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Abstract

In this paper we discuss the differences between the average mar-

ginal effect and the marginal effect of the average individual in sample

selection models, estimated by the Heckman procedure. We show that

the bias that emerges as a consequence of interchanging them, could be

very significant, even in the limit. We suggest a computationally cheap

approximation method, which corrects the bias to a large extent. We

illustrate the implications of our method with an empirical application

of earnings assimilation and a small Monte Carlo simulation.
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1 Introduction

A large amount of applied work using nonlinear microeconometric models has

been carried out during the last decades. One of the important characteris-

tics of these models is their nature which allows the calculation of individual

marginal effects. In general most empirical studies report one of the two estab-

lished point estimators for the marginal effects: (i) averaging over the marginal

effects of all the individuals in the sample and (ii) evaluating the marginal ef-

fect at the sample means. Neglecting their quantitative, and more importantly,

conceptual differences is a quite common practice. Greene’s (2003) discussion

on the marginal effects in binary choice models, stresses the fact that in many

occasions the asymptotic equivalence of the two measures is taken for granted.

Verlinda (2006) shows that arbitrarily interchanging them in a binary probit

model could create bias and lead to misleading conclusions, since the two

measures estimate different quantities.

In the present paper we discuss the relationship between the two measures

in the context of sample selection models, or else known as Tobit type II.

Provided that one is interested in the average effect over the population, rather

the effect over the average individual, we show that evaluating the derivative at

the sample means, leads to biased predictions, even asymptotically. Since the

other commonly used alternative (averaging the marginal effects for the whole

sample), could be computationally inefficient, we propose an approximation

technique which significantly reduces the bias, without increasing much the

number of numerical operations. In order to do so, we express the average

marginal effect (AME) with the Taylor expansion around the mean values

of the explanatory variables and prove that the conventionally used marginal

effect of the average individual (MEAI) is actually equal to the first order

Taylor approximation, while the order of magnitude is equal to the asymptotic

bias. By shifting to the second order approximation, one can reduce the size of

the bias without high computational cost, since the second term of the series

is a function of the Hessian and the covariance matrix evaluated at the sample

means.

Marginal effects in sample selection models have been recently discussed.
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Saha et.al. (1997a) show that failure to account for changes in the inverse of

Mill’s ratio leads to biased marginal effects. Hoffmann and Kassouf (2005) in-

troduce unconditional marginal effects, besides the standard conditional ones.

In any case, the clear distinction between AME and MEAI is necessary re-

gardless of the definition of the marginal effects.

In order to emphasize the necessity of a consistent estimator for the average

marginal effects, we present an empirical application of immigrants earnings

assimilation using registered data from Sweden. We find that our approach

corrects the bias to a large extent and we discuss the policy implications behind

this relative difference.

The paper has the following structure. Section 2 briefly describes Heck-

man’s two step procedure. In section 3 we introduce the theoretical results of

our approach. In section 4 we apply the model to real data. In section 5 we

include Monte Carlo simulations. Section 6 concludes.

2 Heckman procedure and marginal effects

Consider the following sample selection (otherwise known as Tobit type II)

model

Y ∗
i = X′

iβ + εi (1)

H∗
i = Ziγ + ui (2)

Hi = 1[H∗
i > 0] (3)

Yi = Y ∗
i ·Hi (4)

where i = 1, ..., N . Let the latent variables Y ∗
i and H∗

i denote individual i’s

earnings and hours of work respectively. Assume also that the matrices Xi

and Zi include various observed individual characteristics, with Xi being a

strict subset of Zi. Finally the joint error term (εi, ui) follows the bivariate

normal distribution with correlation coefficient ρ and normalized variance of

the selection equation error term, σ2
u = 1. Our primary aim is to estimate the

parameter vector β of the earnings equation. However neither Y ∗
i , nor H∗

i are

observed. On the other hand, we know that strictly positive hours of work

is necessary and sufficient condition for participating in the job market , ie.
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H∗
i > 0. Then the participation decision takes the form of a binary choice,

since working and not working are complementary events, and as such they

can be written as the indicator function of equation above.

Conditioning on the subset of the population that contains the individuals

who actually work, the expectation of the earnings given participation would

be given by the following formula (Greene, 2003):

E[Y ∗
i |Hi = 1,Xi,Zi] = E[X′

iβ + εi|H∗
i > 0]

= X′
iβ̂ + E[εi|ui > −Z′iγ]

= X′
iβ̂ + ρ̂σ̂ε

φ(−Z′iγ̂)
1− Φ(−Z′iγ̂)

(5)

where φ(·) and Φ(·) denote the density and the cumulative distribution of a

standard normal distribution respectively. After some notation simplification

equation (5) is rewritten as follows:

E[Y ∗
i |Hi = 1,Xi,Zi] = X′

iβ̂ + ρ̂σ̂ελ̂i(α̂u) (6)

where α̂u = −Z′iγ̂, while λ denotes the inverse of Mill’s ratio, ie. λ = φ/(1−Φ).

It is straightforward that equation (6) cannot be estimated consistently with

ordinary least squares (OLS) in the existence of correlation between εi and

ui (ρ 6= 0). On the other hand, although consistent, the maximum likelihood

estimator (MLE) constitutes a computationally challenging task. Heckman

(1976) introduced a method which can simultaneously handle consistency and

computational efficiency. His procedure consists of two separate steps. First

estimate the participation probability by applying a binary probit model

P [Hi = 1|Zi] = Φ(Z′iγ) (7)

and use the estimated choice probabilities to calculate λ̂i(α̂u). In the second

step, apply OLS on the earnings equation, while perceiving the estimated

inverse Mill’s ratio as another explanatory variable. Thus one gets rid of the

omitted variable problem that would emerge otherwise and the estimator of

the parameter vector in the target equation becomes consistent.

The ceteris paribus estimated marginal effect1 of an infinitesimal change

of an arbitrary individual characteristic k on individual i’s earnings is given
1A more precise terminology would require to define it as conditional marginal effect,

since it refers only to the individuals who actually work.
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by the following equation for an explanatory variable xk,i

M̂Ek,i =
∂E[Y ∗

i |Hi = 1,Xi,Zi]
∂Xk,i

= β̂k − γ̂kρ̂σ̂εδ̂i(α̂u) (8)

where δ̂i(α̂u) = λ̂2
i (α̂u) − α̂uλ̂i(α̂u). The (total) marginal effect of a variable

in a sample selection model can be separated into two parts (Greene, 2003).

The direct effect (β̂k) shows the marginal effect of an explanatory variable on

the earnings without taking into account the effect of selectivity in the data.

The second term in equation (8) is called indirect effect and it is a function

of the observed individual characteristics. Due to this functional relationship

marginal effects vary across individuals. Omitting the indirect effect would

linearize the marginal effect, which is rather convenient in practical terms,

but it also creates non negligible bias. Such a problem would not not arise if

the estimated correlation coefficient between the errors of the first and second

stage estimation equations (ρ) was equal to zero (Saha et.al., 1997a).

Since policy decisions upon an action which leads to a change of an explana-

tory variable affect the whole population, the existence of such nonlinearity

allows the use of different measures for the marginal effects. In general econo-

mists are interested in the average marginal effect (AME) of this action over

all individuals. Therefore by using an inconsistent estimator for the AME

could potentially lead to wrong conclusions and undesired effects of the pol-

icy application. A consistent estimator for AME is given by the following

expression:

ÂMEk =
1
N

N∑

i=1

∂E[Y ∗
i |Hi = 1,Xi,Zi]

∂Xk,i
=

1
N

N∑

i=1

(
β̂k − γ̂kρ̂σ̂εδ̂i(α̂u)

)
(9)

This follows directly from Khinchine’s weak law of large numbers. Namely,

plimN→∞ÂMEk = E[β̂k − γ̂kρ̂σ̂εδ̂i(αu)] = β̂k − γ̂kρ̂σ̂εE[δ̂i(α̂u)] (10)

for every k.

However, due to factors, such as computational inefficiency or unavailabil-

ity of software routines for the calculation of ÂME, researchers usually report

the marginal effect of the average individual (M̂EAI), which is equivalent to

evaluating the marginal effects at the sample means.
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M̂EAIk =
∂E[Y ∗

i |Hi = 1,Xi,Zi]
∂Xk,i

∣∣∣∣
Zi=Z̄,Xi=X̄

= β̂k − γ̂kρ̂σ̂εδ̄ (11)

where δ̄ = δ̂i(−Z̄′γ̂). Notice that M̂EAI is a consistent estimator for the its

population counterpart (MEAI),

plimN→∞M̂EAIk = E[β̂k − γ̂kρ̂
σ̂ε

σ̂u
δ̂i(Z̄′γ̂)] = β̂k − γ̂kρ̂σ̂εδ̂i(M′γ̂) (12)

but not for the AME, since E[δ̂i(α̂u)] 6= δ̂i(M′γ̂). That is ÂME and M̂EAI

are not only do they differ quantitatively, but also conceptually, since they es-

timate different things. Therefore the researcher who arbitrarily interchanges

them could be led to misleading conclusions.

3 Approximating average marginal effects

As we discussed above interchanging ÂME and M̂EAI produces bias and

leads to inconsistent estimation of AME. In this section we suggest an ap-

proximation method for estimating AME, which is computationally efficient

and significantly reduces the bias emerging from the use of M̂EAI. In order

to extract the asymptotic bias we expand the Taylor series of δ̂i(Z′iγ̂) around

the mean of the explanatory variables, M.

δ̂i(Z′iγ̂) = δ̂i(M′γ̂) +
∑

k

(
∂δ̂i(Z′iγ̂)

∂Zk

∣∣∣∣
M

· (Zk,i −Mk)
)

+
1
2!

∑

k1

∑

k2

(
∂2δ̂i(Z′iγ̂)

∂Zk1,i∂Zk2,i

∣∣∣∣
M

· (Zk1,i −Mk1)(Zk2,i −Mk2)
)

+ · · · (13)

= δ̂i(M′γ̂) +
∞∑

j=1

[
1
j!

∑

k1,...,kj

(
∂j δ̂i(Z′iγ̂)

∂Zk1,i, ..., ∂Zkj ,i

∣∣∣∣
M

· (Zk1,i −Mk1) · · · (Zkj ,i −Mkj )
)]

Then plugging into equation (8) and taking expectation, we conclude that the

AME is approximated by the following formula

AMEk = β̂k − γ̂kρ̂σ̂εE[δ̂i(Z′iγ̂)]

= MEAIk − γ̂kρ̂σ̂ε

∞∑

j=1

[
1
j!

∑

k1,...,kj

(
∂jδi(Z′iγ̂)

∂Zk1,i, ..., ∂Zkj ,i

∣∣∣∣
M

·Ψj
k1,...,kj

)]

= MEAIk + B1
k(Ψ1, Ψ2, ...) (14)
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where Ψj
k1,...,kj

= E[(Zk1,i −Mk1) · · · (Zkj ,i −Mkj
)] denotes the jth order joint

moment about the means, while B1
k denotes the size of the first order approxi-

mation asymptotic bias as a function of the joint moments, Ψj , of the individ-

ual characteristics. Therefore by using the M̂EAIk to estimate the AMEk one

implicitly takes into account only the first order approximation while neglect-

ing the higher orders, which ultimately leads to bias, equal to B̂1
k(Ψ1, Ψ2, ...).

If instead one used an additional term of the Taylor polynomial, the second or-

der approximation of the average marginal effect ( ̂SOAMEk) would substitute

the M̂EAIk. That would be given by the following formula:

̂SOAMEk = M̂EAIk − 1
2
γ̂kρ̂σ̂ε

∑

k1

∑

k2

(
∂2δ̂i(Z′iγ̂)

∂Zk1,i∂Zk2,i

∣∣∣∣
Z̄

· Ĉov(Zk1,i, Zk2,i)
)

(15)

By using the second order approximation, which does not increase significantly

the number of numerical operations since it only involves the elements of the

entrywise product of the Hessian evaluated at Z̄ and the covariance matrix,

one would substantially reduce2 the bias of the estimates.

In the following section we empirically show that neglecting the bias could

create misleading results that could significantly affect the policy implications

of the model.

4 Empirical applications

We divide our applications into two parts: a study of earnings assimilation of

immigrants in Sweden, where with the use of real data we illustrate the neces-

sity of bias reduction in the estimation of marginal effects and a Monte Carlo

simulation where we examine the limiting properties of our approximation

technique.

4.1 Earnings assimilation of immigrants in Sweden

The economic performance of immigrants is one the major interests of policy

makers in most highly immigrated Western countries. The question in such a
2The expected second order of magnitude is larger to the third one (Nguyen, Jordan;

2004).
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study would typically be whether immigrants entered the host country with

an earnings difference relative to natives and whether their earnings converge

to those of the natives years since migration (Y SM) increase (Borjas, 1985,

1999; Longva et.al., 2003). Then, based on the answer, policies that target

to different individual characteristics of the immigrants are designed, in order

to adjust the speed of assimilation closer to the desired for the policy maker

level.

The data used for the purpose of the present study comes from the reg-

istered nationally representative longitudinal individual data set of Sweden

(LINDA), which is in panel form and it is rich in individual socioeconomic

characteristics (Edin and Frederiksson, 2001). The principal data sources are

income registers and population censuses. Family members are included in

the sample only as long as they stay in the household. LINDA contains a

sub-panel of about 20 percent of the foreign-born population. The working

sample includes 3136, aged 18-65, male individuals (1962 immigrants3 and

1174 natives) followed for 11 years, from 1990 to 2000.

Table 1 shows the mean characteristics of the sample. The earnings and

the income from other sources of natives are considerably higher than that

of the immigrants. Natives are more likely to be employed (0.82 vs. 0.57),

slightly older (38.4 vs. 37.1), less likely to be married (0.39 vs. 0.43) and

they have less children at home (0.44 vs. 0.48). They also acquire higher level

of education: the percentage of native high school graduates is 0.76 among

natives and 0.71 among immigrants.

• Table 1 about here

The immigrant arrival cohorts are classified as five year intervals except for

the first and the last one, which include the years before 1970 and the period

1995-2000 (six years), respectively. These two arrival cohorts are slightly un-

derrepresented in the sample (7 and 6 percent respectively). The immigrants

are categorized according to their country of origin as follows: Nordic coun-

tries, USA, Western countries except USA (EU-15, Canada, Australia and

New Zealand), Eastern Europe, Middle East, Asia, Africa and Latin America.
3We define an immigrant as an individuals who was born abroad (first generation).
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Based on working indicators in the data, an employment dummy is defined,

which takes value 1 if the individual is employed and 0 otherwise. The earnings

variable used in the study is obtained from the national tax registers and is

measured in thousands of Swedish Croner (SEK) per year, adjusted to 2000

prices.

The model specification for the immigrants is given by the following stan-

dard sample selection model:

Y ∗
i = X′

iβ + φAGEi + δYSMi +
∑

j

ψjC
j
i +

∑

k

θkΠk
i + εi (16)

H∗
i = Ziγ + ui

Hi = 1[H∗
i > 0]

Yi = Y ∗
i ·Hi

In the model i denotes each cross section and Y ∗ the natural logarithm of the

latent earnings. The individual characteristics included in Xi matrix are indi-

vidual i’s number of children, marital status, size of the permanent residence

area, education and geographical origin. The variables AGE and Y SM denote

the age and the years since migration respectively4. Finally Cj
i and Πk

i are

indicator variables, for the j-th immigrant arrival cohort and the k − th year.

Cj
i becomes 1 if the individual arrived at the j-th cohort and 0 otherwise.

Similarly Πk
i takes the value 1 if the individual is observed in the k-th period

and the value 0 otherwise. The Zi matrix includes the same characteristics

plus the logarithm of non labor income5. The model specification for the na-

tives does not differ to the one estimated for the immigrants, except excluding

the variables that do not make sense, such as years since immigration, arrival

cohort and geographical origin.

The assimilation model given by (16) aims to identify the three important

effects (ageing, arrival cohort and period effect) on the earnings assimilation

simultaneously. However this model is not identified in any given cross sec-
4The exact functional forms for age and years since migration are quadratic. The second

order terms are omitted for notation simplicity purposes.
5The exclusion restriction adopted in this paper is that the non labor income affects the

probability of being employed but not the earnings. The same approached was also used by

Field-Hendry and Balkan (1991).
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tion, since the calendar year in which the cross section is observed is the sum

of Y SM in the host country and the calendar year in which the individual

immigrated. Thus the identification restriction imposed in the present study

is that the period effect in the immigrants’ earnings equation is equal to that

of the natives (ΠI
i = ΠN

i , ∀i = 1, ..., 11), which is a standard assumption in

assimilation literature (Borjas, 1985, 1999).

The estimation results and the bias analysis for the probit equation (first

step) and the target equation (second step) are presented in tables 2 and 3

respectively, alongside with the ÂME, the M̂EAI, the ̂SOAME and the first

and second order bias ( ̂FOBIAS and ̂SOBIAS), which denote the difference

between the consistent estimator ÂME and its first (M̂EAI) and second

order ( ̂SOAME) approximations respectively. For example the ÂME for

the the variable AGE for the immigrants is estimated as 0.153, while the

corresponding M̂EAI and ̂SOAME are equal to 0.235 and 0.175 respectively,

which constitutes 73 percent improvement of the bias.

• Table 2 about here

• Table 3 about here

Taking a closer look at the first and second order bias estimates of the

selection and the earnings equation (tables 2 and 3 respectively), one could

easily notice the rather significant improvement, not only in relative, but also

in absolute terms for all variables. This becomes even more worth mentioning,

since it is observed in key variables. For instance having a university degree

improves the earnings of the immigrants by 0.340 log points, according the

ÂME. On the other hand using the M̂EAI yields an estimate equal to 0.370

log points. Finally the ̂SOAME is equal to 0.348, which is substantially closer

to the ÂME (73 percent bias correction).

A really interesting result, though not surprising given the structure of

the Taylor series, is that the percentage change of the bias level by shifting

to the second order approximation remains constant across explanatory vari-

ables. Table 4 shows the size of the relative improvement if the second order

approximation is used.
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• Table 4 about here

As we mentioned above the hypothesis that one is usually willing to test

in this specific type of studies is whether the earnings of the immigrants catch

up with the natives with the years spent in the host country, and if they do

how long this assimilation process takes. Assume that the ageing variables

are defined as a function of time (AGE(t) and Y SM(t)). Then the relative

earnings for immigrant i with respect to native j, t years after migration, are

given by the following equation:

∆Yi,j(t) = EI [Yi|Hi = 1, AGE(t0 + t), YSM(t),Xi,Zi]

− EN [Yj |Hj = 1,AGE(t0 + t),Xj ,Zj ] (17)

where t0 is the age upon migration6, while EI and EN denote the conditional

expectations of the assimilation model of the immigrants and the natives re-

spectively. Evaluating ∆Yi,j(t) at t = 0 yields the initial earnings difference,

otherwise called entry effect upon arrival.

Then the estimated marginal rate of assimilation (M̂RA), which shows the

rate of earnings convergence between the i-th immigrant and the j-th native

at time t (Barth et.al., 2004) is given by the following equation:

M̂RAi,j(t) =
∂EI

i

∂t
− ∂EI

j

∂t
(18)

or in terms of marginal effects:

M̂RAi,j(t) = M̂E
I

AGE,i(t) + M̂E
I

YSM,i(t)− M̂E
N

AGE,j(t) (19)

Thus we reach a point where the marginal effects are in question again.

Given the fact that we are interested in the average total years of assimi-

lation (ÂTY A), one should estimate the average marginal rate of assimilation
6The entry age in the present study is assumed to be constant across immigrants and

equal to 20.
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(ÂMRA). Namely,

ÂMRA(t) =
I∑

i=1

J∑

j=1

1
I

1
J

(
M̂E

I

AGE,i(t) + M̂E
I

YSM,i(t)− M̂EAGEN ,j(t)
)

=
1
I

I∑

i=1

M̂E
I

AGE,i(t) +
1
I

I∑

i=1

M̂E
I

YSM,i(t)−
1
J

J∑

j=1

M̂E
N

AGE,j(t)

= ÂME
I

AGE(t) + ÂME
I

YSM(t)− ÂME
N

AGE(t) (20)

where I and J denote the total number of immigrants and natives respectively.

One can similarly calculate the estimators for the marginal rate of assimilation

for the average individual (M̂RAAI) and the second order approximation of

the average marginal rate of assimilation ( ̂SOAMRA), by substituting the

corresponding marginal effects in equation (20).

Then the estimator of the average total years of assimilation (ÂTY A) is

the upper limit that equates the following integral with the average initial

earnings difference.

∫ ÂTY A

0
ÂMRA(t)dt = ∆Y (0) (21)

Obviously substituting ÂMRA, with M̂RAAI would entail inconsistent esti-

mation of the upper limit of the integral. However if one used the second order

approximation for the average marginal assimilation rate ̂SOAMRA the bias

would be reduced.

Table 5 shows the estimation results. The ÂTY A is reported in the first

column for each group of immigrants. According to this estimator, the earnings

of the immigrants from Africa for instance are catching up to the level of the

natives in average 25.3 years after arrival. The second column of the table

reports total years of assimilation for the average immigrant ( ̂TY AAI). The

corresponding estimate for the average African immigrant is 23.6 years, which

is 1.7 years shorter than the ÂTY A. Finally by using the method we propose

in the present paper, the second order approximation of the average total

years of assimilation ( ̂SOATY A) yields an estimate of 24.4 years, which is 54

percent closer to the targeted result.

• Table 5 about here
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4.2 Monte Carlo simulation

As we have already discussed the bias that emerges by using the M̂EAI as a

point estimator of the AME, is not a consequence of a small sample, which

would disappear in the limit. Regardless of the sample size, the second order

approximation leads to bias reduction compared to the first one. The purpose

of this section is to provide empirical evidence for the size of the bias reduction

through a Monte Carlo experiment.

• Table 6 about here

Assume a standard sample selection model of the form of equation (1)

with Xi being a singleton and Zi = (Z1,i, Z2,i) coming from a bivariate normal

distribution with mean µi = (µ1, µ2) and covariance matrix Σ. Assume also

the following parameter values: β = 1, γ = (3,−2), σε = 0.5, σu = 1, ρ = −0.8,

µ = (0.5, 1.5) and Σ =
[

0.5 −0.1
−0.1 1

]
. Then using pseudo-random numbers we

repeatedly evaluate the first and the second order bias, while increasing the

sample size with step of 100 observations. The results are presented on table

6.

500 1000 1500 2000
N

0.183

SOBIAS

500 1000 1500 2000
N

0.524

FOBIAS

Figure 1: First and second order bias in Monte Carlo experiment.

Figure 1 illustrates the same point as table 6. Namely, it becomes clear that

the bias that emerges by using the MEAI, is corrected in a rather large extent,

without a corresponding computational cost. Notice that, bias reduction is
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observed, not only for small samples, but asymptotically too.

5 Concluding discussion

In this paper we discuss the differences between two point estimators of the

marginal effect of an explanatory variable on the population, in a sample selec-

tion model estimated by Heckman’s two step procedure. We show that on the

contrary to a rather widespread perception that neglects possible differences

between them, the average marginal effect is significantly different from the

marginal effect of the average individual even asymptotically. Thus, it should

be clear that there is not only a quantitative distinction, but also a conceptual

one between these measures. Given that the usual aim is to extract informa-

tion about the average effects on the population, a clear bias would emerge if

using the marginal effect of the sample average individual. Hence we suggest

an approximation method, based on Taylor expansion, which would correct the

bias in a rather remarkable extent, while increasing relatively little the num-

ber of computational operations. Such an example is presented in the paper,

alongside with a Monte Carlo experiment, and they both support the previous

argument. Before closing, we would like to make clear that we do not argue

in favor of the average marginal effect and against the marginal effect of the

average individual. Our aim is to stress that, once the average marginal effect

has been chosen as an informative tool for policy making, the sample marginal

effect of the average individual provides inconsistent estimations which can be

corrected in a large extent by the proposed method.
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Table 1: Mean characteristics of immigrants and natives.
Immigrants Natives

Variables Mean St. Deviation Mean St. Deviation

Log earnings 8.5707 5.2519 10.7750 3.7428

Log non labor income 0.5656 1.9748 0.7746 2.3281

Employment 0.5713 0.4991 0.8221 0.4871

Age 0.3714 0.1103 0.3837 0.1127

Age squared 0.1501 0.0866 0.1599 0.0907

Big city (> 250, 000) 0.6347 0.4815 0.7349 0.4414

Number of children 0.4840 0.9875 0.4407 0.8959

Married/Cohabiting 0.4344 0.4957 0.3891 0.4876

YSM 0.0794 0.0918 - -

YSM squared 0.0147 0.0247 - -

Education (highest level):

Lower-secondary 0.2955 0.4852 0.2389 0.4911

Upper-secondary 0.4454 0.4970 0.4867 0.4998

University 0.2591 0.4381 0.2744 0.4462

Arrival cohort:

< 1970 0.0669 0.2496 - -

1970-1974 0.1176 0.3221 - -

1975-1979 0.1574 0.3642 - -

1980-1984 0.1372 0.3441 - -

1984-1989 0.2237 0.4351 - -

1990-1994 0.2335 0.4411 - -

1995-2000 0.0637 0.1857 - -

Geographical origin:

Nordic 0.1239 0.3609 - -

W. Europe (incl. EU) 0.1188 0.2353 - -

USA 0.1312 0.2485 - -

Eastern Europe 0.1276 0.3337 - -

Middle East 0.1434 0.3505 - -

Asia 0.1245 0.3412 - -

Africa 0.1250 0.3418 - -

Latin America 0.1056 0.3097 - -
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Table 2: Estimates and analysis of bias for the employment equations.
Variables Est. AME MEAI SOAME FO Bias SO Bias

Immigrants

Constant -1.3258 -0.3387 -0.5195 -0.3871 0.1808 0.0485

Log non labor income -0.7741 -0.1977 -0.3033 -0.2260 0.1055 0.0283

Age 0.1259 0.1530 0.2347 0.1749 -0.0817 -0.0289

Age squared -0.0016 - - - - -

Big city (> 250, 000) 0.1115 0.0285 0.0437 0.0326 -0.1520 -0.0041

Number of children -0.0170 -0.0044 -0.0067 -0.0050 0.0023 0.0006

Married/Cohabiting 0.3598 0.0919 0.1410 0.1051 -0.0490 -0.0132

YSM 0.0477 0.0122 0.0187 0.0139 -0.0065 -0.0017

YSM squared -0.0001 - - - - -

Education (highest level):

Upper-secondary 0.3657 0.0934 0.1433 0.1068 -0.0499 -0.0134

University 0.5363 0.1370 0.2101 0.1566 -0.0731 -0.0196

Arrival cohort:

1970-1974 -0.2306 -0.0589 -0.0904 0.0314 -0.0673 0.0084

1975-1979 -0.2826 -0.0722 -0.1107 -0.0825 0.0385 0.0103

1980-1984 -0.3285 -0.0839 -0.1287 -0.0959 0.0448 0.0120

1985-1989 -0.3510 -0.0897 -0.1375 -0.1025 0.0479 0.0128

1990-1994 -0.7965 -0.2035 -0.3121 -0.2326 0.1086 0.0291

1995-2000 -0.6630 -0.1694 -0.2598 -0.1936 0.0904 0.0242

Geographical origin:

Nordic -0.8735 -0.2231 -0.3422 -0.2551 0.1191 0.0319

W. Europe (incl. EU) -0.9631 -0.2461 -0.3774 -0.2813 0.1313 0.0352

USA -1.3394 -0.3422 -0.5248 -0.3912 0.1826 0.0490

Eastern Europe -1.3023 -0.3327 -0.5103 -0.3803 0.1776 0.0476

Middle East -1.5686 -0.4007 -0.6146 -0.4581 0.2139 0.0573

Asia -1.1450 -0.2925 -0.4486 -0.3344 0.1561 0.0419

Africa -1.4546 -0.3716 -0.5699 -0.4248 0.1983 0.0532

Latin America -1.1511 -0.2941 -0.4510 -0.3362 0.1569 0.0421

Natives

Constant -1.8781 -0.2753 -0.5145 -0.4719 0.2392 0.1966

Log non labor income -0.8216 -0.1204 -0.2251 -0.2064 0.1046 0.0860

Age 0.1480 0.0016 0.0029 0.002741 -0.0014 -0.0011

Age squared -0.0018 - - - - -

Big city 0.0801 0.0118 0.0220 0.0201 -0.0102 -0.0084

Number of children 0.0551 0.0080 0.0151 0.0139 -0.0070 -0.0058

Married/Cohabiting 0.3974 0.0583 0.1089 0.0999 -0.0506 -0.0416

Education (highest level):

Upper-secondary 0.3803 0.0557 0.1042 0.0956 -0.0484 -0.0398

University 0.4964 0.0728 0.1360 0.1247 -0.0632 -0.0520

Note: The estimated average marginal effects (AME), marginal effects for the average indi-

vidual (MEAI), the second order approximation of the average marginal effects (SOAME)

and first (FO Bias) and second (SO Bias) order bias are presented on the table. The esti-

mated standard errors can be provided upon request.
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Table 3: Estimates and analysis of bias for the earnings equations.
Variables Est. AME MEAI SOAME FO Bias SO Bias

Immigrants

Constant 11.5815 11.1524 11.0788 11.1330 0.0737 0.0195

Age 0.0290 0.0130 0.0132 0.0131 -0.0001 -0.00004

Age squared. -0.0002 - - - - -

Big city (> 250, 000) -0.0541 -0.0181 -0.0119 -0.0165 -0.0062 -0.0016

Number of children children -0.0117 -0.0172 -0.0181 -0.0174 0.0009 0.0002

Married/Cohabiting 0.0217 0.1381 0.1581 0.1434 -0.0200 -0.0053

YSM 0.0075 0.0229 0.0256 0.0236 -0.0026 -0.0007

YSM squared 0.0003 - - - - -

Education (highest level):

Upper-secondary -0.0242 0.0941 0.1145 0.0995 -0.0203 -0.0054

University 0.1665 0.3401 0.3699 0.3479 -0.0298 -0.0079

Arrival cohort:

1970-1974 0.0966 0.0220 0.0092 0.0186 0.0128 0.0033

1975-1979 0.1712 0.0797 0.0640 0.0756 0.0157 0.0042

1980-1984 0.2659 0.1597 0.1414 0.1548 0.0183 0.0048

1985-1989 0.3291 0.2155 0.1960 0.2103 0.0195 0.0052

1990-1994 0.4727 0.2150 0.1707 0.2032 0.0443 0.0117

1995-2000 0.6263 0.4118 0.3750 0.4021 0.0368 0.0097

Geographical origin:

Nordic -0.4172 -0.6998 -0.7484 -0.7127 0.0485 0.0128

W. Europe (incl. EU) -0.3966 -0.7082 -0.7618 -0.7223 0.0535 0.0142

USA -0.3288 -0.7622 -0.8367 -0.7819 0.0744 0.0197

Eastern Europe -0.4382 -0.8596 -0.9320 -0.8788 0.0723 0.0191

Middle East -0.5098 -1.0174 -1.1045 -1.0404 0.0872 0.0231

Asia -0.4402 -0.8107 -0.8744 -0.8276 0.0636 0.0168

Africa -0.4732 -0.9439 -1.0247 -0.9653 0.0808 0.0213

Latin America -0.5268 -0.8993 -0.9633 -0.9162 0.0640 0.0169

Natives

Constant 12.1808 11.3733 11.1341 11.3868 0.2392 -0.0135

Age 0.0043 0.0147 0.0159 0.0146 -0.0012 0.0001

Age squared 0.0080 - - - - -

Big city -0.0708 -0.0363 -0.0261 -6.7524 -0.0102 0.0006

Number of children -0.0445 -0.0208 -0.0138 -0.0212 -0.0070 0.0004

Married/Cohabiting 0.0260 0.1969 0.2475 0.1941 -0.0506 0.0029

Education (highest level):

Upper-secondary -0.0106 0.1529 0.2014 0.1502 -0.0484 0.0027

University 0.2361 0.4496 0.5128 0.4460 -0.0632 0.0036

Note: See the note of table 2.
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Table 4: Relative reduction of the bias.
Immigrants Natives

Selection equation 0.714 0.143

Earnings equation 0.943 0.735

Table 5: Estimates and analysis of bias for the assimilation period.
Variables Earn. Diff. ATYA TYAAI SOATYA FO Bias SO Bias

Nordic 0.2916 13.6973 12.7850 13.1966 0.9123 0.5006

W. Europe (incl. EU) 0.1851 8.6961 8.1169 8.3782 0.5792 0.3178

USA 0.1895 8.9012 8.3083 8.5758 0.5929 0.3253

Eastern Europe 0.3285 15.4322 14.4043 14.8682 1.0279 0.5641

Middle East 0.5099 23.9514 22.3561 23.0760 1.5953 0.8754

Asia 0.4449 20.8989 19.5069 20.1351 1.3920 0.7639

Africa 0.5392 25.3264 23.6395 24.4007 1.6869 0.9256

Latin America 0.4047 19.0115 17.7452 18.3166 1.2663 0.6949

Total 0.3617 16.9894 15.8578 16.3684 1.1316 0.6210

Note: The estimated average total years of assimilation (ATYA), total years of assimilation for the average

immigrant (TYAAI), the second order approximation of the average total years of assimilation (SOATYA)

and first (FO Bias) and second (SO Bias) order bias are presented on the table. The estimated standard

errors can be provided upon request.

Table 6: Bias convergence in Monte Carlo simulation.
Number of obs. AME MEAI SOAME FO Bias SO Bias Rel. improv.

1000 1.4034 1.0060 1.2033 0.3974 0.2001 0.4965

10000 1.5300 1.0100 1.3900 0.5160 0.1400 0.7308

50000 1.5303 1.0080 1.3392 0.5222 0.1910 0.6342

100000 1.5343 1.0084 1.3500 0.5259 0.1843 0.6496

250000 1.5321 1.0082 1.3436 0.5239 0.1886 0.6401

500000 1.5338 1.0083 1.3488 0.5255 0.1850 0.6479

Note: See the note of table 2.
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