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Abstract

Games in which players aim to guess a fraction or multiple p of the average guess are known
as guessing games or (p-)beauty contests. In this note, we derive a full characterization of the
set of rationalizable strategies and the set of pure strategy Nash equilibria for such games as a
function of the parameter p, the number of players and the (discrete) set of available guesses to
each player.
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1. Introduction

In guessing games – also called (p-)beauty contests – each player chooses a number and the player
whose number is closest to p times the average of all numbers wins a fixed prize. Such a game with
p = 2

3
was first used in Ledoux (1981) and brought to the attention of an economic audience by Moulin

(1986). Since the seminal paper by Nagel (1995), guessing games have attracted a lot of interest
among behavioral and experimental economists. Moreover, they have become the leading example for
teaching iterative reasoning processes in game theory courses.

The popularity of this class of games results – at least partly – from the gap between empirical
evidence and “theoretical predictions”. Roughly speaking, these predictions are typically based on the
following informal reasoning: for p = 2

3
, two thirds of the average is further from the highest than from

the second highest number irrespective of what the opponents choose. Therefore, the highest number
will never be chosen. By iteratively applying the same reasoning, all numbers except the smallest
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one are eliminated.1 A similar argument suggests that for p > 1, only the highest number should be
chosen.

In this note, we formalize the “theoretical predictions” using the two standard solution concepts,
viz., rationalizability and Nash equilibrium. Rationalizability imposes two basic assumptions, namely
that every player chooses a strategy that is optimal given his belief about the opponents strategies
(rationality) and it is transparent across the players that every player is rational (common belief in
rationality). Nash equilibrium additionally requires each player’s beliefs to be correct.

For the general case, where the set of possible guesses is an arbitrary finite set of non-negative
real numbers, we first show that all (pure-strategy) Nash equilibria are symmetric. Moreover, we
characterize the set of parameters p for which an arbitrary symmetric strategy profile is a Nash
equilibrium. Our analysis generalizes the one of López (2001), who restricts attention to parameters
p < 1 and integer guesses. Then, we characterize the set of rationalizable strategies as the set of guesses
that lie between the “lowest” and the “highest” symmetric Nash equilibrium. For a large range of
parameters, all guesses are rationalizable, i.e., there are no stupid guesses.

Subsequently, we focus on a special case that frequently appears in experiments, where the set of
possible guesses consists of consecutive nonnegative integers. For p ≤ 1, a strategy is rationalizable if
and only if it is part of a symmetric pure-strategy Nash equilibrium. For p ≥ 1, there is a threshold
parameter (equal to half of the number of players), such that only the highest guess is rationalizable
for p above the threshold, but every guess is rationalizable otherwise.

This note does not intend to explain the differences between theoretical predictions and empirical
findings. Instead, it provides an in-depth game-theoretic analysis for one of the most famous games
in the literature. Moreover, it emphasizes that the aforementioned informal treatment is inappro-
priate for computing standard theoretical predictions and that caution in experimental design and
(undergraduate) teaching is asked for.

We proceed as follows. Section 2 sets up the general model and derives the main results. Readers
who are familiar with the model and only interested in the predictions for the most frequently analyzed
case in experiments can skip to Section 3. A sketch of the proofs is presented in Section 4. In Section
5, we discuss extensions of the model. The details of the proofs are presented in the Appendix.

2. Setting and Main Results

Consider a (symmetric) normal form game with I = {1, . . . , N} being the set of players, where N ≥ 2.
For each player i ∈ I, the set of pure strategies (guesses) is denoted by Si = {a0, a1, . . . , aM} with
0 ≤ a0 < a1 < · · · < aM <∞ and M ≥ 1. A typical element of Si is denoted by si. For a given pure
strategy profile (s1, . . . , sN), the target guess is defined as p

N

∑
j∈I sj, where p ∈ R+ is an exogenous

parameter. Players compete for a fixed prize. The player whose guess is closest to the target guess
wins the prize; ties are broken randomly with equal probability. All players are assumed to be expected
utility maximizers.

If N = 2, it is straightforward that for p < 1 (resp., for p > 1) the only Nash equilibrium is the pure
strategy profile (a0, a0) (resp., the pure strategy profile (aM , aM)), whereas for p = 1 every strategy
profile is a Nash equilibrium. Thus, we henceforth focus on games with at least three players. To
characterize the set of Nash equilibria, we introduce some parameter thresholds. In particular, let

pm :=
N

2
· am−1 + am
am−1 + (N − 1)am

1Experimental findings are usually at odds with these predictions. This discrepancy is typically attributed to limited
depth of reasoning and different behavioral models try to capture it, e.g., the level-k model (Ho et al., 1998; Bosch-
Doménech et al., 2002) or the cognitive hierarchy model (Camerer et al., 2004).
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for each m ∈ {1, . . . ,M}, with the convention p0 := 0. Moreover, define

qm :=
N

2
· am+1 + am
am+1 + (N − 1)am

for every m ∈ {0, . . . ,M−1}, with the convention qM :=∞. Note that for N > 2, we have pm < 1 < qm
for every m ∈ {0, 1, . . . ,M}.2

Theorem 1 (Characterization of Nash Equilibria). Every (pure-strategy) Nash equilibrium is sym-
metric. Moreover, the following statements are true for every m ∈ {0, . . . ,M}:

(i) For p ≤ 1, the strategy profile (am, . . . , am) is a Nash equilibrium if and only if p ≥ pm.

(ii) For p ≥ 1, the strategy profile (am, . . . , am) is a Nash equilibrium if and only if p ≤ qm.

Remark 1. By our conventions p0 = 0 and qM = ∞, it follows directly that (a0, . . . , a0) is a Nash
equilibrium for every p ≤ 1 and (aM , . . . , aM) is a Nash equilibrium for every p ≥ 1.

We now turn attention to rationalizability. For each player i ∈ I, let R0
i := Si and inductively

define the strategies Rk
i ⊆ Si that survive k rounds of elimination of strictly dominated strategies

(for a formal definition of Rk
i , see the appendix). Then, R∗i :=

⋂∞
k=0R

k
i contains the (correlated)

rationalizable strategies. These are exactly the strategies that can be played under rationality and
common belief in rationality (Brandenburger and Dekel, 1987; Tan and Werlang, 1988).3

Theorem 2 (Characterization of Rationalizable Strategies). A strategy si ∈ Si is rationalizable if and
only if there exist symmetric pure-strategy Nash equilibria, (am, . . . , am) and (an, . . . , an), such that
am ≤ si ≤ an. In particular, the following statements hold:

(i) For p ≤ 1, the rationalizable strategies are {a0, . . . , am} with m = max{` ∈ {0, . . . ,M} : p ≥ p`}.

(ii) For p ≥ 1, the rationalizable strategies are {am, . . . , aM} with m = min{` ∈ {0, . . . ,M} : p ≤ q`}.

Remark 2. Since p0 = 0 and qM =∞, both {` ∈ {0, . . . ,M} : p ≥ p`} and {` ∈ {0, . . . ,M} : p ≤ q`}
are nonempty and finite sets. Thus, they attain a maximum and a minimum respectively.

The following example provides an illustration of the main insights of Theorems 1 and 2.

Example 1. Let N = 3, M = 3 and Si = {1, 10, 11, 20}. We obtain (p1, p2, p3) = (11
14
, 63

64
, 31

34
) and

(q0, q1, q2) = (11
8
, 63

62
, 31

28
), i.e., we have p2 > p3 > p1 and q1 < q2 < q0. Thus we can partition the set of

values p ∈ R+ into intervals and use our theorems to obtain the rationalizable strategies and the Nash
equilibria within each of these intervals, as shown in Figure 1.

Note that the set of Nash equilibria is not always “connected”. For instance, when p ∈ (p3, p2), the
profiles (20, 20, 20) and (10, 10, 10) are both Nash equilibria, but (11, 11, 11) is not. Intuitively, since
pm and qm are not always monotonic in m, the conditions of Theorem 1 are sometimes satisfied for
extreme values of m and not for intermediate ones.

Unlike the set of Nash equilibria, the set of rationalizable strategies is always “connected”. More
precisely, by Theorem 2, the set of rationalizable strategies are those between the “lowest” and the
“highest” Nash equilibrium. As pm and qm are not always monotonic in m, however, the set of ratio-
nalizable strategies may “jump” while p increases. In our example, for p < p3 the set of rationalizable
strategies is {0, 10}, whereas for p ≥ p3 the set of rationalizable strategies becomes {0, 10, 11, 20}.

2This follows from pm (resp., qm) being strictly decreasing (resp., strictly increasing) in N , combined with the fact
that pm = qm = 1 when N = 2.

3For the rest of the paper, the term rationalizability refers to the concept of correlated rationalizability. In general,
correlated rationalizability is a coarsening of Bernheim’s (1984) and Pearce’s (1984) (independent) rationalizability. In
Section 5.1, we show that both rationalizability concepts yield exactly the same predictions for our model.
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Figure 1: Rationalizable strategies and Nash equilibria for N = 3, M = 3, Si = {0, 10, 11, 20} and
varying p. The symbol 3 (resp., 7) signifies that the corresponding symmetric pure-strategy profile is
(resp., is not) a Nash equilibrium for parameters p within the interval. The shaded area consists of all
parameters such the respective strategy is rationalizable.

3. The Famous Special Case

In this section, we consider the special case with a strategy set Si = {0, 1, . . . ,M} with typical element
m, which has been extensively studied in the experimental literature (e.g., see Ledoux, 1981; Nagel,
1995) and is often presented in textbooks.

Define two thresholds pm = 2Nm−N
2Nm−2

and qm = 2Nm+N
2Nm+2

, maintaining the convention that p0 = 0 and
qM =∞. Theorem 2 from Section 2 reduces to the following corollaries:

Corollary 1. For p ≤ 1, a strategy m ∈ {0, . . . ,M} is rationalizable if and only if p ≥ pm.

Corollary 2. For p ≥ 1, the following statements hold:

(i) All strategies m ∈ {0, . . . ,M} are rationalizable if p ≤ N
2

.

(ii) Only the strategy m = M is rationalizable if p > N
2

.

We can decompose the parameter space into three regions (see also Figure 2). In Region 1 (p < pM),
more guesses become rationalizable as p increases. Region 2 [pM ,

N
2

] is the “experimenter’s nightmare”,
viz., the region of no stupid guesses, where all strategies are rationalizable. Finally, in Region 3 (p > N

2
),

only the highest guess is rationalizable. The parametrization in the original implementation by Ledoux
(1981), where p = 2

3
and N = 2898, falls in Region 1 and only strategies m ∈ {0, 1} are rationalizable.

The treatment in the seminal paper by Nagel (1995), where p = 4
3

and N ∈ {15, 16, 17, 18} falls in
Region 2, i.e., all guesses are rationalizable.

The following example discusses the relation of rationalizable strategies and Nash equilibria in the
general case versus the special case in more detail.

Example 2. As is often assumed in experiments, let M = 100. The Nash equilibria and the rational-
izable strategies are illustrated in Figure 2 in a similar way as in Figure 1 above.

For p < 1, unlike in the general case, the set of Nash equilibria is “connected” and it coincides with
the set of rationalizable strategies. This is why the condition p ≥ pm – used to characterize the set
of Nash equilibria in Theorem 1 (i) – is also used here to identify the set of rationalizable strategies
(Corollary 1). Furthermore, the fact that pm is monotonic in m guarantees that for every m ∈
{0, . . . , 100} there is some p ∈ (0, 1) such that the set of rationalizable strategies is R∗i = {0, . . . ,m},
i.e., there are no jumps of the highest rationalizable strategy as p increases, unlike in Example 1.

For p > N
2

, we have p > qm for every m ∈ {0, . . . , 99}. Thus, no strategy profile (m, . . . ,m) with
m < 100 is a Nash equilibrium by Theorem 1 (ii) and hence no m ∈ {0, . . . , 99} is rationalizable.
That is, if m = 0 is eliminated then every strategy below M = 100 will eventually be eliminated. On
the other hand, if p ∈ [1, N

2
], the lowest strategy m = 0 is not eliminated, and the unraveling does

not begin. Finally, note that even in the special case, for some p > 1, the set of Nash equilibria is
“disconnected”.
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Figure 2: Rationalizable strategies and Nash equilibria for M = 100, i.e., Si = {0, 1, . . . , 100} and
varying p. The symbol 3 (resp., 7) signifies that the corresponding symmetric pure-strategy profile is
(resp., is not) a Nash equilibrium for parameters p within the interval. The shaded area consists of all
parameters such the respective strategy is rationalizable.

4. Sketch of the Proofs

We split each proof into some intermediate steps, summarized in Lemmas 1-2 for Theorem 1 and
Lemmas 3-4 for Theorem 2. This section only presents the general idea behind the proofs. The
complete arguments are relegated to the appendix.

4.1. Theorem 1: Nash Equilibria

Symmetry: Suppose there are at most two different guesses (say am and an) chosen in equilibrium
and that each player wins with positive probability. Since there are at least three players, one of the
two guesses (say an) is picked by at least two players (say i and j). Now suppose that i switches to am.
In this case, the target guess moves closer to am, meaning that j is not among the possible winners
anymore and thus the probability of i winning increases. Hence, the original strategy profile (with
both am and an chosen by some players) is not a Nash equilibrium. Thus, only symmetric strategy
profiles can be Nash equilibria.

Let us proceed with Parts (i) and (ii) of the theorem. For notation simplicity, let ām denote the
strategy profile where all players choose am and let ā−im denote that every j 6= i chooses am.

The next lemma shows that for p ≤ 1, only downward deviations can be profitable. Moreover,
if profitable deviations exist, the one-step downward deviation is one of those. Consequently, the
symmetric pure-strategy profile (a0, . . . , a0) is always a Nash equilibrium.

Lemma 1. Let p ≤ 1. If am−1 is not a profitable deviation from (am, . . . , am) then there is no profitable
deviation, i.e., (am, . . . , am) is a Nash equilibrium. In particular:

(i) For an arbitrary m ∈ {2, . . . ,M}, if n ∈ {1, . . . ,m− 1} then ui(an, ā
−i
m ) ≥ ui(an−1, ā

−i
m ).

(ii) For an arbitrary m ∈ {0, . . . ,M − 1}, if n ∈ {m+ 1, . . . ,M} then ui(ām) > ui(an, ā
−i
m ).

Hence, for every m ∈ {1, . . . ,M}, the symmetric pure-strategy profile (am, . . . , am) is a Nash equilib-
rium if and only if the one-step downward deviation to am−1 is not profitable. In turn, this is the case
if and only if p ≥ pm. This completes the proof of Theorem 1 (i).

The next lemma is analogous to Lemma 1 for p ≥ 1. In particular, it shows that only upward
deviations can be profitable. Furthermore, if there are profitable deviations, the one-step upward
deviation is one of those. As a consequence, the symmetric pure-strategy profile (aM , . . . , aM) is
always a Nash equilibrium.
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Lemma 2. Let p ≥ 1. If am+1 is not a profitable deviation from (am, . . . , am) then there is no profitable
deviation, and therefore (am, . . . , am) is a Nash equilibrium. In particular:

(i) For an arbitrary m ∈ {1, . . . ,M}, if n ∈ {0, . . . ,m− 1} then ui(ām) > ui(an, ā
−i
m ).

(ii) For an arbitrary m ∈ {0, . . . ,M − 2}, if n ∈ {m+ 1, . . . ,M − 1} then ui(an, ā
−i
m ) ≥ ui(an+1, ā

−i
m ).

Therefore, for every m ∈ {0, . . . ,M − 1}, the symmetric pure-strategy profile (am, . . . , am) is a Nash
equilibrium if and only if the one-step upward deviation to am+1 is not profitable. This is the case
whenever p ≤ qm, thus proving Theorem 1 (ii).

4.2. Theorem 2: Rationalizable Strategies

We will use the following two lemmas to prove that, if the symmetric strategy profiles (am, . . . , am)
and (an, . . . , an) are Nash equilibria (with m ≤ n), the (symmetric) product set

Cm,n
1 × · · · × Cm,n

N (1)

is a best response set, where Cm,n
i := {am, . . . , an}.4 This directly implies that every si ∈ Cm,n

i is
rationalizable. Then, for each of the two cases, p ≤ 1 and p ≥ 1, we take the “lowest” and the
‘highest” Nash equilibrium and we show that every strategy outside the range of these extreme Nash
equilibria is eliminated by iterated strict dominance.

For notation simplicity, for each m ∈ {0, . . . ,M} we define two reduced games of interest by
Bm
i = {a0, . . . , am} and Ami = {am, . . . , aM}, viz., Bm

1 × · · · × Bm
N is the game that we obtain after

having eliminated all the strategies that are larger than m, whereas Am1 × · · · × AmN is the game that
we obtain after having eliminated all the strategies that are smaller than m.

Lemma 3. Let p ≤ 1 and fix an arbitrary m ∈ {1, . . . ,M}. The following statements hold:

(i) am−1 is a best response to some s−i ∈ S−i with sj ∈ {am−1, am} for all j 6= i.

(ii) If (am, . . . , am) is not a Nash equilibrium, then am is strictly dominated in Bm
1 × · · · ×Bm

N .

By Theorem 1 (i), the “lowest” Nash equilibrium is (a0, . . . , a0). Therefore, once we find the
“highest” Nash equilibrium (am, . . . , am), every an ∈ {a0, . . . , am} is rationalizable. Indeed, by Lemma
3 (i), am is a best response to everybody else choosing am, am−1 is a best response to some s−i such
that everybody else chooses either am or am−1, and so on until we reach a0 which is a best response
to everybody else choosing a0.

Now we focus on strategies larger than the “highest” Nash equilibrium (assuming M > am) to show
that all of them are iteratively eliminated. In particular, since (aM , . . . , aM) is not a Nash equilibrium,
it is strictly dominated by a mixed strategy in ∆({a0, . . . , aM−1}). This mixed strategy puts sufficiently
high probability on aM−1 and uniformly distributes the remaining mass to all other strategies. In fact,
in the proof of Lemma 3 (ii), we explicitly identify this mixed strategy. We continue inductively,
until all strategies an ∈ {am+1, . . . , aM} have been iteratively eliminated, thus completing the proof of
Theorem 2 (i).

Lemma 4. Let p ≥ 1 and fix an arbitrary m ∈ {0, . . . ,M − 1}. The following statements hold:

(i) am+1 is a best response to some s−i ∈ S−i with sj ∈ {am, am+1} for all j 6= i.

4A product set C1 × · · · × CN ⊆ S1 × · · · × SN is a best response set whenever every si ∈ Ci is rational for some
belief in ∆(C−i). A formal definition is presented in the appendix.
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(ii) If (am, . . . , am) is not a Nash equilibrium, then am is strictly dominated in Am1 × · · · × AmN .

Similar to the previous case, the “highest” Nash equilibrium is (aM , . . . , aM), and after finding
the “lowest” Nash equilibrium (am, . . . , am), we show that every an ∈ {am, . . . , aM} is rationalizable.
Subsequently, we show that strategies larger than the “highest” Nash equilibrium are iteratively elim-
inated, thus completing the proof of Theorem 2 (ii).

5. Discussion

5.1. Independent Rationalizability

As mentioned, we employ the notion of correlated rationalizability, which in general coarsens Bern-
heim’s (1984) and Pearce’s (1984) notion of (independent) rationalizability. Nevertheless, as we show
below, the two concepts yield the same predictions for guessing games.

For each player i ∈ I, let S0
i := Si and inductively define the strategies Ski ⊆ Si that survive

k rounds of elimination of Bernheim’s (1984) and Pearce’s (1984) procedure (a formal definition of
Ski is presented in the Appendix). Then, S∗i :=

⋂∞
k=1 S

k
i consists of the independently rationalizable

strategies.

Proposition 1. For every p ∈ R+, a strategy is independently rationalizable if and only if it is
(correlated) rationalizable, i.e., formally R∗i = S∗i .

Intuitively the proof follows directly from Lemma 3 (for p ≤ 1) and Lemma 4 (for p ≥ 1). In
particular, we show that the best response set in (1) is an independent best response set, as each
strategy in Cm,n

i is a best response to a pure strategy profile in Cm,n
−i , i.e., it is rational to a product

measure over Cm,n
−i .

5.2. Rounds of Elimination

It is well-known that a strategy survives k rounds of elimination of strictly dominated strategies
if and only if it can be rationally played under (k − 1)-fold belief in rationality. Since the game
is often used to illustrate iterative reasoning, we want to see which strategies survive k rounds of
elimination. The following result characterizes each step of the elimination procedure. Recall that
the set of rationalizable strategies is of the form of R∗i = {a0, . . . , am} when p ≤ 1 and of the form of
R∗i = {am, . . . , aM} when p ≥ 1.

Proposition 2. Fix an arbitrary p ∈ R+. At each round of elimination of strictly dominated strategies,
at most one strategy is deleted. In particular, the following statements hold:

(i) Fix p ≤ 1. Then, Rk+1
i = Rk

i \ {aM−k} for all k < M −m, and Rk+1
i = Rk

i for all k ≥M −m.

(ii) Fix p ≥ 1. Then, Rk+1
i = Rk

i \ {ak} for all k < m, and Rk+1
i = Rk

i for all k ≥ m.

For p ≤ 1 (resp., for p ≥ 1), as long as there are still strategies that are not rationalizable, we can
only eliminate the highest (resp., the lowest) remaining strategy, since the second highest (resp., the
second lowest) is still rational against the strategies that remain, by Lemma 3 (i) (resp., by Lemma
4 (i)). Thus, the elimination process is very slow, i.e., depending on the parameters, a high belief in
rationality might be needed to end up with the set of rationalizable strategies.
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5.3. The Discrete Limit and Continuous Strategy Sets

In this section, we illustrate what happens as the difference between the guesses converges to zero and
we consider the case of continuous strategies. We focus on the case p ≤ 1 and strategy sets of the form
Si = {0,∆, 2∆, . . . ,M}, where M is an integer-multiple of ∆. In this case, the threshold such that
the strategy profile (s, . . . , s) is a Nash equilibrium and therefore s is rationalizable is ps ≥ 2Ns−N∆

2Ns−2∆
.

Intuitively, in the main text, if there are many players, a downward deviation by a unit might not
drag the target guess enough towards s −∆ to make this deviation profitable. As the step size goes
to zero, however, this effect disappears: note that lim∆→0 ps = 1, i.e., strategy s is not rationalizable
for any p < 1.

Finally, suppose we start with a continuous strategy set Si = [0,M ] where M is a positive real.
In this case, it is straightforward that the only symmetric Nash equilibrium is (0, . . . , 0) for p < 1.
For rationalizability, the main difficulty is that Pearce’s (1984) Lemma does not directly extend to
infinite games. Hence, we cannot conclude that eliminating strictly dominated strategies is equivalent
to eliminating strategies that are not rational for any belief. Let us focus on eliminating at each
round strategies that are not rational.5 Then for an arbitrary p < 1, only M is eliminated at the first
round. Moreover, at the second round, all strategies are rational. Indeed, for each m < M , there is
some n ∈ (m,M) such that m is rational to everybody else choosing n. Hence, every m ∈ [0,M) is
rationalizable.

A. Appendix

Let us first introduce some additional notation. Recall that I = {1, . . . , N} and Si := {a0, a1, . . . , aM}
with N > 2 and M ≥ 2. We define S :=

Ś

i∈I Si with typical element s = (s1, . . . , sN), and
S−i :=

Ś

j 6=i Sj with typical element s−i = (s1, . . . , si−1, si+1, . . . , sN). Moreover, let us denote by

ām ∈ S the symmetric strategy profile according to which si = am for all i ∈ I, and by ā−im ∈ S−i
the strategy profile of the opponents where sj = am for every j 6= i. As usual, a reduced game is
defined by means of a product set C = C1 × · · · × CN where Ci ⊆ Si for each player i ∈ I, together
with the original utility function restricted to the set C. As usual we define C−i :=

Ś

j 6=iCj. For
each m ∈ {0, . . . ,M} we define two (symmetric) reduced games of interest, viz., we take Ci = Bm

i and
Ci = Ami , with Bm

i = {a0, . . . , am} and Ami = {am, . . . , aM} respectively.
Recall that all players are expected utility maximizers. Since there are only two outcomes – i.e.,

winning and losing the prize – we can normalize without loss of generality the respective vNM utility
indexes to 0 and 1. Formally, for an arbitrary s ∈ S we define the target guess

t(s) =
p

N

∑
j∈I

sj,

and the distance from the target guess

di(s) := |si − t(s)|,

with W (s) := {i ∈ I : di(s) ≤ dj(s) for all j ∈ I} being the respective set of winners. Then, the vNM
utility of player i ∈ I from a pure strategy profile s ∈ S is given by ui(s) := 1

|W (s)| if i ∈ W (s) and

ui(s) = 0 otherwise.
A strategy profile (s1, . . . , sN) is a Nash equilibrium if ui(si, s−i) ≥ ui(s

′
i, s−i) for every s′i ∈ Si and

every i ∈ I.

5This procedure is common in the literature on games with continuous strategy spaces (e.g., see Arieli, 2010).
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We define a mixed strategy σi ∈ ∆(Si) as a randomization over i’s own strategies, and define i’s
expected utility from σi given some s−i by ui(σi, s−i) =

∑
si∈Si

σi(si) · ui(si, s−i). We define a belief
µi ∈ ∆(S−i) of player i as a probability measure over the opponents’ strategy profiles, and we define
i’s expected utility from si given µi, by ui(si, µi) =

∑
s−i∈S−i

µi(s−i) · ui(si, s−i). A belief µi is called

independent if there exists some mixed strategy profile (σ1, . . . , σi−1, σi+1, . . . , σN) of i’s opponents
such that µi =

⊗
j 6=i σj, i.e., if µi is a product measure assigning probability µi(s−i) =

∏
j 6=i σj(sj) to

each s−i = (s1, . . . , si−1, si+1, . . . , sN) ∈ S−i. The belief is called correlated if it is not independent.
A strategy si ∈ Si is called rational in the game C1 × · · · × CN if there exists some – not necessarily
independent – belief µi ∈ ∆(C−i) such that ui(si, µi) ≥ ui(s

′
i, µi) for all s′i ∈ Ci. It follows from Pearce’s

(1984) Lemma that si is rational in C1×· · ·×CN if and only if it is not strictly dominated by any mixed
strategy in C1 × · · · × CN , i.e., if and only if there is no σi ∈ ∆(Ci) such that ui(σi, s−i) > ui(si, s−i)
for all s−i ∈ C−i.

For each i ∈ I, we let R0
i := Si, and for each k > 0 we inductively define the strategies

Rk
i := {si ∈ Rk−1

i : si is rational in Rk−1
1 × · · · × Rk−1

N } surviving k rounds of elimination of strictly
dominated strategies. Then, R∗i :=

⋂∞
k=0R

k
i consists of the (correlated) rationalizable strategies. For

each i ∈ I, we let S0
i := Si, and for each k > 0 we inductively define the set Ski := {si ∈ Sk−1

i :
si is rational for some independent belief in Sk−1

1 × · · · × Sk−1
N }. Then, S∗i :=

⋂∞
k=0 S

k
i consists of the

(independent) rationalizable strategies à la Bernheim (1984) and Pearce (1984).
A reduced game C1×· · ·×CN is a best response set (resp., independent best response set) whenever

every si ∈ Ci is rational given some belief (resp., given some independent belief) µi ∈ ∆(C−i). Then,
it is well known that if C1 × · · · × CN is a best response set (resp., an independent best response set)
then Ci ⊆ R∗i (resp., Ci ⊆ S∗i ) for every i ∈ I.

A.1. Intermediate Results

Lemma A1. For every s−i ∈ S−i there exists some si ∈ Si such that ui(si, s−i) ≥ 1/N .

Proof. Since at most N players tie, we have ui(si, s−i) > 0 implies ui(si, s−i) ≥ 1/N . Thus, it suffices
to show ui(si, s−i) > 0. Fix an arbitrary s−i ∈ S−i and define the function δi(si) := si − t(si, s−i),
which is linear and therefore continuous in R+. Consider the following three cases:

• δi(a0) ≥ 0 : Then, sj ≥ a0 ≥ t(s) for all j 6= i, and therefore ui(a0, s−i) > 0.

• δi(aM) ≤ 0 : Then, sj ≤ aM ≤ t(s) for all j 6= i, and therefore ui(aM , s−i) > 0.

• δi(a0) < 0 and δi(aM) > 0 : By the intermediate value theorem, there exists some a ∈ (a0, aM)
such that δi(a) = 0. Obviously if a ∈ Si then ui(a, s−i) > 0 and we are done. Hence, let us take
a /∈ Si. We define am := max{si ∈ Si : si < a} and am+1 := min{si ∈ Si : si > a}. Consider the
following three subcases:

◦ N = p : Then, δi becomes constant in si. In particular, δi(a0) = δi(aM). Hence, we are back
to one of the previous two cases.

◦ N < p : Then, δi becomes strictly decreasing in si and therefore si < t(si, s−i) for every
si ∈ {am+1, . . . , aM}. Hence, t(aM , s−i) > aM which contradicts δi(aM) > 0.

◦ N > p : Then, δi becomes strictly increasing in si and therefore am < t(am, s−i) and am+1 >
t(am+1, s−i). Moreover, since t is strictly increasing, am < t(am, s−i) < t(am+1, s−i) <
am+1. Hence, at least one of the two guesses wins with positive probability, i.e., either
ui(am, s−i) > 0 (viz., if t(am, s−i) < t(am+1, s−i) <

1
2
(am+1− am)) or ui(am+1, s−i) > 0 (viz.,

if 1
2
(am+1 − am) < t(am, s−i) < t(am+1, s−i)) or both ui(am, s−i) > 0 and ui(am+1, s−i) > 0

(viz., if t(am, s−i) <
1
2
(am+1 − am) < t(am+1, s−i)).
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Combining the previous cases completes the proof of the lemma.

Lemma A2. Fix an arbitrary p ≤ 1.

(i) Fix an arbitrary m ∈ {2, . . . ,M} and an arbitrary s−i ∈ S−i such that sj ≥ am for every j 6= i.
Then ui(an, s−i) ≥ ui(an−1, s−i) for all n ∈ {1, . . . ,m− 1}.

(ii) Fix an arbitrary m ∈ {0, . . . ,M − 1} and an arbitrary s−i ∈ S−i such that sj ≤ am for all j 6= i.
Then ui(an, s−i) = 0 for all n ∈ {m+ 1, . . . ,M}.

Proof. (i) Fix arbitrary m ∈ {2, . . . ,M} and n ∈ {1, . . . ,m − 1}. Without loss of generality,
take some s−i with m = min{s1, . . . , si−1, si+1, . . . , sN}. Then it is straightforward to verify that
ui(an, s−i) ≥ 1

N
if and only if di(an, s−i) ≤ dj(an, s−i) for an arbitrary j 6= i such that sj = am.

Moreover, note that whenever the second inequality is strict, we obtain ui(an, s−i) = 1. Observe that
di(an, s−i) ≤ dj(an, s−i) is equivalent to

p ≤ N

2
· an + am
an +

∑
j 6=i sj

, (A.1)

which holds with equality if and only if di(an, s−i) = dj(an, s−i). Notice that (by N > 2 and
∑

j 6=i sj ≥
(N − 1)am > am), the right-hand side of (A.1) is strictly increasing in n. Hence, if (A.1) holds for
n − 1 then it also holds (with strict inequality) for n. In other words, if ui(an−1, s−i) = 0 then it is
trivially the case that ui(an−1, s−i) ≤ ui(an, s−i), whereas if ui(an−1, s−i) ≥ 1

N
it will necessarily be the

case that ui(an, s−i) = 1, thus completing this part of the proof.
(ii) Fix arbitrary m ∈ {0, . . . ,M − 1} and n ∈ {m + 1, . . . ,M}, and without loss of generality let

m = max{s1, . . . , si−1, si+1, . . . , sN}. Then the target guess under the strategy profile (an, s−i) is

t(an, s−i) =
p

N

(
an +

∑
j 6=i

sj

)
≤ 1

N

(
an + (N − 1)am

)
<

1

2
(an + am),

with the second strict inequality holding due to N > 2 and an > am. Hence, di(an, s−i) > dj(an, s−i)
where j 6= i is an opponent of i such that sj = am. Hence, ui(an, s−i) = 0.

Lemma A3. Fix an arbitrary p ≥ 1.

(i) Fix an arbitrary m ∈ {0, . . . ,M − 2} and an arbitrary s−i ∈ S−i such that sj ≤ am for every
j 6= i. Then ui(an, s−i) ≥ ui(an+1, s−i) for all n ∈ {m+ 1, . . . ,M − 1}.

(ii) Fix an arbitrary m ∈ {1, . . . ,M} and an arbitrary s−i ∈ S−i such that sj ≥ am for all j 6= i and
ui(am, s−i) > 0. Then ui(am, s−i) > ui(an, s−i) for all n ∈ {1, . . . ,m− 1}.

Proof. (i) The proof is similar to one of Lemma A2 (i). Indeed fix arbitrary m ∈ {0, . . . ,M − 2}
and n ∈ {m + 1, . . . ,M − 1}. Without loss of generality take some s−i ∈ S−i such that m =
max{s1, . . . , si−1, si+1, . . . , sN}. Then, we obtain ui(an, s−i) ≥ 1

N
if and only if

p ≥ N

2
· an + am
an +

∑
j 6=i sj

. (A.2)
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In particular, 1
N
≤ ui(an, s−i) < 1 if and only if (A.2) holds with equality, whereas ui(an, s−i) = 1 if

and only if (A.2) holds with strict inequality. Whenever (A.2) does not hold, we obtain ui(an, s−i) = 0.
The right-hand side of (A.2) is strictly increasing in n. Hence, if ui(an+1, s−i) = 0 then ui(an+1, s−i) ≤
ui(an, s−i) holds trivially, whereas if ui(an+1, s−i) ≥ 1

N
then ui(an, s−i) = 1, thus completing this part

of the proof.
(ii) The proof is identical to the one of Lemma A2 (ii). For every m ∈ {1, . . . ,M} and every n ∈

{0, . . . ,m−1}, without loss of generality take some s−i ∈ S−i with m = min{s1, . . . , si−1, si+1, . . . , sN}.
Then, we obtain t(an, s−i) >

1
2
(an + am) using the same argument as above. Hence, di(an, s−i) >

dj(an, s−i) where j 6= i is an opponent of i such that sj = am, and therefore ui(an, s−i) = 0.

A.2. Proofs of Section 4.1

Proof of Lemma 1. The result is a direct corollary of Lemma A2 for sj = am for all j 6= i.

Proof of Lemma 2. The result is a direct corollary of Lemma A3 for sj = am for all j 6= i.

Proof of Theorem 1. Let (s1, . . . , sN) be a Nash equilibrium. By Lemma A1, there exists some
s∗i ∈ Si such that ui(s

∗
i , s−i) ≥ 1/N , and therefore ui(si, s−i) ≥ ui(s

∗
i , s−i) ≥ 1/N . Moreover, by the

rules of the game,
∑

i∈I ui(s1, . . . , sN) = 1, thus implying ui(s1, . . . , sN) = 1/N for every i ∈ I. Hence
|si − t(s1, . . . , sN)| = c ∈ R+ for every i ∈ I. Thus, there are at most two guesses am, an ∈ Si such
that si ∈ {am, an} for every i ∈ I. Without loss of generality let am < an. Suppose – contrary to what
we want to prove – that there exists a strict nonempty subset J ( I of the players choosing am and
the rest choosing an, i.e., assume that J = {i ∈ I : si = am} and I \ J = {i ∈ I : si = an}, with
0 < |J | < N . Hence, the target guess t(s1, . . . , sN) = p

N
(|J |am + (N − |J |)an) is equal to (am + an)/2.

Since N > 2, we obtain |J | ≥ 2 or N − |J | ≥ 2. If |J | ≥ 2, let i ∈ J switch from am to an, in which
case the target guess satisfies

t(s1, . . . , si−1, an, si+1, . . . , sN) =
p

N

(
(|J | − 1)am + (N − |J |+ 1)an

)
>

p

N

(
|J |am + (N − |J |)an

)
=

1

2
(am + an).

Thus, the |J | − 1 players in J \ {i} do not win and ui(s1, . . . , si−1, an, si+1, . . . , sN) = 1
N−|J |+1

> 1
N

=

ui(s1, . . . , sN), which contradicts (s1, . . . , sN) being a Nash equilibrium. Similarly, if N − |J | ≥ 2, any
deviation of a player j ∈ I \J from an to am is profitable, a contradiction to (s1, . . . , sN) being a Nash
equilibrium. Therefore, any Nash equilibrium is symmetric, i.e., si = am for all i ∈ I.

(i) It follows from Lemma 1 (ii) that (a0, . . . , a0) is always a Nash equilibrium. Thus, by our
convention p0 = 0, it follows directly that (a0, . . . , a0) is a Nash equilibrium if and only if p ≥ p0. Fix an
arbitrary m ∈ {1, . . . ,M}. By Lemma 1, the strategy profile (am, . . . , am) is a Nash equilibrium if and
only if di(am−1, ā

−i
m ) ≥ dj(am−1, ā

−i
m ). The latter is equivalent to p

N
(am−1 +(N−1)am) ≥ 1

2
(am−1 +am),

which is in turn equivalent to p ≥ pm.
(ii) It follows from Lemma 2 (ii) that (aM , . . . , aM) is always a Nash equilibrium. Thus, by our

convention pM = ∞, the profile (aM , . . . , aM) is a Nash equilibrium if and only if p ≤ pM . Now fix
an arbitrary m ∈ {0, . . . ,M − 1}. Then, by Lemma 2, the strategy profile (am, . . . , am) is a Nash
equilibrium if and only if di(am+1, ā

−i
m ) ≥ dj(am+1, ā

−i
m ), which is equivalent to p

N
(am+1 + (N − 1)am) ≤

1
2
(am+1 + am), which is in turn equivalent to p ≤ qm, thus completing the proof.
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A.3. Proofs of Section 4.2

Lemma A4. For an arbitrary m ∈ {1, . . . ,M}, let p < pm and consider an arbitrary s−i ∈ Bm
−i. If

ui(am, s−i) > 0 then ui(am−1, s−i) > ui(am, s−i).

Proof. Fix an arbitrary s−i ∈ Bm
−i such that ui(am, s−i) > 0. First, it follows by Theorem 1 (i) that

s−i 6= ā−im , i.e., there exists some k 6= i such that sk = an < am. Without loss of generality let an ≥ sj
for every j 6= i such that sj 6= am, i.e., among the opponents of i who do not choose am, player k
chooses the highest number. Then it follows from ui(am, s−i) > 0, that t(am, s−i) ≥ 1

2
(am + an). Let

us first prove that an < am−1. Suppose not, i.e., assume that an = am−1, in which case

t(am, s−i) =
p

N

(
am +

∑
j 6=i

sj

)
≤ p

N

(
(N − 1)am + am−1

)
= t(am−1, ā

−i
m )

<
1

2
(am + am−1),

where the last inequality follows from the fact that (am, . . . , am) is not a Nash equilibrium (see Theorem
1) together with the fact that the only candidate for a profitable deviation is am−1 (see Lemma 1).
But then, there exists a player choosing am−1, thus contradicting ui(am, s−i) > 0. Hence, it must
necessarily be the case that an < am−1, i.e., no opponent chooses am−1. Now consider the strategy
profile (am−1, s−i) and obtain

t(am−1, s−i) = t(am, s−i)−
p

N
(am − am−1)

>
1

2
(am + an)− 1

2
(am − am−1)

=
1

2
(am−1 + an),

implying that di(am−1, s−i) < dj(am−1, s−i) for every j 6= i with sj < am−1. Finally, notice that

t(am−1, s−i) < t(am−1, ā
−i
m )

<
1

2
(am−1 + am),

with the second inequality following from ām not being a Nash equilibrium. Hence, di(am−1, s−i) <
dj(am−1, s−i) for every j 6= i with sj > am−1. This implies that ui(am−1, s−i) = 1. Thus, it suffices to
prove that ui(am, s−i) < 1. Suppose otherwise, i.e., let sj ≤ an for every j 6= i. Then, from Lemma
A2, we would obtain ui(am, s−i) = 0, thus completing the proof.

Lemma A5. For an arbitrary m ∈ {0, . . . ,M − 1}, let p > qm and consider an arbitrary s−i ∈ Am−i.
If ui(am, s−i) > 0 then ui(am+1, s−i) > ui(am, s−i).

Proof. The proof is very similar to the one of A4 above. Fix an arbitrary s−i ∈ Am−i such that
ui(am, s−i) > 0. First, it follows by Theorem 1 (ii) that s−i 6= ā−im . Without loss of generality let an ≤ sj
for every j 6= i such that sj 6= am. Then it follows from ui(am, s−i) > 0, that t(am, s−i) ≤ 1

2
(am + an).

Using the same arguments as above, we first show that an > am+1. Now consider the strategy profile
(am+1, s−i) to obtain

t(am+1, s−i) = t(am, s−i)−
p

N
(am+1 − am)

<
1

2
(am+1 + an),
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implying that di(am+1, s−i) < dj(am+1, s−i) for every j 6= i with sj > am+1. Finally, notice that

t(am+1, s−i) < t(am+1, ā
−i
m )

<
1

2
(am−1 + am),

with the second inequality following from ām not being a Nash equilibrium. Hence, di(am+1, s−i) <
dj(am+1, s−i) for every j 6= i with sj < am+1. This implies that ui(am+1, s−i) = 1. Hence, it suffices to
prove that ui(am, s−i) < 1. Suppose otherwise, i.e., let sj ≥ an for every j 6= i. Then, from Lemma
A3, we would obtain ui(am, s−i) = 0, which completes the proof.

Proof of Lemma 3. (i) Fix some m ∈ {1, . . . ,M} and define a strategy profile

sκm = ( am, . . . , am︸ ︷︷ ︸
N − κ− 1 times

, am−1, . . . , am−1︸ ︷︷ ︸
κ times

) ∈ S−i,

where κ ∈ {0, . . . , N − 1} of i’s opponents choose am−1 and the remaining ones choose am. Then,
it suffices to prove that am−1 is a best response to some s−i ∈ {s0

m, s
1
m, . . . , s

N−1
m }. If (am, . . . , am) is

not a Nash equilibrium, am−1 is a best response to s0
m = ā−im (by Lemma 1). If (am−1, . . . , am−1) is a

Nash equilibrium, am−1 is trivially a best response to sN−1
m = ā−im−1. So, we focus on the case where

(am, . . . , am) is a Nash equilibrium while (am−1, . . . , am−1) is not. In particular, this implies p < 1.
Consider the strictly decreasing sequence(

t(am, s
0
m), t(am−1, s

0
m), t(am−1, s

1
m), . . . , t(am−1, s

N−1
m )

)
of the target guesses. Note that the difference

t(am, s
0
m)− t(am−1, s

0
m) = t(am−1, s

κ
m)− t(am−1, s

κ+1
m ) =

p

N
(am − am−1) (A.3)

does not depend on κ, i.e., the sequence decreases at a constant rate. Moreover, since (am, . . . , am) is
a Nash equilibrium,

am ≥ t(am, s
0
m) > t(am−1, s

0
m) ≥ 1

2
(am + am−1) > am−1 ≥ t(am−1, s

N−1
m ). (A.4)

Define κ∗ := min{κ ∈ {1, . . . , N − 1} : 1
2
(am + am−1) > t(am−1, s

κ
m) ≥ am−1}. Intuitively, this is the

smallest number of opponents that must choose am−1 such that choosing am−1 yields a strictly higher
utility than am. Note that by (A.3) and (A.4), we obtain p

N
≤ 1

2
, and therefore such a κ exists (the

fact that κ ≥ 1 follows from ām being a Nash equilibrium). Consider the following cases:

• Let κ∗ ≤ N−1
2

or equivalently κ∗ ≤ N − 1− κ∗, i.e., there are (weakly) fewer opponents choosing
am−1 than those choosing am at sκ

∗
m . Let us first prove that

ui(am−1, s
κ∗

m ) ≥ ui(an, s
κ∗

m ) (A.5)

for all n ∈ {m+ 1, . . . ,M}. Observe that

ui(am−1, s
κ∗

m ) =
1

κ∗ + 1
≥ 1

N − κ∗
= ui(am, s

κ∗

m ).

13



Moreover, by Lemma A2 (ii), it follows that (A.5) holds for every n ∈ {m+ 1, . . . ,M}. Now, let
us prove it for every n ∈ {0, . . . ,m− 2}. By construction, t(am−1, s

κ∗
m ) ≥ am−1. Hence, by p ≤ 1

and N > 2,

t(am−2, s
κ∗

m ) = t(am−1, s
κ∗

m )− p

N
(am−1 − am−2)

≥ am−1 −
p

N
(am−1 − am−2)

> am−1 −
1

2
(am−1 − am−2)

=
1

2
(am−1 + am−2),

implying that di(am−2, s
κ∗
m ) > dj(am−2, s

κ∗
m ), with j 6= i being an opponent of i who chooses am−1

(recall that such j exists, since κ∗ ≥ 1). Hence, ui(am−1, s
κ∗
m ) > ui(am−2, s

κ∗
m ), and thus (A.5)

follows for all n ∈ {0, . . . ,m− 2} by Lemma A2 (i). This implies that am−1 is a best response to
sκ

∗
m ∈ {s−i ∈ S−i : sj ∈ {am−1, am} for all j 6= i}.

• Let κ∗ > N−1
2

, i.e., more than half of the opponents choose am−1. Since κ∗ ∈ N, we have

κ∗ ≥ N − κ∗. Since additionally p < 1, we obtain t(am−1, s
κ∗−1
m ) = pκ

∗am−1+(N−κ∗)am
N

< am+am−1

2
,

a contradiction to the definition of κ∗.

Combining the previous cases completes the proof.
(ii) Consider the mixed strategy σmi ∈ ∆(Bm

i ), attaching probability λ ∈
(

N
1+N

, 1
)

to am−1 and

equal probability 1−λ
m−1

to each an ∈ {a0, . . . , am−2}. Then, consider the following two cases:

• Let s−i ∈ Bm
−i be such that ui(am, s−i) = 0. Then, by Lemma A1 applied in the reduced game

Bm
1 × · · · ×Bm

N , we obtain

ui(σ
m
i , s−i) = λui(am−1, s−i) +

1− λ
m− 1

m−2∑
n=0

ui(an, s−i) > 0 = ui(am, s−i).

Indeed, for every s−i ∈ Bm
−i there exists some n ∈ {0, . . . ,m} with ui(an, s−i) > 0, and since

ui(am, s−i) = 0 it must be the case that ui(an, s−i) > 0 for some n ∈ {0, . . . ,m− 1}.

• Let s−i ∈ Bm
−i be such that ui(am, s−i) > 0. Since (am, . . . , am) is not a Nash equilibrium, it

follows by Theorem 1 (i) that p < pm, and therefore by Lemma A4 that

ui(am−1, s−i)− ui(am, s−i) ≥
1

N
(A.6)

for all s−i ∈ Bm
−i such that ui(am, s−i) > 0. Moreover, by the definition of the utility function

1

m− 1

m−2∑
n=0

ui(an, s−i)− ui(am, s−i) ≥ −1. (A.7)

Multiply both sides of (A.6) with λ, and both sides of (A.7) with 1− λ, and add the respective
sides to obtain

ui(σ
m
i , s−i)− ui(am, s−i) ≥

λ

N
+ λ− 1

= λ
1 +N

N
− 1 > 0, (A.8)

with the strict inequality in (A.8) following directly by λ > N
1+N

, which is true by our construction
of σmi . Hence, we obtain ui(σ

m
i , s−i) > ui(am, s−i).
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Combining the previous two cases proves that am is strictly dominated by σmi in Bm
1 × · · · ×Bm

N .

Proof of Lemma 4. The proof is similar to the one of Lemma 3.
(i) Fix some m ∈ {0, . . . ,M − 1} and define a strategy profile

sκm = ( am, . . . , am︸ ︷︷ ︸
N − κ− 1 times

, am+1, . . . , am+1︸ ︷︷ ︸
κ times

) ∈ S−i

where κ ∈ {0, . . . , N − 1}. If (am, . . . , am) is not a Nash equilibrium, am+1 is a best response to s0
m

(by Lemma 2), whereas if (am+1, . . . , am+1) is a Nash equilibrium, am+1 is trivially a best response to
sN−1
m . So, we focus on the case where (am, . . . , am) is a Nash equilibrium while (am+1, . . . , am+1) is not.

This implies p > 1. Consider the strictly increasing sequence(
t(am, s

0
m), t(am+1, s

0
m), t(am+1, s

1
m), . . . , t(am+1, s

N−1
m )

)
of the target guesses. Note that the difference

t(am+1, s
0
m)− t(am, s0

m) = t(am+1, s
κ+1
m )− t(am−1, s

κ
m) =

p

N
(am+1 − am) (A.9)

does not depend on κ. Moreover, since (am, . . . , am) is a Nash equilibrium,

am ≤ t(am, s
0
m) < t(am+1, s

0
m) ≤ 1

2
(am + am+1) < am+1 ≤ t(am+1, s

N−1
m ). (A.10)

Then we define κ∗ := min{k ∈ {1, . . . , N − 1} : 1
2
(am + am+1) < t(am+1, s

κ
m) ≤ am+1}. By (A.9)

and (A.10), we obtain p
N
≤ 1

2
, and hence such a κ exists. In fact if it holds with equality then

t(am+1, s
0
m) = 1

2
(am + am+1), in which case am+1 is a best response to ā−im , and we are done. Hence, we

take p
N
< 1

2
. Consider the following cases:

• Let κ∗ ≤ N−1
2

. Let us first prove that

ui(am+1, s
κ∗

m ) ≥ ui(an, s
κ∗

m ) (A.11)

for all n ∈ {0, . . . ,m− 1}. Note that

ui(am+1, s
κ∗

m ) =
1

κ∗ + 1
≥ 1

N − κ∗
= ui(am, s

κ∗

m ).

Moreover, by Lemma A3 (ii), it follows that (A.11) holds for every n ∈ {0, . . . ,m − 1}. Now,
let us prove it for every n ∈ {m + 2, . . . ,M}. By construction, t(am+1, s

κ∗
m ) ≤ am+1. Hence, by

p
N
≤ 1

2
,

t(am+2, s
κ∗

m ) = t(am+1, s
κ∗

m ) +
p

N
(am+2 − am+1)

< am+1 +
1

2
(am+2 − am+1)

=
1

2
(am+1 + am+2),

implying that di(am+2, s
κ∗
m ) > dj(am+2, s

κ∗
m ), with j 6= i being an opponent of i who chooses am+1

(recall that such j exists, since κ∗ ≥ 1). Hence, ui(am+1, s
κ∗
m ) > ui(am+2, s

κ∗
m ), and thus (A.11)

follows for all n ∈ {m+ 2, . . . ,M} by Lemma A3 (i). Hence am+1 is a best response to sκ
∗
m .
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• Let κ∗ > N−1
2

, i.e., more than half of the opponents choose am+1. Since κ∗ ∈ N, we have

κ∗ ≥ N − κ∗. Since additionally p > 1, we obtain t(am−1, s
κ∗−1
m ) = pκ

∗am+1+(N−κ∗)am
N

> am+am+1

2
,

a contradiction to the definition of κ∗.

Combining the previous cases completes the proof.
(ii) The proof is almost identical to the one of Lemma A4. Consider the mixed strategy σmi ∈

∆(Ami ), attaching probability λ ∈
(

N
1+N

, 1
)

to am+1 and equal probability 1−λ
M−m−1

to each an ∈
{am+2, . . . , aM}. Then, consider the following two cases:

• Let ui(am, s−i) = 0. Then, by Lemma A1, we obtain

ui(σ
m
i , s−i) = λui(am+1, s−i) +

1− λ
M −m− 1

M∑
n=m+2

ui(an, s−i) > 0 = ui(am, s−i).

• Let ui(am, s−i) > 0. Since (am, . . . , am) is not a Nash equilibrium, it follows by Theorem 1 (ii)
that p > pm, and therefore by Lemma A5 that

ui(am+1, s−i)− ui(am, s−i) ≥
1

N
(A.12)

for all s−i ∈ Am−i such that ui(am, s−i) > 0. Moreover, by the definition of the utility function

1

M −m− 1

M∑
n=m+2

ui(an, s−i)− ui(am, s−i) ≥ −1. (A.13)

Multiply (A.12) by λ and (A.13) by 1− λ, and add the respective sides to obtain

ui(σ
m
i , s−i)− ui(am, s−i) ≥

λ

N
+ λ− 1 > 0,

with the strict inequality following from λ > N
1+N

, thus obtaining ui(σ
m
i , s−i) > ui(am, s−i).

Combining the previous two cases proves that am is strictly dominated by σmi in Am1 × · · · × AmN .

Proof of Theorem 2. We begin with sufficiency. Let (am, . . . , am) and (an, . . . , an) be two sym-
metric Nash equilibria (with m < n). For every i ∈ I, take Cm,n

i := Ami ∩ Bn
i = {am, am+1, . . . , an}.

Then, it suffices to prove that
Cm,n

1 × · · · × Cm,n
N

is a best response set. Consider the following two cases:

• Let p ≤ 1. It follows from Lemma 3 (i) that for all ` ∈ {m, . . . , n − 1} there exists some
s−i ∈ {s′−i ∈ S−i : s′j ∈ {a`, a`+1} for all j 6= i} ⊆ Cm,n

−i such that a` is a best response to s−i.
Moreover, by (am, . . . , am) being a Nash equilibrium, am is a best response to ā−im ∈ C

m,n
−i .

• Now let p ≥ 1. It follows from Lemma 4 (i) that for all ` ∈ {m + 1, . . . , n} there exists some
s−i ∈ {s′−i ∈ S−i : s′j ∈ {a`−1, a`} for all j 6= i} ⊆ Cm,n

−i such that a` is a best response to s−i.
Moreover, by (an, . . . , an) being a Nash equilibrium, an is a best response to ā−in ∈ C

m,n
−i .
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Combining the two cases completes the proof of sufficiency for every p ∈ R+. Necessity is proven
separately for p ≤ 1 and p ≥ 1 below.

(i) It follows from Theorem 1 that (a0, . . . , a0) is a Nash equilibrium, and therefore also rationaliz-
able. Define m := max{n ∈ {0, . . . ,M} : p ≥ pn}. Again by Theorem 1 it follows that (am, . . . , am) is
a Nash equilibrium. Hence, am is rationalizable for every m ∈ {0, . . . ,m}. For m < M , it remains to
prove that no m ∈ {m+ 1, . . . ,M} is rationalizable. We proceed by induction. It follows from Lemma
3 (ii) that for an arbitrary m ∈ {m+1, . . . ,M} the strategy am is strictly dominated in Bm

1 ×· · ·×Bm
N ,

and therefore am /∈ RM−m+1
i . Hence, am /∈ R∗i , thus completing this part of the proof.

(ii) The proof follows the same steps as Part (i) above. It follows from Theorem 1 that (aM , . . . , aM)
is rationalizable. Define m := min{n ∈ {0, . . . ,M} : p ≤ qn}. Again by Theorem 1 it follows that
(am, . . . , am) is rationalizable for every m ∈ {m, . . . ,M}. For m > 0, it remains prove that no
m ∈ {0, . . . ,m− 1} is rationalizable. We proceed by induction. It follows from Lemma 4 (ii) that for
an arbitrary m ∈ {0, . . . ,m− 1} the strategy am is strictly dominated in Am1 ×· · ·×AmN , and therefore
am /∈ Rm+1

i . Hence, am /∈ R∗i , thus completing the proof.

A.4. Proofs of Section 3

Proof of Corollary 1. When the strategy set is Si = {0, . . . ,M}, the threshold parameters
become pm = 2Nm−N

2Nm−2
for m ∈ {1, . . . ,M} and p0 = 0. Observe that pm is nondecreasing in

m ∈ {0, 1, . . . ,M} (resp., strictly increasing if p < 1). Hence, for an arbitrary p ∈ [0, 1], we find
m = max{n ∈ {0, . . . ,M} : p ≥ pn}, noticing that p ≥ pm if and only if m ≤ m. But then, it follows
from Theorem 2 (ii) that p ≥ pm if and only if m is rationalizable.

Proof of Corollary 2. When the strategy set is Si = {0, . . . ,M}, the threshold parameters
become qm = 2Nm+N

2Nm+2
for m ∈ {0, . . . ,M − 1} and qM = ∞. Hence, qm is nonincreasing for

m ∈ {0, . . . ,M − 1}, thus implying qM > q0 ≥ qm for all m ∈ {0, . . . ,M − 1}.
(i) Take an arbitrary p ≤ N

2
= q0. By Theorem 1 (ii), the profiles (0, . . . , 0) and (M, . . . ,M) are

Nash equilibria. Hence, by Theorem 2, every m ∈ {0, . . . ,M} is rationalizable.
(ii) Take an arbitrary p > N

2
= q0, thus implying p > qm for every m ∈ {0, . . . ,M − 1}. Hence,

by Theorem 1 (ii), the only Nash equilibrium is (M, . . . ,M). Thus, by Theorem 2 (ii), the only
rationalizable strategy is M .

A.5. Proofs of Section 5

Proof of Proposition 1. We know that in general S∗i ⊆ R∗i . Hence, it suffices to show that
R∗i ⊆ S∗i . Take p ≤ 1. Then, by Theorem 2 (i), we obtain R∗i = {a0, . . . , am}. Note that R∗1× · · · ×R∗i
is a independent best response set. Indeed, am is a best response to the (independent) belief that
puts probability 1 to ā−im , and for every m ∈ {0, . . . ,m}, the pure strategy am is a best response to
an (independent) belief that puts probability 1 to some s−i ∈ {s′−i ∈ S−i : sj ∈ {am, am+1} for all j 6=
i} ⊆ R∗−i by Lemma 3 (ii). The proof is similar for p ≥ 1. In particular, we obtain R∗i = {am, . . . , aM}.
Then, aM is a rational for the (independent) belief that puts probability 1 to ā−iM , and for every
m ∈ {m − 1, . . . ,M}, the pure strategy am is a best response to an (independent) belief that puts
probability 1 to some s−i ∈ {s′−i ∈ S−i : sj ∈ {am, am−1} for all j 6= i} ⊆ R∗−i by Lemma 4 (ii).

Proof of Proposition 2. (i) Note that in any game Bm
i , by Lemma 3 (i), only strategy am can

be dominated. By our characterization of R∗i , strategy am is dominated if and only if m > m. Thus,
strategy am is eliminated in round k+1 if and only if m = M−k > m, i.e., formally, Rk+1

i = Rk
i \{aM−k}

in this case.
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(ii) The proof is analogous to Part (i). In any game Ami , by Lemma 4 (i), only strategy am can
be dominated. By our characterization of R∗i , strategy am is dominated if and only if m < m. Thus,
strategy am is eliminated in round k + 1 if and only if m = k < m, i.e., Rk+1

i = Rk
i \ {ak}.
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