of “infinitely more likely” have

appeared in several papers in the literature (e.g., Blume et al., 1991a,b; Battigalli, 1996; Asheim and

Dufwenberg, 2003; Brandenburger et al., 2008; Heifetz et al., 2010). Though, most of these papers

consider full support LPS’s, it does not need to be the case.

Definition 2. A Borel event A ∈ F is assumed under µ̃ whenever A is infinitely more likely than

its complement X \ A under µ̃.

This is the natural extension of probability-1 belief to cases where the agent reasons according

to an LPS. Throughout the paper, let A(A) ⊆ L(X) denote the LPS’s that assume A, and then we

naturally define A+(A) := A(A) ∩ L+(X). Brandenburger et al. (2008, Cor. 3) showed that A+(A)

is a Borel subset of L(X) whenever A is Borel.

3.2. Conditional probability systems

Let B ⊆ F \ {∅} be a collection of non-empty, Borel conditioning events.
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Definition 3. A conditional probability system (CPS) on (X,F ,B) is a function π : F × B → [0, 1]

that satisfies

(C1) π(B|B) = 1, if B ∈ B,

(C2) π(·|B) is a probability measure over (X,F) for every B ∈ B,

(C3) π(A|C) = π(A|B) · π(B|C), if A ⊆ B ⊆ C, with A ∈ F and B,C ∈ B.

According to the usual interpretation, a CPS describes the agent’s beliefs upon having observed

each of the conditioning hypotheses in B. Standard (unconditional) beliefs are a special case of a

CPS with B = {X}. Conditional probability systems were first introduced by Rênyi (1955), and

later further studied by Myerson (1986) and Battigalli and Siniscalchi (1999).

In general, B ∪ {∅} does not need to form an algebra of events. Indeed, typically B corresponds

to the collection of information sets in a finite dynamic game with perfect recall, which do not

necessarily form an algebra in the space of the opponents’ strategies.

Now, in the presence of perfect recall, B is restricted to satisfy certain structural properties,

viz., two arbitrary conditioning events either have an empty intersection or one is a subset of the

other (see Halpern, 2010, Sect. 3.3). Every CPS satisfying these restrictions can be extended (in a

belief-preserving way) to another CPS with the collection of conditioning events forming an algebra,

i.e., the extended collection of conditioning events will be the closure of the original one with respect

to finite unions, finite intersections and complements. Of course, we should point out that such an

extension is not in general unique, e.g., if we start with X = {x1, x2, x3} and B = {{x1}}, then

the extended collection of conditioning events should also contain {x2, x3} and X itself. In this

case, the conditional beliefs given {x2, x3} are not uniquely defined, and the same applies for the

unconditional beliefs given X. Nevertheless, every extension would preserve the original conditional

beliefs at every information set where the player is active, and therefore from a game-theoretic point

of view the conditional beliefs given the “new” information sets are irrelevant. Furthermore, notice

that if we assume that players reason at all histories in the game (including those where nature

moves) – similarly to what is assumed in Battigalli and Siniscalchi (2002) – rather than just at those

where they are active, the extension would be unique as the players would have beliefs at every

history about the relative likelihood of any two of their own information sets. In this paper, we also

adopt this last point of view, and therefore assuming that B ∪ {∅} is an algebra is done without loss

of generality.10 We further discuss this issue in the next section after Proposition 1.

Whenever B ∪ {∅} is a finite algebra on X, we say that B is finitely generated. For a fixed B, let

∆B(X) denote the space of conditional probability systems on (X,F ,B). If B is finitely generated,

10This assumption is also present in Brandenburger et al. (2007).
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we say that π ∈ ∆B(X) is finitary. For some countable class E ⊆ F of finitely generated collections

of conditioning events, let C(X,E) :=
⊕
B∈E ∆B(X). If X is a countable set, F is also countable. In

this case, let C(X) := C(X,F) denote the space of all finitary CPS’s.

Recall that if B is a collection of clopen events, ∆B(X) is Polish (Battigalli and Siniscalchi, 1999,

Lem. 1). Therefore, if X is a countable set with the discrete topology, ∆B(X) is Polish for every

B ∈ F, and therefore C(X) is also Polish. Throughout the paper, unless explicitly stated otherwise,

whenever we consider a countable space of uncertainty we assume that it is endowed with the discrete

topology. This assumption is discussed in Section 6.

Following Brandenburger et al. (2007, Def. 4), we say that a CPS π ∈ ∆B(X) is full-support,

and we write π ∈ C+(X), whenever B ⊆ Supp
(
π(·|B)

)
for each B ∈ B. Notice that if X is countable

with the discrete topology, B ⊆ Supp
(
π(·|B)

)
is equivalent to B = Supp

(
π(·|B)

)
.

For some finitary π ∈ ∆B(X), define the sub-collection Bπ := {B1
π, . . . , B

ν
π} ⊆ B of conditioning

events as follows: First, let PB denote the finite partition of X from which B is generated, i.e., PB is

the finest B-measurable partition, and let

P1
π := PB B1

π :=
⋃
P∈P1

π

P

Obviously, since P1
π is a partition of X it follows directly that B1

π coincides with the entire space

X, and therefore π(·|B1
π) describes the agent’s unconditional beliefs. Then, for each integer m > 1

inductively define

Pmπ := {P ∈ Pm−1
π : π(P |Bm−1

π ) = 0} Bm
π :=

⋃
P∈Pmπ

P

Intuitively, B2
π is the largest conditioning event for which the conditional beliefs are not given by

applying Bayes rule, i.e., it is the largest B ∈ B with π(B|B1
π) = 0, implying that (C3) cannot

be used to derive π(·|B2
π). In other words, π(·|B2

π) describes the conditional beliefs once the agent

has ruled out all conditioning hypotheses deemed likely by π(·|B1
π). Notice already the conceptual

similarity between π(·|B2
π) and the secondary theory of an LPS, in that both describe the agent’s

beliefs once the usual unconditional beliefs have been discarded. We come back to the relationship

between the two notion in the next section. Likewise, B3
π is the largest B ∈ B with π(B|B1

π) = 0

and π(B|B2
π) = 0, i.e., π(·|B3

π) describes the conditional beliefs once the agent has ruled out all

conditioning hypotheses deemed likely by π(·|B1
π) or by π(·|B2

π), and so on.

Observe that by construction there exists some integer ν > 0 such that

B1
π ) B2

π ) · · · ) Bν
π 6= ∅ = Bν+1

π = Bν+2
π = · · ·

in which case we say that π is of length ν, and we write Λ(π) = ν. The latter follows directly from

the fact that B is finitely generated.
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Lemma 1. Consider π ∈ ∆B(X) and ρ ∈ ∆B(X) with Λ(π) = Λ(ρ) = n, such that π(A|Bm
π ) =

ρ(A|Bm
ρ ) for every A ∈ F and for all m = 1, . . . , n. Then, π(A|B) = ρ(A|B) for all A ∈ F and all

B ∈ B.

The previous result implies that every π ∈ ∆B(X) is determined by the conditional beliefs given

the events in Bπ. Henceforth, we call Bπ the collection of π-relevant conditioning events.

Now, we recall the notion of strong belief, first introduced in the literature by Battigalli and

Siniscalchi (1999).

Definition 4. A Borel event A ∈ F is strongly believed under π whenever for each B ∈ B with

A ∩B 6= ∅ it is the case that π(A|B) = 1.

Intuitively, the agent is certain of A given B, unless B contradicts A. In this respect, strong

belief is a generalization of probability-1 belief to cases where the agent reasons according to a CPS.

Throughout the paper, let SB(A) ⊆ C(X) denote the set of finitary CPS’s that strongly believe A.

We also define SB+(A) := SB(A) ∩ C+(X).

3.3. Epistemic equivalence of extended probability systems

In this section, we introduce our notion of epistemic equivalence between a CPS and LPS, according

to which the two are equivalent whenever they share the same length, and also for every integer m

smaller or equal than the length, the m-th theory of the LPS coincides with the conditional beliefs

given the m-th relevant conditioning event.

Definition 5. Consider some µ̃ ∈ L(X) and some π ∈ ∆B(X). We say that µ̃ is epistemically

equivalent to π whenever it is the case that

(E1) Λ(µ̃) = Λ(π) = n,

(E2) µm(A) = π(A|Bm
π ), for all Borel A ⊆ X and for each m = 1, . . . , n.

This definition of epistemic equivalence is already present, though not formally stated, in Bran-

denburger et al. (2007). A similar definition of equivalence is also used by Halpern (2010), who

relates LPS’s with a special class of CPS’s, the so-called Popper spaces.

Before moving forward, let us first elaborate on the two conditions that constitute our notion of

epistemic equivalence. Firstly, observe that we require the primary hypothesis of the LPS to coincide

with the unconditional beliefs in the CPS. We find this requirement natural, as both models are

generalizations of the standard probabilistic beliefs. Moreover, as we have already discussed in the

previous section, π(·|Bm
π ) describes the conditional beliefs once the agent has discarded the beliefs

10



described by π(·|B1
π) and π(·|B2

π) . . . and π(·|Bm−1
π ). On the other hand, the m-th theory µm of an

LPS describes the agent’s beliefs once she has discarded the theories µ1 and µ2 . . . and µm−1. In

this respect, π(·|Bm
π ) and µm capture exactly the same idea, i.e., they both describe the beliefs once

the agent has already discarded her beliefs m− 1 times. Finally, the respective lengths describe the

number of times the agent may change her mind due to the fact that her previously-formed beliefs

have been discarded, implying that a notion of epistemic equivalence should require them to be equal.

The following result is due to Brandenburger et al. (2007) and associates every finitary CPS with

an epistemically equivalent LPS.11

Proposition 1 (Brandenburger et al., 2007, Prop. 1). There exists a surjective function β : C(X)→
L(X) such that π is epistemically equivalent to β(π) for all π ∈ C(X).

First, note that β is the only function mapping each CPS to an epistemically equivalent LPS, as

shown in the proof of the previous result in the Appendix. Moreover, though β is surjective – implying

that every LPS is the image of some finitary CPS – it is not necessarily injective, i.e., there may

exist more than one CPS’s which are epistemically equivalent to the same LPS (see Brandenburger

et al., 2007, Ex. 1). However, this can only be the case if the two CPS’s have a different collection of

conditioning events, i.e., if π1 ∈ ∆B1(X) and π2 ∈ ∆B2(X) are such that π1 6= π2 and β(π1) = β(π2),

then it is the case that B1 6= B2. The latter follows directly from Lemma 1.

It is important to point out that the previous result relies on the collection of conditioning events

satisfying certain properties (Halpern, 2010, Prop. 3.9), which by the way trivially hold when the B
corresponds to the information sets in a game with perfect recall, and therefore also hold when B is

finitely generated. Otherwise, it follows from Halpern (2010, Ex. 3.8) that there is a CPS with no

epistemically equivalent LPS.12

Proposition 2. If X is countable, then β is Borel.

4. Hierarchies of extended beliefs

Let Θ be a countable fundamental space. In a game, Θ denotes the different values that a set of

relevant parameters can take, i.e., each θ ∈ Θ corresponds to a payoff vector (Harsanyi, 1967-68), or

a strategy profile (Brandenburger et al., 2008; Battigalli and Siniscalchi, 2002), or a combination of

the two. Let I = {a, b} be the set of agents, with typical elements i and j.13

11For the sake of completeness we also provide a proof in the Appendix.
12I am indebted to one of the referees for suggesting this particular comment.
13Our analysis can be directly generalized to any finite set of agents, in which case we obviously allow for correlated

beliefs, as usual.
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4.1. Hierarchies of lexicographic beliefs

Each agent forms lexicographic beliefs about Θ (first order lexicographic beliefs), lexicographic beliefs

about Θ and the opponent’s first order lexicographic beliefs (second order lexicographic beliefs), and

so on. Formally, consider the sequence

Θ0 := Θ

Θ1 := Θ0 × L(Θ0)

...

Θk+1 := Θk × L(Θk)

...

Definition 6. A lexicographic belief hierarchy (L-hierarchy) is sequence of LPS’s (µ̃1, µ̃2, . . . ) ∈
Ln(Θ0)×Ln(Θ1)× · · · for some integer n > 0. Let TL0 :=

⊕∞
n=1

(
Ln(Θ0)×Ln(Θ1)× · · ·

)
denote the

space of all L-hierarchies.

The LPS µ̃k = (µ1
k, . . . , µ

n
k) ∈ Ln(Θk−1) denotes the k-th order lexicographic beliefs, with µmk ∈

∆(Θk−1) being the m-th theory of the k-th order beliefs. Observe that by definition the L-hierarchy

consists of a sequence of LPS’s with same length, henceforth called the length of the lexicographic

belief hierarchy, and denoted by Λ(µ̃1, µ̃2, . . . ).
14

As usual, we restrict L-hierarchies to satisfy the standard coherency property, which roughly

speaking says that higher order beliefs do not contradict lower order beliefs. Formally, a lexicographic

belief hierarchy is coherent whenever it belongs to

TL1 :=
{

(µ̃1, µ̃2, . . . ) ∈ TL0 : margΘk−2
µ̃k = µ̃k−1, for all k > 1

}
,

where margΘk−2
µ̃k := (margΘk−2

µ1
k, . . . ,margΘk−2

µnk). Observe that by definition, if (µ̃1, µ̃2, . . . ) is

coherent, it is the case that margΘ µ̃k is an LPS over Θ. Throughout, the paper for an arbitrary

measurable space Y , let LΘ(Θ × Y ) := {µ̃ ∈ L(Θ × Y ) : margΘ µ̃ ∈ L(Θ)}. We also adopt the

notational convention that LΘ(Θ) := L(Θ).

14This is a standard assumption, even though it is rarely explicitly stated in the literature. The reason is that

most papers start with a lexicographic type space model – which is formally defined later in this paper – from which

they derive the lexicographic belief hierarchies (e.g., Brandenburger et al., 2008). However, in this case each hierarchy

consists by construction of a sequence of LPS’s with the same length, which is the length of the corresponding type.

To our knowledge, the only paper that begins by explicitly constructing lexicographic belief hierarchies is Catonini

(2012), but even there the property of all orders of beliefs being of the same length is implicitly imposed via the

standard coherency restriction, that we also introduce below.
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Notice our definition of an L-hierarchy requires every order of beliefs to be an LPS, and therefore to

satisfy mutual singularity. As we have already discussed in Section 3.1, imposing mutual singularity

on the underlying space of uncertainty can be justified on the basis of agent i receiving direct

verifiable evidence about Θ. On the other hand, i cannot receive direct verifiable evidence regarding

j’s beliefs, and therefore mutual singularity on the opponent’s beliefs may not be as natural (Heifetz

et al., 2010). However, once we have assumed that (µ̃1, µ̃2, . . . ) is coherent, it follows directly that µ̃2

satisfies mutual singularity on Θ × L(Θ), even if two different theories of µ̃2 have exactly the same

beliefs over L(Θ). Therefore, mutual singularity on higher order beliefs is a direct consequence of

mutual singularity over the underlying space of uncertainty together with coherency, thus implying

that it is not as restrictive as it might seem at first. We further elaborate on this issue in Section 6.

Now, we further restrict L-hierarchies to satisfy common certainty in coherency.15 Formally, for

every ` > 1, we inductively define

TL` :=
{

(µ̃1, µ̃2, . . . ) ∈ TL1 : µmk+2

(
Θ× ProjL(Θ0)×···×L(Θk) T

L
`−1

)
= 1,

for all k ≥ 0 and for every m = 1, . . . ,Λ(µ̃k+2)
}
.

For instance, TL2 contains those L-hierarchies which have the property that for every k > 0 all

theories of the k-th order lexicographic beliefs assign probability 1 to the opponent’s lower order

lexicographic beliefs not contradicting each other. Then, the L-hierarchies satisfying coherency and

common certainty in coherency are those in

TL :=
∞⋂
`=1

TL` .

Henceforth, unless explicitly stated otherwise, the term lexicographic belief hierarchies refers to L-

hierarchies that satisfy coherency and common certainty in coherency.

Hierarchies of lexicographic beliefs are typically represented by type space models (Brandenburger

et al., 2008). This is a natural extension of the usual representation of belief hierarchies as introduced

by Harsanyi (1967-68).

Definition 7. We define a lexicographic type space model as a tuple (Θ, Ta, Tb, λ̃a, λ̃b), where Ti is a

Polish space of L-types, and λ̃i : Ti → LΘ(Θ× Tj) is a Borel function.

An L-type, ti ∈ Ti, is a complete description of agent i’s state of mind, thus inducing an L-

hierarchy, as illustrated below. Let λ̃i(ti) :=
(
λ1
i (ti), . . . , λ

n
i (ti)

)
∈ LΘ(Θ× Tj).

The first order lexicographic beliefs are given by µ̃1(ti) =
(
µ1

1(ti), . . . , µ
n
1 (ti)

)
∈ Nn(Θ0), where

for each Borel event E0 ⊆ Θ0,

µm1 (ti)(E0) =

∫
{(θ,tj): θ∈E0}

dλmi (ti)

15We say that an event is certain under an LPS if it receives probability 1 by every theory of the LPS.
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is the probability that E0 receives by the m-th theory of µ̃1(ti). In order to show that µ̃1(ti) is an

LPS, it suffices to prove that (L1) holds, i.e., we would like to show that there exist Borel events

A1, . . . , An ⊆ Θ0 such that µm1 (ti)(Am) = 1 and µ`1(ti)(Am) = 0. The latter follows directly from

Definition 7, and more specifically from the fact that margΘ λ̃i(ti) ∈ L(Θ).

Likewise, the k-th order lexicographic beliefs are given by µ̃k(ti) =
(
µ1
k(ti), . . . , µ

n
k(ti)

)
∈ Nn(Θk−1),

where for each Borel event Ek−1 ⊆ Θk−1,

µmk (ti)(Ek−1) =

∫
{(θ,tj): (θ,µ̃1(tj),...,µ̃k−1(tj))∈Ek−1}

dλmi (ti)

is the probability that Ek−1 receives by the m-th theory of µ̃k(ti). Once again in order to prove

that µ̃k(ti) is an LPS, we use the fact that λ̃i(ti) ∈ LΘ(Θ × Tj). More specifically, observe that

µmk (ti)
(
Am×L(Θ0)×· · ·×L(Θk−2)

)
= 1 while at the same time µ`k(ti)

(
Am×L(Θ0)×· · ·×L(Θk−2)

)
=

0, implying that (L1) holds and therefore µ̃k(ti) is an LPS over Θk−1.

Notice that the previous definition is slightly different compared to the usual one, in that we

require λ̃i(ti) to be an element of LΘ(Θ × Tj), instead of simply being an LPS in L(Θ × Tj). The

reason we impose this additional restriction is that otherwise we would have types whose first order

beliefs would violate (L1), implying that they would not correspond to a lexicographic belief hierarchy

as this is defined above. Formally, if a type ti is mapped via λ̃i to an LPS outside LΘ(Θ×Tj), then it is

the case that µ̃1(ti) = margΘ λ̃i(ti) /∈ L(Θ), implying that
(
µ̃1(ti), µ̃2(ti), . . .

)
is not an L-hierarchy.16

The following example illustrates such a case.

Example 1. Consider the tuple (Θ, Ta, Tb, λ̃a, λ̃b), such that Θ = {θ1, θ2}, Ta = {t0a}, Tb = {t1b , t2b},
and suppose that λ̃a(t

0
a) =

(
λ1
a(t

0
a), λ

2
a(t

0
a)
)

is such that λ1
a(t

0
a)(θ1, t

1
b) = 1 and λ2

a(t
0
a)(θ1, t

2
b) = 1.

Then, observe that the first order beliefs µ̃1(t0a) =
(
µ1

1(t0a), µ
2
1(t0a)

)
violate (L1), since it is the case

that µ1
1(t0a)(θ1) = µ2

1(t0a)(θ1) = 1. Hence, µ̃1(t0a) is not an LPS over Θ, implying that (Θ, Ta, Tb, λ̃a, λ̃b)

is not a lexicographic type space. /

Observe that by construction every L-type is associated with a lexicographic belief hierarchy

that satisfies coherency and common certainty in coherency, and therefore it is an element of TL.

However, this does not imply common certainty in the event that everybody’s L-hierarchy has the

same length, e.g., it may be the case that λ̃(ti) ∈ Ln(Θ×Tj), and still for some (θ, tj) ∈ Supp
(
λ̃i(ti)

)
it is the case that λ̃j(tj) ∈ Lm(Θ× Ti) with m 6= n.

16Several papers in the literature, including Brandenburger et al. (2008), do not require mutual singularity on the

underlying space of uncertainty, but rather only on Θ× Tj , in which case the image of each type does not need to be

in LΘ(Θ× Tj), but merely in L(Θ× Tj). However, if one wants to impose mutual singularity on Θ, like for instance

in Heifetz et al. (2010) or in this paper, λ̃i(ti) should necessarily belong to LΘ(Θ× Tj).
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Finally, note that TL should not be viewed as a set of types, but merely as a subset of belief

hierarchies. The reason is that types are in principle abstract objects which have a meaning only

within a type space model, whereas belief hierarchies are self-contained. In either case, later in the

paper, we construct a type space model that induces all belief hierarchies in TL.

4.2. Hierarchies of conditional beliefs

Each agent is endowed with a finitely generated collection of conditioning hypotheses, and forms

conditional beliefs about Θ (first order conditional beliefs), conditional beliefs about Θ and the

opponent’s first order conditional beliefs (second order conditional beliefs), and so on. Before mov-

ing forward, let us already point out that our analysis generalizes the standard one by Battigalli

and Siniscalchi (1999), in that we allow players to be uncertain about the opponent’s collection of

conditioning events. We further elaborate on this issue later in the paper.

Formally, for an arbitrary measurable space Y and a finitary collection B of conditioning events

in Θ, let B × Y := {B × Y |B ∈ B} denote the cylinders generated by B. Each cylinder in B × Y
corresponds to a conditioning event in Θ× Y . Moreover, define

FY :=
{
B × Y

∣∣ B ∈ F
}

=
{
{B × Y |B ∈ B}

∣∣ B ∈ F
}
.

Each element of FY is a different collection of conditioning events in Θ × Y . Observe that FY is

countable, whenever Θ is countable. Now, let

Ψ0 := Θ F0 := F

Ψ1 := Ψ0 × C(Ψ0,F0) F1 := FC(Ψ0,F0)

...
...

Ψk+1 := Ψk × C(Ψk,Fk) Fk+1 := FC(Ψ0,F0)×···×C(Ψk,Fk)

...
...

Definition 8. A hierarchy of conditional beliefs (C-hierarchy) is a sequence of CPS’s (π1, π2, . . . ) ∈
∆B(Ψ0)×∆B×C(Ψ0,F0)(Ψ1)× · · · for some B ∈ F. Let TC0 :=

⊕
B∈F
(
∆B(Ψ0)×∆B×C(Ψ0,F0)(Ψ1)× · · ·

)
denote the space of all C-hierarchies.

The CPS πk ∈ ∆B×C(Ψ0,F0)×···×C(Ψk−2,Fk−2)(Ψk−1) denotes the k-th order conditional beliefs, with

πk
(
·|B × C(Ψ0,F0)× · · · × C(Ψk−2,Fk−2)

)
∈ ∆(Ψk) denoting the k-th order conditional beliefs given

the conditioning event B × C(Ψ0,F0) × · · · × C(Ψk−2,Fk−2) ∈ B × C(Ψ0,F0) × · · · × C(Ψk−2,Fk−2).

Observe that by definition the C-hierarchy consists of a sequence of CPS’s with the property that
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the collections of conditioning events are cylinders generated by some fixed B ∈ F. That is, if an

agent’s conditioning events on the fundamental space of uncertainty are those in B ∈ F, then her

collection of conditioning events on Ψk+1 contains those in B × C(Ψ0,F0) × · · · × C(Ψk,Fk), which

is obviously an element of Fk+1. This restriction is already present in Battigalli and Siniscalchi

(1999), with the difference that they only consider cases where F0 contains a unique collection of

conditioning hypotheses for each player, and this collection is common knowledge. Henceforth, for

notation simplicity, we write ∆B(Ψk−1) := ∆B×C(Ψ0,F0)×···×C(Ψk−2,Fk−2)(Ψk−1) and for each B ∈ B we

write πk(·|B) := πk
(
·
∣∣ B × C(Ψ0,F0)× · · · × C(Ψk−2,Fk−2)

)
.

As usual, we restrict attention to conditional belief hierarchies that satisfy coherency, i.e., we

require higher order beliefs not to contradict lower order beliefs. Formally, the coherent hierarchies

are those in

TC1 :=
⋃
B∈F

{
(π1, π2, . . . ) ∈

∞∏
k=0

∆B(Ψk) : margΨk−2
πk = πk−1, for all k > 1

}
,

where margΨk−2
πk :=

(
margΨk−2

π(·|B) ; B ∈ B
)
.

Lemma 2. There exists a homeomorphism f : TC1 → C
(
Θ× TC0 ,FTC0

)
.

The previous result is a generalization of the standard result by Battigalli and Siniscalchi (1999,

Prop. 1). Accordingly, each coherent C-hierarchy (π1, π2, . . . ) ∈ TC1 is identified by a CPS on

(Θ × TC0 ,B × TC0 ), with fB(π1, π2, . . . ) ∈ ∆(Θ × TC0 ) denoting the conditional beliefs given the

conditioning hypothesis B × TC0 ∈ B × TC0 . The previous homeomorphism is a natural one, in that

margΨk−1
fB(π1, π2, . . . ) = πk(·|B) for all k > 0 and every B ∈ B.

We further restrict conditional belief hierarchies to satisfy not only coherency, but also common

certainty in coherency. Formally, for each ` > 1, define

TC` :=
{
t ∈ TC1 : fB(t)(Θ× TC`−1) = 1, for all B ∈ B

}
.

For instance, TC2 contains those C-hierarchies which have the property that for every k > 0 the k-th

order conditional beliefs given each conditioning event B × C(Ψ0,F0) × · · · × C(Ψk−2,Fk−2) assign

probability 1 to the event that the opponent’s lower order conditional beliefs will not contradict

each other. In other words, (π1, π2, . . . ) ∈
∏∞

k=0 ∆B(Ψk) belongs to TC2 whenever for each B ∈ B,

fB(π1, π2, . . . ) attaches probability 1 to the opponent being coherent. Then, the conditional belief

hierarchies satisfying coherency and common certainty in coherency are those in

TC :=
∞⋂
`=1

TC` .

Henceforth, unless explicitly stated otherwise the term conditional belief hierarchies refers to C-
hierarchies that satisfy coherency and common certainty in coherency.
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Hierarchies of conditional beliefs are typically represented by type space models (Battigalli and

Siniscalchi, 1999). This is the natural extension of Harsanyi’s construction to the case of conditional

belief hierarchies.

Definition 9. We define a conditional type space model as a tuple (Θ, Ta, Tb, ga, gb), where Ti is a

Polish space of C-types, and gi : Ti → C(Θ× Tj,FTj) is a continuous function.

A C-type, ti ∈ Ti, is a complete description of the agent’s epistemic state, in that it is associated

with a C-hierarchy, as shown below. Let gi(ti) :=
(
gBi (ti) ; B ∈ B

)
∈ ∆B(Θ× Tj), with B being the

collection of conditioning hypotheses associated with ti.

The first order conditional beliefs are given by π1(ti) ∈ ∆B(Ψ0), where for each Borel event

E0 ⊆ Ψ0,

π1(ti)(E0|B) =

∫
{(θ,tj): θ∈E0}

dgBi (ti)

is the probability that E0 receives given the conditioning hypothesis B. Verifying that π1(ti) is a

CPS is straightforward.

Likewise, the k-th order conditional beliefs are given by πk(ti) ∈ ∆B(Ψk−1), where for each Borel

event Ek−1 ⊆ Ψk−1

πk(ti)(Ek−1|B) =

∫
{(θ,tj): (θ,π1(tj),...,πk−1(tj))∈Ek−1}

dgBi (ti)

is the probability that Ek−1 receives given the conditioning event B×C(Ψ0,F0)×· · ·×C(Ψk−2,Fk−2).

Once again, it is straightforward verifying that πk(ti) is a CPS. Moreover, observe that by construction

the C-hierarchy
(
π1(ti), π2(ti), . . .

)
satisfies coherency and common certainty in coherency. However,

this does not imply common certainty in the event that every player has the same collection of

conditioning events, as illustrated in the next example.

Example 2. Consider the conditional type space (Θ, Ta, Tb, ga, gb), where Θ = {θ1, θ2}. Notice that

F = {B1,B2} where B1 =
{
{θ1, θ2}

}
and B2 =

{
{θ1}, {θ2}, {θ1, θ2}

}
. Suppose that Ta = {t1a} and

Tb = {t1b , t2b} are such that gi(t
k
i ) ∈ ∆Bk(Θ× Tj), and assume that g

{θ1,θ2}
a (t1a) assigns probability 1/4

to each (θ, tb) ∈ Θ × Tb. Then, observe that t1a is not certain about b’s collection of conditioning

events, as both B1 and B2 are deemed equally likely (given the unique conditioning event {θ1, θ2}). /

Battigalli and Siniscalchi (1999) showed that if it is the case that F0 = {B}, then there exists a

conditional type space model such that for every conditional belief hierarchy there exists a unique

type associated with it, while at the same time the function gi : Ti → ∆B(Θ × Tj) is a homeomor-

phism, implying that every conditional belief is associated with some type. Their result naturally

extends the standard result by Mertens and Zamir (1985) and Brandenburger and Dekel (1993) to
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the space of conditional beliefs. Below, we further generalize Battigalli and Siniscalchi’s construction

by introducing uncertainty about the other agent’s collection of conditioning events.

Proposition 3. There exists a homeomorphism g : TC → C(Θ× TC ,FTC ).

For every B ∈ B, let gB(π1, π2, . . . ) ∈ ∆(Θ × TC) denote the conditional beliefs given B × TC .

Once again, g is a natural homeomorphism, in that margΨk−1
gB(π1, π2, . . . ) = πk(·|B) for all k > 0

and every B ∈ B.

5. Epistemic equivalence of hierarchies of extended beliefs

5.1. Definition and existence

Recall the notion of epistemic equivalence between a CPS and an LPS, formally introduced in Defini-

tion 5. Accordingly, the two are equivalent whenever they share the same length, and the m-th theory

of the LPS coincides with the conditional probability measure given the m-th relevant conditioning

hypothesis of the CPS.

This notion of epistemic equivalence naturally applies to first order beliefs, thus inducing the

concept of first order epistemic equivalence between first order conditional beliefs and first order

lexicographic beliefs. Formally, µ̃1 ∈ L(Θ0) is first order epistemically equivalent to π1 ∈ C(Ψ0,F0)

whenever it is the case that β(π1) = µ̃1.

However, the previous concept of epistemic equivalence cannot be directly extended to higher

order beliefs, as the k-th order lexicographic beliefs are defined on a different space than the k-th

order conditional beliefs. For instance, the second order lexicographic beliefs are described by an

LPS over Θ1 whereas the second order conditional beliefs are described by a CPS over Ψ1. Thus,

in order to define second order epistemic equivalence between second order lexicographic beliefs and

second order conditional beliefs, we first need to translate each event in Θ1 to an event in Ψ1. In

order to do this, we define the Borel surjective function β1 : Ψ1 → Θ1 by β1(θ, π1) =
(
θ, β(π1)

)
.

Then, we say that µ̃2 ∈ L(Θ1) is second order epistemically equivalent to π2 ∈ C(Ψ1,F1) given β1

whenever Λ(µ̃2) = Λ(π2) = n, and µm2 (E1) = π2

(
β−1

1 (E1)
∣∣ Bm

π2

)
, for all Borel events E1 ⊆ Θ1 and

for every m = 1, . . . , n.

Notice that in order to define second order epistemic equivalence, it is necessary to first introduce

the Borel function β1. Otherwise, the Borel event E1 ⊆ Θ1 could not be expressed as a Borel event

in Ψ1, and therefore second order conditional beliefs about E1 could not be expressed in the first

place.
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Higher order epistemic equivalence is inductively defined in an analogous way. Firstly, some

more notation is needed: Let TCΨk := ProjΨk(Θ × T
C) and TLΘk := ProjΘk(Θ × T

L), and notice that

specifically for k = 1 it is the case that TCΨ1
= Ψ1 and TLΘ1

= Θ1.

Definition 10. Fix an arbitrary k > 0, and consider (θ, µ̃1, . . . , µ̃k+1) ∈ TLΘk+1
and (θ, π1, . . . , πk+1) ∈

TCΨk+1
. Suppose that there exists a Borel surjective function βk : TCΨk → TLΘk . Then, we say that µ̃k+1

is (k+1)-th order epistemically equivalent to πk+1 given βk whenever

(Ek
1 ) Λ(µ̃k+1) = Λ(πk+1) = n,

(Ek
2 ) µmk+1(Ek) = πk+1

(
β−1
k (Ek)

∣∣ Bm
πk+1

)
, for all Borel events Ek ⊆ TLΘk and every m = 1, . . . , n.

Furthermore, if it is also the case that βk(θ, π1, . . . , πk) = (θ, µ̃1, . . . , µ̃k), we say that (θ, µ̃1, . . . , µ̃k+1)

is up to (k+1)-th order epistemically equivalent to (θ, π1, . . . , πk+1) given βk.

Notice that the previous definition restricts attention to hierarchies that satisfy coherency and

common certainty in coherency, i.e., the function βk maps elements of TCΨk to elements of TLΘk , rather

than elements of Ψk to elements of Θk. This is a natural restriction as – at least to the best of our

knowledge – the entire literature focuses exclusively on agents whose belief hierarchies have this type

of internal consistency.

Before moving forward, let us elaborate on the previous definition. First, observe that higher

order epistemic equivalence is defined inductively. As we have already mentioned, this is necessary in

order to make sure that k-th order lexicographic beliefs can be translated to k-th order conditional

beliefs, before associating (k + 1)-th order lexicographic beliefs with (k + 1)-th order conditional

beliefs. Then, once we have introduced the function βk, our notion of (k + 1)-th order epistemic

equivalence follows the same logic as the notion of epistemic equivalence that was introduced and

discussed in Section 3.

Since (k + 1)-th order epistemic equivalence relies on the existence of a Borel surjective function

βk, it is important to make sure that such a Borel surjective function exists for every k > 0.

Lemma 3. There exists a sequence of Borel surjective functions {βk : TCΨk → TLΘk}
∞
k=1 such that

(i) β1(θ, π1) =
(
θ, β(π1)

)
for all (θ, π1) ∈ TCΨ1

,

(ii) (θ, π1, . . . , πk) is up to k-th order epistemically equivalent to βk(θ, π1, . . . , πk) given βk−1 for all

(θ, π1, . . . , πk) ∈ TCΨk , and for each k > 1.

Henceforth, whenever we refer to a sequence {βk}∞k=1 of Borel surjective functions, we implicitly

assume that it satisfies conditions (i) − (ii) of the previous lemma. Then, following the previous

result, we can now define a notion of epistemic equivalence between a hierarchy of lexicographic

beliefs and a hierarchy of conditional beliefs.
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Definition 11. We say that an L-hierarchy (µ̃1, µ̃2, . . . ) ∈ TL is epistemically equivalent to a C-
hierarchy (π1, π2, . . . ) ∈ TC if for some sequence {βk}∞k=1 of Borel surjective functions, it is the case

that βk(θ, π1, . . . , πk) = (θ, µ̃1, . . . , µ̃k) for each k > 0.

Then, the following result follows directly from Lemma 3. The proof relies on the fact that for

every k > 0 if (π1, π2, . . . ) ∈ TC then (θ, π1, . . . , πk) ∈ TCΨk , and likewise if (µ̃1, µ̃2, . . . ) ∈ TL then

(θ, µ̃1, . . . , µ̃k) ∈ TLΘk .

Theorem 1. There exists a Borel surjective function h : TC → TL such that (π1, π2, . . . ) is epistem-

ically equivalent to h(π1, π2, . . . ) for all (π1, π2, . . . ) ∈ TC.

The fact that the function h is Borel implies that we can map Borel events from the space of

lexicographic belief hierarchies to Borel events in the space of conditional belief hierarchies, implying

that the language used by players whose reasoning is modeled with lexicographic probability systems

can be translated to the language used by players whose reasoning is modeled with conditional

probability systems.

It follows from h being a surjective function that every L-hierarchy is the image of some epis-

temically equivalent C-hierarchy, even if the L-hierarchy is such that agent is uncertain about the

length of the opponent’s first order lexicographic beliefs. Then, it may be the case that the only

epistemically equivalent C-hierarchy has the property that the agent is uncertain about the oppo-

nent’s collection of conditioning events. The latter illustrates why we have extended the standard

construction of Battigalli and Siniscalchi (1999) in a way that permits the agent to be uncertain

about the opponent’s B ∈ F. We further elaborate on this issue in Section 6.

5.2. Equivalence of types spaces

Recall the standard way of representing C-hierarchies and L-hierarchies via the corresponding type

space models. A natural question that arises at this point is whether there exist conditions imposed

directly on the type space models which lead to epistemic equivalence between the conditional belief

hierarchy associated with a C-type and the lexicographic belief hierarchy associated with an L-type.

The following result shows that this is in fact possible.

Theorem 2. Consider two Polish spaces Ta and Tb, and let (Θ, Ta, Tb, ga, gb) and (Θ, Ta, Tb, λ̃a, λ̃b)

be a conditional type space model and a lexicographic type space model respectively, such that the LPS

λ̃i(ti) ∈ LΘ(Θ× Tj) is epistemically equivalent to the CPS gi(ti) ∈ C(Θ× Tj,FTj) for all ti ∈ Ti and

all i ∈ {a, b}. Then,
(
µ̃1(ti), µ̃2(ti), . . .

)
∈ TL is epistemically equivalent to

(
π1(ti), π2(ti), . . .

)
∈ TC

for every ti ∈ Ti.
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In the previous theorem, notice that for each player i the space of C-types coincides with the

space of L-types. This is not necessary, as long as the two are homeomorphic. In either case, a

type is an abstract object which has some specific meaning only in the context of a type space

model. Therefore, using the same type space of types in the two models or simply using different

(homeomorphic) type spaces does not affect our analysis.

An interesting consequence of the previous result is that we do not need to use the functions

{βk}∞k=1 in order to verify that an L-hierarchy is epistemically equivalent to a C-hierarchy.

5.3. Terminal lexicographic type space

So far in the literature there is no general result about the existence of a terminal lexicographic type

space, i.e., one inducing all L-hierarchies from TL.17 One of the difficulties with this construction is

the fact that there is no general result about the topological structure of L(X), even when X is a

Polish space.18 In this section, we use the equivalence results established above, together with the

homeomorphism of Proposition 3, to prove the existence of such a large type space.

Theorem 3. There exists a Polish type space T and a Borel surjective function λ̃ : T → LΘ(Θ× T )

such that for each (µ̃1, µ̃2, . . . ) ∈ TL there exists some t ∈ T with (µ̃1(t), µ̃2(t), . . . ) = (µ̃1, µ̃2, . . . ).

Notice that the function λ̃ is not injective, implying that there may exist redundant types in T .

This is due to the fact that the previous result uses the equivalence result established in Theorem 1,

according to which the function h : TC → TL is surjective but not injective. An open question for

future research is to construct a complete lexicographic type space model without redundant types.19

5.4. Common assumption versus common strong belief

In the standard model of belief hierarchies, one concept of particular interest is common belief. Ac-

cordingly, an event is commonly believed if everybody believes it, everybody believes that everybody

17There is no consensus in the literature regarding a term that describes a type space with the property that for

every belief hierarchy there exists a type inducing this hierarchy. In this paper, we follow Friedenberg (2010) and

Perea (2012, p. 131) who call such a type space terminal.
18Recall that L(X) is Borel (Brandenburger et al., 2008, Cor. C.1). However, we do not know whether it is closed

in N (X) or not, implying that L(X) may not be Polish, and therefore we cannot directly apply the Kolmogorov

extension theorem.
19In a slightly different framework that allows first order beliefs to violate mutual singularity, Catonini (2012)

constructs a non-redundant terminal type space model for lexicographic belief hierarchies. The difference is that in

his setting, lexicographic beliefs are not restricted to satisfy (L1), implying that they form a Polish space. Therefore,

the Kolmogorov extension Theorem can be used, similarly to Brandenburger and Dekel (1993) and unlike this paper.
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believes it, and so on. The analogue of common belief in an environment where agents reason ac-

cording to lexicographic belief hierarchies is common assumption, whereas if agents reason according

to conditional belief hierarchies the corresponding notion is common strong belief.

The question that naturally arises at this point is whether our notion of epistemic equivalence

between C-hierarchies and L-hierarchies implies equivalence between common strong belief and com-

mon assumption. In other words, does common strong belief of a Borel event E ⊆ Θ × Ta × Tb at

some state imply common assumption of the same event, and vice versa? In general, the answer is

negative, as according to Brandenburger et al. (2007, Ex. 3), an event may be strongly believed by

a (non-full-support) CPS and still not assumed by the equivalent LPS. Thus, we restrict attention

to full-support beliefs.

Proposition 4. Consider a countable Θ and two Polish spaces Ta and Tb, and let (Θ, Ta, Tb, ga, gb)

and (Θ, Ta, Tb, λ̃a, λ̃b) be a conditional type space model and a lexicographic type space model such

that λ̃i(ti) ∈ L+
Θ(Θ × Tj) is epistemically equivalent to gi(ti) ∈ C+(Θ × Tj,FTj) for all ti ∈ Ti and

every i ∈ {a, b}. Consider some Borel event E ⊆ Θ×Ta×Tb. Then, at some epistemic state (ta, tb),

the event E is commonly strongly belief if and only if it is commonly assumed.

The previous result is the first one in the literature – at least to our knowledge – directly relating

common assumption and common strong belief. Given that the two notions are extensively used for

the characterization of various solution concepts, we believe that Proposition 4 can have important

implications for the analysis of games, e.g., if we fix a conditional type space model and a lexicographic

type space model satisfying the equivalence conditions stated in the previous result, “rationality and

common strong belief of rationality” (RCSBR) coincides with “rationality and common assumption

in rationality” (RCAR). Of course, our result does not resolve the tension between the impossibility

result in Brandenburger et al. (2008, Thm. 10.1) and the positive result in Battigalli and Siniscalchi

(2002, Prop. 6), as the type space models in Proposition 4 differ from the ones considered in these

two papers.20 Moreover, we do not provide conditions under which RCAR and RCSBR are empty

events. What we do instead, is to provide conditions under which the two concepts are essentially

equivalent. We further discuss the relationship between RCAR and RCSBR in the next section.

20Brandenburger et al. (2008) showed that in complete continuous lexicographic type space models, RCAR is an

empty event. On the other hand, Battigalli and Siniscalchi (2002) showed that in complete continuous conditional

type space models, RCSBR is non-empty. For the precise definitions of complete continuous type space models, we

refer to the corresponding papers, while for a discussion on the relationship between the two results, we refer to the

supplementary material of Brandenburger et al. (2008).
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6. Discussion

6.1. Mutual singularity

Recall that mutual singularity captures the idea that the supports of the different theories of an LPS

do not overlap “much”. This assumption has been already motivated for countable spaces with the

discrete topology, in which case it is equivalent to assuming that the supports of the different theories

are disjoint. This equivalence would not hold in general Polish spaces, in which case the condition

of disjoint supports is only sufficient for mutual singularity, but not necessary. In fact, generalizing

the decision-theoretic foundation of Blume et al. (1991a) for LPS’s that satisfy (L1) in an arbitrary

space remains an open problem.

Nonetheless, throughout this paper, we only consider L-hierarchies (µ̃1, µ̃2, . . . ) ∈ TL such that

for every k > 0 it is the case that the different theories (µ1
k, . . . , µ

n
k) of µ̃k have disjoint supports. This

follows from the fact that (i) Θ has been assumed to be a countable space with the discrete topology,21

and (ii) coherency is imposed. In particular, as we have already mentioned in Section 3, the fact

that Θ is countable implies that µ̃1 ∈ L(Θ) satisfies the condition of non-overlapping supports.

Furthermore, it follows form the standard coherency assumption that for every k > 1 and for every

m = 1, . . . , n, it is the case that Supp(µmk ) ⊆ Supp(µm1 )×L(Θ0)× · · · × L(Θk−2). Intuitively, this is

because, as we have already pointed out in Section 4, in practice we only impose mutual singularity

on the beliefs about the underlying space of uncertainty, and not about the opponents beliefs.

Finally, let us stress that so far, there is no consensus in the literature when it comes to assuming

mutual singularity or not, i.e., some game-theoretic applications impose it (e.g., Brandenburger et

al., 2007, 2008; Heifetz et al., 2010; Keisler and Lee, 2011), while others do not (e.g., Blume et al.,

1991b).

6.2. Cardinality and topology of the underlying space of uncertainty

Throughout the paper, we have mostly focused on a countable underlying space of uncertainty Θ

endowed with the discrete topology. The reason for doing so is a technical one, and stems from the

fact that if Θ was assumed to be uncountable, the collection of finite algebras, and therefore F would

not be a countable set. Hence, the space of finitary CPS’s would become the topological sum of

uncountably many Polish spaces, and therefore it would not be necessarily Polish. As a consequence

our analysis would not be valid any more.

At the same time, assuming that Θ is endowed with the discrete topology is also necessary, as

otherwise there would exist some collections B ∈ F that would not consist of clopen conditioning

21See the next section for further discussion on this assumption.
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events, and the latter is crucial for our results, as well as the ones by Battigalli and Siniscalchi (1999).

For instance, in such a case we would not be able to establish the existence of the homeomorphism

g from Proposition 3. In any case, though we recognize that there are certain applications in eco-

nomics with an uncountable space of parameters, we still find that our results sufficiently general to

accommodate most interesting cases.

6.3. Uncertainty about the opponent’s collection of conditioning events

As it has been already stated, TC contains hierarchies of conditional beliefs that express uncertainty

about the opponent’s collection of conditioning events. On the one hand, such a generalization of

Battigalli and Siniscalchi (1999) is interesting from a game-theoretic point of view, as it provides a

framework for studying dynamic games with players who are uncertain of the opponents’ information

partition (e.g., Zuazo-Garin, 2013). On the other hand, as it has been already mentioned, extending

the model in a way that allows players to have this additional type of uncertainty is necessary for

a technical reason. Namely, our main aim in this paper is to relate lexicographic belief hierarchies

and conditional belief hierarchies, which we do in Theorem 2, and this would not have been possible

without allowing this additional layer of uncertainty. The reason is that there are t` ∈ TL such that

every epistemically equivalent tc ∈ h−1(t`) is associated with a CPS over Θ×TC that deems possible

C-types of the opponent with different collections of conditioning events. This is often the case, when

t` is associated with an LPS that deems possible L-types of the opponent with different lengths. Let

us illustrate this with an example.

Example 3. Let Θ = {θ1, θ2} and suppose that a deems equally likely that (i) b’s first order

lexicographic beliefs have only one theory assigning probability 1 to {θ1}, and (ii) b’s first order

lexicographic beliefs have two theories with the primary one assigning probability 1 to {θ1} and

the secondary one assigning probability 1 to {θ2}. Now, the only way to construct b’s first order

conditional beliefs which are epistemically equivalent to b’s first order lexicographic beliefs in (i),

is to let b’s collection of conditioning hypotheses be {{θ1, θ2}}, as otherwise the length of the LPS

capturing these beliefs would be equal to 2. At the same time, in order to construct b’s first order

conditional beliefs which are epistemically equivalent to b’s first order lexicographic beliefs in (ii),

we need to let b’s collection of conditioning hypotheses be {{θ1, θ2}, {θ1}, {θ2}}. Thus, in order to

construct a C-hierarchy of a that is epistemically equivalent to a’s L-hierarchy that contains these

second order lexicographic beliefs, it is necessary to allow a to be uncertain about b’s collection of

conditioning events. /
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6.4. Common strong belief in rationality versus common assumption in

rationality

One of the recent questions within epistemic game theory is to further clarify the relationship between

the impossibility result from Brandenburger et al. (2008, Thm. 10.1), according to which the event

RCAR is empty in a complete continuous lexicographic type space model, with the positive result in

Battigalli and Siniscalchi (2002, Prop. 6), according to which the event RCSBR is non-empty in a

complete continuous conditional type space model. As we have already mentioned, our Proposition

4 does not resolve the tension between these two results, but merely provides conditions under which

the two concepts are equivalent, and therefore yield the same predictions. However, it is important

to point out that many of our conditions are not present in either Brandenburger et al. (2008), or in

Battigalli and Siniscalchi (2002).

Firstly, notice that we allow for uncertainty over the opponent’s collection of conditioning events,

contrary to Battigalli and Siniscalchi (2002). Secondly, unlike Brandenburger et al. (2008), we restrict

attention to lexicographic type spaces with the property that the marginal distributions over the

underlying space of uncertainty form an LPS. Thirdly, observe that Battigalli and Siniscalchi (2002)

do not restrict attention to full-support C-types, implying that common strong belief of rationality

may not imply common assumption of rationality in the corresponding L-type space. Finally, the

negative result of Brandenburger et al. (2008) relies on the lexicographic type space being complete,

implying that there exists at least one type for each player associated with a non-full support LPS,

which is not the case in Proposition 4.

Concluding, although further research is needed in order to clearly understand the relationship

between the two notions, we can conclude that RCAR and RCSBR are not equivalent in general, but

only under additional conditions. Still, our result provides a new tool for studying solution concepts,

e.g., sufficient epistemic conditions for a solution concept in terms of RCSBR in a C-type space with

full-support types, would immediately yield the corresponding sufficient conditions for this solution

concept in terms of RCAR.

A. Proofs of Section 3

Proof of Lemma 1. Consider arbitrary A ∈ F and B ∈ B. If π(A ∩ B|Bm
π ) = ρ(A ∩ B|Bm

ρ ) = 0 for all

m = 1, . . . , n, then it follows directly that π(A|B) = ρ(A|B) = 0. Suppose instead that m is the smallest

number in {1, . . . , n} such that π(A ∩ B|Bm
π ) = ρ(A ∩ B|Bm

ρ ) > 0. Observe that A ∩ B ∈ F and Bm
π ∈ B,

while at the same time A∩B ⊆ B ⊆ Bm
π . Then, it follows by (C3) that π(A∩B|Bm

π ) = π(A∩B|B)·π(B|Bm
π ),

implying that π(A|B) = π(A∩B|Bm
π )/π(B|Bm

π ). Likewise, we show that ρ(A|B) = ρ(A∩B|Bm
ρ )/ρ(B|Bm

ρ ).

25



Observe that the right-hand sides of the previous two equations are equal, implying that π(A|B) = ρ(A|B),

which completes the proof.

Proof of Proposition 1. Firstly, we show that for every π ∈ C(X) there is a unique µ̃ ∈ L(X) such that

µ̃ is equivalent to π: Let π ∈ ∆B(X) for some B ∈ F. Define, µ̃ = (µ1, . . . , µn) ∈ Nn(X) by µm := π(·|Bm
π ),

and observe that the collection {(B1
π \ B2

π), . . . , (Bn−1
π \ Bn

π ), Bn
π} of Borel events satisfies (L1), implying

that µ̃ ∈ L(X). Moreover, notice that by construction Λ(µ̃) = Λ(π). Suppose that there exists some other

ν̃ ∈ Ln(X) which is equivalent to π. Then, it follows by definition that νm = π(·|Bm
π ) for all m = 1, . . . , n,

implying that µm = νm. Secondly, we show that for every µ̃ ∈ Ln(X) there is some equivalent π ∈ C(X):

Consider some µ̃ = (µ1, . . . , µn) ∈ Ln(X). Then, by (L1), there is a collection of Borel events {A1, . . . , An}

such that µm(Am) = 1 and µm(A`) = 0. Define the partition P := {B1, . . . , Bn} by Bm := Am \
(⋃

6̀=mA`
)

for each m = 1, . . . , n − 1 and Bn := An ∪
(
X \ (B1 ∪ · · · ∪ Bn−1)

)
. Let the finitely generated collection

B be the closure of P with respect to union, and define Bπ = {B1
π, . . . , B

n
π} by Bm

π := X \
(⋃

`<mB`
)
.

Now, define π : F × B → [0, 1] such that π(·|Bm
π ) := µm for all m = 1, . . . , n. For every B ∈ B, consider

the smallest m ∈ {1, . . . , n} such that π(B|Bm
π ) > 0, which by construction always exists. Then, for every

A ∈ F , let π(A|B) := π(A∩B|Bm
π )/π(B|Bm

π ). Finally, verify that π ∈ ∆B(X), with Bπ being the collection

of π-relevant events, which completes the proof.

Proof of Proposition 2. First, we show that ∆Bπ (X) := {ρ ∈ ∆B(X) : Bρ = Bπ} is closed in [∆(X)]B.

Observe that ∆Bπ (X) can be rewritten as

∆B(X) ∩
(
{p ∈ ∆(X) : p(B1

π \B2
π) ≥ 1} × · · · × {p ∈ ∆(X) : p(Bn

π ) ≥ 1}︸ ︷︷ ︸
given π-relevant events

×∆(X)× · · · ×∆(X)︸ ︷︷ ︸
given other events in B

)
.

Since X is countable, it follows that B is a collection of clopen events, and therefore ∆B(X) is closed in

[∆(X)]B (Battigalli and Siniscalchi, 1999, Lem. 1). Moreover, it follows from Aliprantis and Border (1994,

Cor. 15.6) that {p ∈ ∆(X) : p(Bm
π \Bm+1

π ) ≥ 1} is closed in ∆(X) for every m = 1, . . . , n− 1, and therefore

{p ∈ ∆(X) : p(B1
π \B2

π) ≥ 1}×· · ·×{p ∈ ∆(X) : p(Bn
π ) ≥ 1}×∆(X)×· · ·×∆(X) is also closed in [∆(X)]B,

which proves our claim. Now, let E ⊆ L(X) be Borel, and notice that

β−1(E) =
∞⋃
n=1

β−1
(
E ∩Nn(X)

)
=

∞⋃
n=1

⋃
B∈F

⋃
∆Bπ (X)⊆∆B(X)

(
β−1

(
(E ∩Nn(X)

)
∩∆Bπ (X)

)

=

∞⋃
n=1

⋃
B∈F

⋃
∆Bπ (X)⊆∆B(X)

{
ρ ∈ ∆Bπ (X) : β(ρ) ∈ E ∩Nn(X)

}
(1)

Fix some n > 0 and observe that E∩Nn(X) is a Borel subset of Nn(X). Since X is separable and metrizable,

E ∩Nn(X) is generated by Borel rectangles of the form of

{p ∈ ∆(X) : p(A1) ≥ α1} × · · · × {p ∈ ∆(X) : p(An) ≥ αn} ⊆ Nn(X).
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where Am ⊆ X is Borel and αm ∈ [0, 1] for each m = 1, . . . , n. Therefore, for any B ∈ F and an arbitrary

π ∈ ∆B(X), the event
{
ρ ∈ ∆Bπ (X) : β(ρ) ∈ E ∩Nn(X)

}
is generated by events of the form

{
ρ ∈ ∆Bπ (X) : β(ρ) ∈ {p ∈ ∆(X) : p(A1) ≥ α1} × · · · × {p ∈ ∆(X) : p(An) ≥ αn}

}
=

{
ρ ∈ ∆Bπ (X) : ρ(A1|B1

π) ≥ α1

}
∩ · · · ∩

{
ρ ∈ ∆Bπ (X) : ρ(An|Bn

π ) ≥ αn
}

= ∆Bπ (X) ∩
(
{p ∈ ∆(X) : p(A1) ≥ α1} × · · · × {p ∈ ∆(X) : p(An) ≥ αn}︸ ︷︷ ︸

beliefs given π-relevant events

×∆(X)× · · · ×∆(X)︸ ︷︷ ︸
given other events in B

)
︸ ︷︷ ︸

subset of [∆(X)]B

.

Since X is separable and metrizable it follows that {p ∈ ∆(X) : p(Am) ≥ αm} is Borel in ∆(X), and

therefore {p ∈ ∆(X) : p(A1) ≥ α1} × · · · × {p ∈ ∆(X) : p(An) ≥ αn} × ∆(X) × · · · × ∆(X) is Borel in

[∆(X)]B, which together with the fact that ∆Bπ (X) is closed, implies that
{
ρ ∈ ∆Bπ (X) : β(ρ) ∈ E∩Nn(X)

}
is generated by Borel events, and therefore it is Borel itself. Finally, it follows from X being countable that

F is also countable. Hence, by Eq. (1), β−1(E) is Borel which completes the proof.

B. Proofs of Section 4

Proof of Lemma 2. First, we inductively show that every Ψk is Polish. It holds by assumption that Ψ0

is Polish, and suppose that Ψk is also Polish. Observe that Ψk+1 can be rewritten as Ψk×
(⊕

B∈F ∆B(Ψk)
)
.

Recall that, since B contains only clopen events, ∆B(Ψk) is Polish (Battigalli and Siniscalchi, 1999, Lem. 1).

Furthermore, notice that F is countable, implying that
⊕
B∈F ∆B(Ψk) is Polish, and therefore so is Ψk+1.

Now, consider an arbitrary (π1, π2, . . . ) ∈ TC1 such that πk ∈ ∆B(Ψk−1), and fix some B ∈ B. Then, it

follows from Kolmogorov extension theorem (Aliprantis and Border, 1994, Cor. 15.27) that there exists a

unique probability measure π(·|B) ∈ ∆(Θ × TC0 ) such that margΨk−1
π(·|B) = πk(·|B) for all k > 0. Now

consider the collection of probability measures π :=
(
π(·|B) ; B ∈ B

)
∈ [∆(Θ×TC0 )]B, and we show that π is

a CPS. First, notice that (C1) and (C2) are trivially satisfied. Then, consider a Borel event A ⊆ Θ×TC0 , and

two conditioning events B,C ∈ B such that B ⊆ C. Observe that A =
⋂∞
k=0

(
ProjΨk A×

∏∞
`=k C(Ψ`,F`)

)
,

thus yielding

π(A|C × TC0 ) = π

( ∞⋂
k=0

(
ProjΨk A×

∞∏
`=k

C(Ψ`,F`)
) ∣∣∣ C × TC0 )

= lim
k→∞

π
(

ProjΨk A×
∞∏
`=k

C(Ψ`,F`)
∣∣∣ C × TC0 )

= lim
k→∞

πk+1

(
ProjΨk A

∣∣∣ C × k∏
`=0

C(Ψ`,F`)
)

= lim
k→∞

πk+1

(
ProjΨk A

∣∣∣ B × k∏
`=0

C(Ψ`,F`)
)
· πk+1

(
B ×

k∏
`=0

C(Ψ`,F`)
∣∣∣ C × k∏

`=0

C(Ψ`,F`)
)

= π(A|B × TC0 ) · π(B × TC0 |C × TC0 ),
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implies that π satisfies (C3). The latter induces a function f : TC1 → C(Θ × TC0 ,FTC0 ). Then, we show

that f is an injection: Suppose that (π1, π2, . . . ) ∈ TC1 and (π′1, π
′
2, . . . ) ∈ TC1 are such that f(π1, π2, . . . ) =

f(π′1, π
′
2, . . . ). Recall that

πk+1 = margΨk
f(π1, π2, . . . )

= margΨk
f(π′1, π

′
2, . . . )

= π′k+1

for all k ≥ 0, implying that (π1, π2, . . . ) = (π′1, π
′
2 . . . ), thus proving that f is injective. Then, we show that

f is a surjection: Let π ∈ ∆B(Θ× TC0 ) for some B ∈ F, and define the sequence (margΨ0
π,margΨ1

π, . . . ).

Observe that by construction margΨk
π ∈ ∆B(Ψk), and furthermore (margΨ0

π,margΨ1
π, . . . ) satisfies co-

herency, implying that f(margΨ0
π,margΨ1

π, . . . ) = π, which proves that f is surjective. Finally, proving

that f and f−1 are continuous is done identically to Battigalli and Siniscalchi (1999, Prop. 1).

Proof of Proposition 3. Let TCB := {t ∈ TC1 : f(t) ∈ ∆B(Θ × TC0 )}, and observe that TC =
⋃
B∈F{t ∈

TCB : fB(t)(Θ×TC) = 1,∀B ∈ B}. The remainder of the proof replicates the one of Battigalli and Siniscalchi

(1999, Prop. 2).

C. Proof of Section 5

Proof of Lemma 3. We proceed inductively. Firstly observe that since TCΨ1
= Ψ1 and TLΘ1

= Θ1, it

follows directly from Propositions 1 and 2 that there exists a Borel surjective function β1 : TCΨ1
→ TLΘ1

defined as in (i). Secondly, consider an arbitrary (θ, π1, π2) ∈ TCΨ2
with Λ(π1) = Λ(π2) = n, and define

(θ, µ̃1, µ̃2) ∈ Θ×Nn(Θ0)×Nn(Θ1) such that (θ, µ̃1) = β1(θ, π1) and

µm2 (E1) = π2

(
β−1

1 (E1)
∣∣ Bm

π2

)
for all Borel E1 ⊆ TLΘ1

and every m = 1, . . . , n. Observe that since we already have the function β1, such a

(θ, µ̃1) exists, and moreover it belongs to TLΘ1
. Then, we move on to show that µ̃2 ∈ L(Θ1): It follows from

(θ, π1, π2) ∈ TΨ2 that the π2-relevant events Bπ2 = {B1
π2 , . . . , B

n
π2} = {B1 × C(Ψ0,F0), . . . , Bn × C(Ψ0,F0)}

are such that {B1, . . . , Bn} = Bπ1 . Then, define the collection F1 := {A1
1, . . . , A

n
1} of subsets of Θ1 by

A`1 := (B` \B`+1)× L(Θ0)

= β1

(
(B` \B`+1)× C(Ψ0,F0)

)
= β1(B`

π2 \B
`+1
π2 )

for each ` = 1, . . . , n, and with the convention that Bn+1 = Bn+1
π2 = ∅. Now, notice that µm2 (Am2 ) =

π2

(
Bm
π2 \ B

m+1
π2

∣∣ Bm
π2

)
= 1 for each m = 1, . . . , n, and µm2 (A`2) = π2

(
B`
π2 \ B

`+1
π2

∣∣ Bm
π2

)
= 0 for each ` 6= m,

implying that µ̃2 = (µ1
2, . . . , µ

n
2 ) ∈ L(Θ1). Furthermore, showing that µ̃2 is the unique LPS in Θ1 that is
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second order epistemically equivalent to π2 is straightforward by replicating the corresponding part of the

proof of Proposition 1. Thirdly, we show that margΘ µ̃2 = µ̃1, which would then imply that (θ, µ̃1, µ̃2) ∈ TLΘ1
.

Consider an arbitrary E ⊆ Θ, and observe that

margΘ µ
m
2 (E) = margΘ π2(E|Bm

π2)

= π1(E|Bm
π1)

= µm1 (E),

which proves our claim. Hence, there exists a function β2 : TCΨ2
→ TLΘ2

such that every (θ, π1, π2) ∈ TCΨ2
is up

to second order epistemically equivalent to β2(θ, π1, π2) ∈ TLΘ2
. Now, we show that β2 is surjective. In order

to do that, we first need to show that there exists a Borel section of β1, i.e., a Borel function δ1 : TLΘ1
→ TCΨ1

such that the composition β1 ◦ δ1 is the identity function. Fix an arbitrary (θ, µ̃1) ∈ TLΘ1
and observe that

since β1 is surjective, there exists at least one (θ, π1) ∈ TCΨ1
such that β1(θ, π1) = (θ, µ̃1). Moreover, if there

exists another (θ, π′1) ∈ TCΨ1
with β1(θ, π′1) = (θ, µ̃1), then π1 and π′1 have a different collection of events (by

Lemma 1). Hence, it follows from F being countable that there are at most countably many elements of TCΨ1

that are equivalent to (θ, µ̃1). Therefore, we can select one of them, thus constructing a section δ1. Proving

that δ1 is a Borel function follows similar steps as those in the proof of Proposition 2: Take an arbitrary

Borel event E1 ⊆ TCΨ1
, and observe that

δ−1
1 (E1) =

⋃
B∈F

δ−1
1

(
E1 ∩

(
Θ×∆B(Ψ0)

))
=

⋃
B∈F

{
(θ, µ̃1) ∈ TLΘ1

: δ1(θ, µ̃1) ∈ E1 ∩
(
Θ×∆B(Ψ0)

) }
.

Now, observe that E1 ∩
(
Θ×∆B(Ψ0)

)
⊆ Θ× [∆(Ψ0)]B is generated by Borel rectangles of the form

E0 × {p ∈ ∆(Ψ0) : p(A1) ≥ α1} × · · · × {p ∈ ∆(Ψ0) : p(AN ) ≥ αN}︸ ︷︷ ︸
corresponding to the events in B

where Am ⊆ Ψ0 is Borel and αm ∈ [0, 1]. Therefore, the event
{

(θ, µ̃1) ∈ TLΘ1
: δ1(θ, µ̃1) ∈ E1 ∩

(
Θ ×

∆B(Ψ0)
) }

is generated by events of the form{
(θ, µ̃1) ∈ TLΘ1

: δ1(θ, µ̃1) ∈ E0 × {p ∈ ∆(Ψ0) : p(A1) ≥ α1} × · · · × {p ∈ ∆(Ψ0) : p(AN ) ≥ αN}
}

which can be rewritten as the union over all ∆Bπ (Ψ0) ⊆ ∆B(Ψ0) of the events{
(θ, µ̃1) ∈ TLΘ1

: δ1(θ, µ̃1) ∈ E0×
(
∆Bπ (Ψ0)∩({p ∈ ∆(Ψ0) : p(A1) ≥ α1}×· · ·×{p ∈ ∆(Ψ0) : p(AN ) ≥ αN})

) }
.

The previous event contains only (θ, µ̃1) ∈ TLΘ1
that are mapped via δ1 to (θ, π1) ∈ TCΨ1

such that π1 ∈

∆Bπ (Ψ0), implying that they are determined by the conditional probabilities given the π-relevant events.

Therefore, the previous event can be rewritten as{
(θ, µ̃1) ∈ TLΘ1

: δ1(θ, µ̃1) ∈ E0×
(
∆Bπ (Ψ0)∩({p ∈ ∆(Ψ0) : p(A1) ≥ α1} × · · · × {p ∈ ∆(Ψ0) : p(An) ≥ αn}︸ ︷︷ ︸

corresponding to the events in Bπ

)
) }

,
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which in turn is equal to

TLΘ1
∩
(
E0 × {p ∈ ∆(Θ0) : p(A1) ≥ α1} × · · · × {p ∈ ∆(Θ0) : p(A1) ≥ α1}︸ ︷︷ ︸

subset of Nn(Θ0)

)
.

Observe that the latter is Borel, and therefore so is the union of these events over all ∆Bπ (Ψ0) ⊆ ∆B(Ψ0).

Hence,
{

(θ, µ̃1) ∈ TLΘ1
: δ1(θ, µ̃1) ∈ E1 ∩

(
Θ ×∆B(Ψ0)

) }
is also Borel, since it is generated by countably

many Borel events. Finally, take the union over B ∈ F, thus obtaining the Borel event δ−1
1 (E1), which proves

that δ1 is a Borel section. Then, it follows that every Borel measure on TLΘ1
can be pushed forward via

δ−1
1 to TCΨ1

, i.e., for every Borel probability measure q ∈ ∆(TLΘ1
) take q ◦ δ−1

1 ∈ ∆(TCΨ1
) (Aldaz and Render,

2000). Therefore, for every (θ, µ̃1, µ̃2) ∈ TLΘ2
there exists an up to second order epistemically equivalent

(θ, π1, π2) ∈ TCΨ2
, which proves that β2 is surjective. Finally, the proof that β2 is Borel replicates the one

of Proposition 2. Replicating the previous steps for each k > 1 proves by induction that a Borel surjective

function βk exists for every k > 1.

Proof of Theorem 2. The proof proceeds by induction. Consider an arbitrary ti ∈ Ti such that Λ
(
πk(ti)

)
=

Λ
(
µ̃k(ti)

)
= n for each k > 0, and observe that by assumption gi(ti)(E|Bm

gi(ti)
) = λmi (ti)(E) for every Borel

E ⊆ Θ× Tj and all m = 1, . . . , n. Then, for every Borel E0 ⊆ Θ and all m = 1, . . . , n we obtain

µm1 (ti)(E0) =

∫
{(θ,tj):θ∈E0}

dλmi (ti)

=

∫
{(θ,tj):θ∈E0}

dg
Bm
gi(ti)

i (ti)

= π1(ti)
(
E0

∣∣ Bm
π1(ti)

)
which proves that π1(ti) is first order epistemically equivalent to µ̃1(ti). Then, it follows that for every

E1 ⊆ TLΘ1
it is the case that

{
(θ, tj) ∈ Θ×Tj :

(
θ, µ̃1(tj)

)
∈ E1

}
=
{

(θ, tj) ∈ Θ×Tj :
(
θ, π1(tj)

)
∈ β−1

1 (E1)
}

.

Now suppose that for an arbitrary k > 1, every
(
θ, π1(ti), . . . , πk−1(ti)

)
∈ TCΨk−1

is up to (k − 1)-th order

epistemically equivalent to
(
θ, µ̃1(ti), . . . , µ̃k−1(ti)

)
∈ TLΘk−1

, and also for every Ek−1 ⊆ TLΘk−1
it is the case

that
{

(θ, tj) :
(
θ, µ̃1(tj), . . . , µ̃k−1(tj)

)
∈ Ek−1

}
=
{

(θ, tj) :
(
θ, π1(tj), . . . , πk−1(tj)

)
∈ β−1

k−1(Ek−1)
}

. Then,

observe that for every m = 1, . . . , n

µmk (ti)(Ek−1) =

∫
{(θ,µ̃1(tj),...,µ̃k−1(tj))∈Ek−1}

dλmi (ti)

=

∫
{(θ,tj):(θ,µ̃1(tj),...,µ̃k−1(tj))∈Ek−1}

dg
Bm
gi(ti)

i (ti)

=

∫
{(θ,tj):(θ,π1(tj),...,πk−1(tj))∈β−1

k−1(Ek−1)}
dg

Bm
gi(ti)

i (ti)

= πk(ti)
(
β−1
k−1(Ek−1)

∣∣ Bm
πk(ti)

)
,

implying that
(
θ, π1(ti), . . . , πk(ti)

)
is up to k-th order epistemically equivalent to

(
θ, µ̃1(ti), . . . , µ̃k(ti)

)
.

Finally notice that
{

(θ, tj) :
(
θ, µ̃1(tj), . . . , µ̃k(tj)

)
∈ Ek

}
=
{

(θ, tj) :
(
θ, π1(tj), . . . , πk(tj)

)
∈ β−1

k (Ek)
}

for

all Ek ⊆ TLΘk which completes the proof inductively.
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Proof of Theorem 3. Recall from Proposition 1 that there exists a surjective function β : C(Θ× TC)→

L(Θ× TC). Firstly, we show that β
(
C(Θ× TC ,FTC )

)
⊆ LΘ(Θ× TC). Consider some π ∈ C(Θ× TC ,FTC ),

implying that there exists some B ∈ F such that π ∈ ∆B×T
C

(Θ×TC). Then, by construction, the collection

of π-relevant events would be of the form {B1 × TC , . . . , Bn × TC}, where B1, . . . , Bn ∈ B. Then, consider

the collection {(B1 \ B2) × TC , . . . , (Bn \ Bn+1) × TC} of Borel subsets of Θ × TC , where Bn+1 := ∅,

and observe that π
(
(Bm \ Bm+1) × TC

∣∣ Bm × TC
)

= 1 for each m = 1, . . . , n, while at the same time

π
(
(B` \B`+1)× TC

∣∣ Bm × TC
)

= 0 for each ` 6= m. Now, let λ̃ = β(π), and notice that

margΘ λ
m(Bm \Bm+1) = margΘ π

(
(Bm \Bm+1)

∣∣ Bm
)

= π
(
(Bm \Bm+1)× TC

∣∣ Bm × TC
)

= 1

while at the same time

margΘ λ
m(B` \B`+1) = margΘ π

(
(B` \B`+1)

∣∣ Bm
)

= π
(
(B` \B`+1)× TC

∣∣ Bm × TC
)

= 0

which proves that β(π) ∈ LΘ(Θ× TC). Secondly, we show that for each λ̃ ∈ LΘ(Θ× TC) there is some π ∈

C(Θ×TC ,FTC ) such that β(π) = λ̃. Since λ̃ ∈ LΘ(Θ×TC), there exist Borel events A1, . . . , An ⊆ Θ such that

margΘ λ
m(Am) = 1 for all m = 1, . . . , n, and margΘ λ

m(A`) = 1 for all ` 6= m. Now, similarly to the proof

of Proposition 1, define the partition P := {B1, . . . , Bn} by Bm := Am \
(⋃

`6=mA`
)

for each m = 1, . . . , n−1

and Bn := An∪
(
Θ\(B1∪· · ·∪Bn−1)

)
. Let the finitely generated collection B be the closure of P with respect

to union, and define Bπ = {B1
π, . . . , B

n
π} by Bm

π := Θ \
(⋃

`<mB`
)
. Now, define π : F × (B × TC) → [0, 1]

such that π(E|Bm
π × TC) := λm(E) for all Borel E ⊆ Θ × TC and all m = 1, . . . , n. For every B ∈ B,

consider the smallest m ∈ {1, . . . , n} such that π(B×TC |Bm
π ×TC) > 0, which by construction always exists.

Then, for every Borel E ⊆ Tθ× TC , let π(E|B × TC) := π(E ∩ (B × TC)|Bm
π × TC)/π(B × TC |Bm

π × TC).

Finally, verify that π ∈ ∆B×T
C

(Θ×TC), with Bπ ×TC being the collection of π-relevant events. Therefore,

β : C(Θ × TC ,FTC ) → LΘ(Θ × TC) is surjective. Moreover, since ∆B×T
C

(Θ × TC) is Borel for each

B ∈ F, and also FTC is countable, it follows that C(Θ × TC ,FTC ) is Borel in C(Θ × TC), implying that

β : C(Θ × TC ,FTC ) → LΘ(Θ × TC) is a Borel function. Recall from Proposition 3 that there exists a

homeomorphism g : TC → C(Θ×TC ,FTC ). Therefore, λ̃ := β ◦g is a Borel surjective function from TC onto

LΘ(Θ× TC). In addition, every t ∈ TC is by construction such that g(t) ∈ C(Θ× TC ,FTC ) is epistemically

equivalent with λ̃(t) ∈ LΘ(Θ × TC), implying by Theorem 2 that the C-hierarchy associated with g(t) is

epistemically equivalent with the L-hierarchy associated with λ̃(t). Furthermore, it follows from Theorem

1 that every L-hierarchy is the image of some t ∈ TC , implying that for each (µ̃1, µ̃2, . . . ) ∈ TL there exists

some t ∈ TC such that (µ̃1(t), µ̃2(t), . . . ) = (µ̃1, µ̃2, . . . ). Finally, let T be a renaming of TC , which completes

the proof.
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Proof of Proposition 4. For an arbitrary Borel F ⊆ Θ× Ta × Tb, let

Ai(F ) :=
{
ti ∈ Ti : λ̃i(ti) ∈ A(ProjΘ×Tj F )

}
,

SBi(F ) :=
{
ti ∈ Ti : gi(ti) ∈ SB(ProjΘ×Tj F )

}
.

Now, consider some ti ∈ SBi(F ), and observe that, since gi(ti) is full support, it follows from Branden-

burger et al. (2007, Prop. 3) that β
(
gi(ti)

)
∈ A+(ProjΘ×Tj F ), and therefore λ̃i(ti) ∈ Ai(F ). Moreover,

since Θ is countable, it follows that every collection of conditioning events in FTj contains only clopen

events. Therefore, it follows from Brandenburger et al. (2007, Cor. 3) that if λ̃(ti) ∈ A+(ProjΘ×Tj F ) then

β−1
(
λ̃(ti)

)
∈ SB+(ProjΘ×Tj F ). Hence, ti ∈ Ai(F ) implies ti ∈ SBi(F ). Therefore, since it is the case that

Ai(F ) = SBi(F ) for all Borel events F ⊆ Θ× Ta× Tb, it follows directly that E ⊆ Θ× Ta× Tb is commonly

strongly believed at (ta, tb) if and only if it is commonly assumed.
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