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We study the effect of noise due to exogenous information distortions in the context of 
Bayesian persuasion. We first characterize the optimal signal in the prosecutor-judge game 
from Kamenica and Gentzkow (2011) with a noisy and strongly symmetric communication 
channel and show that the sender’s payoff increases in the number of messages. This 
implies that, with exogenous noise, the sender prefers to complicate communication. Then, 
we establish necessary and sufficient conditions for the sender’s payoff to weakly increase 
in the Blackwell-informativeness of the noise channel when the message space and the 
channel are binary. The reason why a sender may benefit from additional noise is that a 
garbling may alter the noise structure. Subsequently, we provide sufficient conditions that 
extend this result to channels of arbitrary cardinality. Finally, we introduce a procedure 
of making a communication channel more complex and prove that increased complexity 
benefits the sender.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Information distortions are among the most common and widely-studied phenomena in many areas within economics. 
The interest in the subject stems primarily from the fact that such noise often leads to inefficiencies. In this paper we study 
the effect of exogenous data distortions in the context of the literature on Bayesian persuasion.

(Bayesian) persuasion games are sender-receiver games with commitment (Rayo and Segal, 2010; Kamenica and 
Gentzkow, 2011). In particular, an information designer (viz., the female sender) chooses an experiment which is com-
monly known; the decision-maker (viz., the male receiver) observes an outcome of the experiment (viz., a message) and 
subsequently takes an action that affects both agents. Now, an issue that can arise in such processes is that the message 
observed by the receiver may often be different from the one that was actually realized during the experiment, i.e., the 
experimental data are often distorted. Such distortions can be attributed to errors, often appearing in some of the following 
instances:
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• Data gathering: The experiment is run by an agent, henceforth called the data collector, who could in principle be the 
sender or the receiver or even a third party. The data collector observes a noisy version of the realized message, due to 
measurement errors in the experimental implementation.

• Data processing: The raw data is gathered by the data collector and is processed before being used by the receiver. 
Processing can take the form of storage (either in the collector’s memory or in some external device) and retrieval at a 
later time, in which case noise is attributed to memory constraints. Alternatively, processing errors can be due to the 
collector’s lack of expertise which precludes him/her from correctly encoding or interpreting the actual message.

• Data transmission: The data collector is some agent other than the receiver who (truthfully) communicates the ob-
served data to the receiver. The receiver observes a noisy version of the transmitted message, due to communication 
errors or language barriers that lead to misunderstanding of the communicated data.1

We can now state our three main research questions. The first question arises quite naturally. Namely, we intend to 
answer what does an optimal signal look like in the presence of noise. To do so, we need to understand the restrictions 
that noise imposes to the sender. The obvious restriction is that the noise restricts the set of signals from which the sender 
can effectively choose. The result for the sender is twofold: First, the noise limits the posteriors that can be formed by the 
receiver upon observing some outcome of the experiment, as there are posteriors that no experiment can induce.2 Second, 
it restricts the possible combinations of posteriors that the receiver can form upon observing different messages associated 
with the same experiment.

The second question we seek to answer is, in words, whether a more noisy channel is always more harmful for the 
sender than a less noisy one. Note that if one of the two channels is noiseless, then the noisy channel is trivially harmful for 
the sender. Yet, the argument cannot be directly extended to cases where both channels under comparison are noisy. More 
formally, we are asking whether or not, among two noisy channels that can be ordered with respect to their (Blackwell) 
informativeness, the sender achieves a higher expected utility in equilibrium under the more informative channel.

Our third and final question focuses on the complexity of the noisy channel. More specifically, we aim to understand 
whether there exists an upper bound on the number of messages that needs to be used for the sender to maximize her 
expected utility in equilibrium. Recall that, according to the well-known result of Kamenica and Gentzkow (2011), in the 
standard noiseless case with a relatively small number of messages –equal to the number of states– the sender can always 
guarantee her maximum expected utility. Yet, is this still true in the presence of noise?

Answering the previous questions can have important implications on the choice of communication channels, delegations 
or mediators. For instance, if a pharmaceutical company is seeking a regulator’s approval for some drug, should they choose 
to perform the clinical trials in-house or should they delegate the implementation of the experiment to some clinical 
trial experts? Also, should they communicate the outcome of the medical experiment directly or through mediators (e.g., 
lawyers)? Similarly, when a local politician tries to attract visitors to her province by persuading them that water quality in 
the local beach is high, what system should she use to communicate to the public the results of water control? In particular, 
should she use a system with many different grades/colors? Likewise, how much detail should be contained in the report 
provided by a physician to a patient who has limited understanding of medical terms or faces other communication barriers 
(e.g., they don’t share a common mother tongue)?

Starting with our first general question, not surprisingly, the answer turns out to be too complex to allow us to provide 
a general characterization for all persuasion games and all noisy channels. Nevertheless, we fully solve the problem for the 
standard application that widely appears in the literature, i.e., the prosecutor-judge example of Kamenica and Gentzkow 
(2011). In particular, suppose that a municipality (viz., sender) announces that an environmental experiment will be carried 
out to test the water quality at the local beach. The outcomes of the experiment are presented to the potential swimmer 
(viz., receiver) in the form of flag colors. The municipality wants to persuade the swimmer to visit the beach irrespective 
of the water quality, whereas the swimmer wants to swim in these waters if and only if the quality is good. Now, the 
caveat compared to earlier works in this literature, is that the swimmer may confuse the different colors, i.e., he attaches 
the correct meaning to each flag with probability 1 − ε and misinterprets all other colors with the same (small) probability. 
Then, our characterization result states that in equilibrium all but one colors will (just) persuade the swimmer to visit 
the beach (Proposition 1). Moreover, the total probability of the swimmer being persuaded is proportional to the error 
probability, and inversely proportional to the number of colors that the grading system uses.

Let us now turn to our second question. As it turns out, surprisingly, the answer is in general negative, i.e., one can 
construct pairs of noisy channels, one being a garbling of the other (Blackwell, 1951, 1953), such that the sender’s expected 
utility under the garbled channel (viz., the more noisy one) is strictly larger than the expected utility under the original 
channel (viz., the less noisy of the two). Thus, adding more noise to an already noisy environment can be beneficial for the 
sender.

Let us consider the following example that will be used repeatedly throughout the paper. Suppose that a pharmaceutical 
company (viz., sender) wants to submit an application to the regulator (viz., receiver) for an experimental drug to be ap-

1 For related stylized facts from a leading medical journal, see Flores (2006).
2 For instance, if the receiver observes the actual message with probability 1 − ε and every other message with a small positive probability, there is no 

experiment that can reveal to the receiver the true state with certainty.
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(a) The first noisy channel p is such that the regulator 
observes the opposite message than the one that was 
sent with probability 0.2, i.e. p(s2|s1) = p(s1|s2) = 0.2.
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(b) The second noisy channel q is a garbling of the first one, as the message 
passes also from a second channel r that further distorts the message, after 
the original distortion induced by the channel p. The probabilities of having 
such additional distortions are r(s2|s1) = 0.2 and r(s1|s2) = 0.

Fig. 1. Garbling with a binary state space: The channel q (right) is more noisy than the channel p (left).

proved for commercial use. It is ex-ante commonly known that the drug is effective at the good state (which occurs with 
probability 0.5) and ineffective at the bad state. An application consists of a clinical trial (viz., an experiment), which is de-
signed by the company and produces evidence (viz., one of two possible messages) that leads to some updated probability 
of the state being good. This evidence is sent to the regulator, who then truthfully announces the updated probability in a 
press release. The company has reputation concerns in the sense that her utility is increasing in the regulator’s announce-
ment, with a jump at 0.8, which is the probability at which the drug is being approved. This jump is sufficiently large to 
ensure that the company always prefers trials that can lead to the drug’s approval (i.e., it can yield evidence that would 
lead to an updated probability at least as high as 0.8) compared to trials that cannot.3 The standard research question in 
the noiseless persuasion model of Kamenica and Gentzkow (2011) is to characterize the optimal experiment for the sender, 
and it is typically answered by identifying a pair of posteriors (i.e., a good one above 0.5 and a bad one below 0.5) which in 
expectation are equal to the prior. In the current setup –with the preferences we describe above– the optimal experiment 
of the standard noiseless case would yield either a (good) posterior equal to 0.8 or (a bad) one equal to 0.3.

However, communication is noisy, thus the regulator might observe a different message than the one that was actually 
transmitted. In the first scenario –presented in Fig. 1(a)– noise is such that either message is wrongly transmitted with 
probability 0.2. In this case, the only experiment that can yield a good posterior as high as 0.8 is the fully informative one, 
i.e. one which would reveal the true state. This, however, necessarily yields a bad posterior equal to 0.2. Hence, the sender 
is strictly worse off compared to the noiseless case. In the second scenario –presented in Fig. 1(b)– on top of the potential 
mistakes in evidence transmission, evidence leading to the good posterior might also be misinterpreted as being bad with 
probability 0.2. It turns out that the addition of this new type of distortion is not detrimental for the sender, as the fully 
informative experiment now yields the same pair of posteriors as the optimal experiment of the noiseless case, i.e. a good 
posterior equal to 0.8, or a bad one equal to 0.3. Thus, in this case, more noise is actually beneficial for the sender.

But then we naturally ask whether it possible to identify conditions under which monotonicity (of the sender’s expected 
utility with respect to the channel’s informativeness) holds. Our next result (Proposition 2) provides necessary and sufficient 
conditions for such a monotonic relationship to hold when the message space and the noisy channels are binary. Subse-
quently, we partially extend our result by providing sufficient conditions for channels of arbitrary cardinality (Propositions 3
and 4).

There are two ways to read Proposition 2. Both become clear once the result has been formally stated, but let us already 
give a preview. According to the first interpretation, the more noisy the channel we start with is, the easier it becomes for 
monotonicity to be violated. A lot of initial noise means that the set of feasible posteriors has already shrunk significantly, 
and therefore even a little additional noise suffices for distributions of posteriors that could not be reached originally to 
become feasible. Loosely speaking, if the receiver does not trust the accuracy of the data he observes in the first place, 
then additional mistrust is not necessarily detrimental for the sender. According to the second interpretation, more noise 
is always harmful when the second channel, which we use to garble the original one, is sufficiently symmetric. Intuitively, 
this makes it less likely for the receiver to observe the actual message, without the errors being distributed in a way that 
would favor some specific messages whose frequent observation could be potentially more beneficial for the sender (see 
our leading example). Loosely speaking, if the channel that we use to garble is sufficiently symmetric, we only increase the 
amount of noise without changing much the structure of the first noisy channel.

Finally, let us turn to the third question, regarding the complexity of the noisy channel. For starters, recall that in the 
usual noiseless case, the number of messages that are needed for the sender to maximize her expected utility is bounded 
from above by the number of states. For instance, in our first example, there are only two states (i.e., the water quality is 
either good or bad). Thus, if the swimmer does not confuse colors, the municipality only needs two flags (viz., blue and red) 
to maximize the probability of persuading the swimmer. However, when we introduce noise this is no longer the case. In 
fact, already Proposition 1 suggests that, whenever noise has a nice symmetric structure, the sender strictly benefits from 
adding more colors. As it turns out, this is not an artifact of this particular game or of this particular noisy channel. Indeed, 
we can take any game, any channel and many different ways of increasing the complexity of said channel, and it will still 
be the case that making the channel more complex will weakly benefit the sender (Proposition 5). And for a rich class of 

3 For a more detailed form of the company’s utility function see Fig. 4.
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games, the improvement is strict. In particular, the sender becomes better off by introducing additional colors (e.g., yellow 
and green on top of blue and red). Interestingly, he becomes better off even by introducing different shades of the same 
color that are hardly distinguishable with each other (e.g., splitting blue into dark blue and light blue, and likewise for red).

Since the seminal contribution of Kamenica and Gentzkow (2011), the Bayesian persuasion literature has surged.4 Within 
this body of work, there is a recent growing interest in the role of distortions. Said distortions are typically seen as restric-
tions, either exogenously imposed (like in our paper) or endogenously emerging.

Starting with Bayesian persuasion with exogenous constraints, there is recent work within both economics and computer 
science. The idea is that not all signals can be used by the sender –and, a fortiori, not all distributions of posteriors are 
feasible– due to, for instance, communication being coarse (Dughmi et al., 2016; Aybas and Turkel, 2020), or to the presence 
of privacy and discrimination considerations (Babichenko et al., 2021). Within this part of the literature, there is also a 
stream of papers that consider a rationally inattentive receiver (Bloedel and Segal, 2020; Lipnowski et al., 2020), where 
although the constraints are not hard (i.e., all signals are in principle feasible), the receiver will nonetheless avoid to process 
certain complex –and, a fortiori, excessively costly– signals.

Within this literature, Le Treust and Tomala (2019) is the closest paper to our work. The authors study Bayesian per-
suasion with distortions similar to the ones we consider, but they allow for multiple experiments that are conducted 
sequentially. Then, they study the effect of noise on the sender’s expected utility as the number of experiments and the 
number of reported messages increases. Their main result relies on characterizing the feasible distributions of posterior 
beliefs given a constraint. This last result is reviewed and generalized (to multiple constraints) by Doval and Skreta (2018), 
thus providing a general toolbox for studying constrained Bayesian persuasion.

In their recent paper, Babichenko et al. (2021) classify exogenous constraints into ex-ante and ex-post. In both cases 
posteriors are first mapped on the real line via a continuous function. Then, ex-post constraints restrict the image of each 
posterior to be below a certain value (see also Volund, 2018), while ex-ante constraints do so only in expectation. The 
distortions that we consider in our paper induce ex-ante restrictions. The same is true for the related paper of Le Treust 
and Tomala (2019), as well as papers that study Bayesian persuasion with constraints on the cardinality of the message 
space (Dughmi et al., 2016; Aybas and Turkel, 2020). Models of Bayesian persuasion with exogenous constraints have been 
applied in the context of auctions (Dughmi et al., 2014) and bilateral trade (Dughmi et al., 2016).

Let us now focus on Bayesian persuasion models with endogenous constraints. The underlying idea in large part of this 
literature is that the sender can strategically distort information, sometimes albeit (lying) costs. This way, although the set 
of feasible signals is unrestricted for the sender, the commitment assumption is weakened. There are different degrees to 
which commitment can be weakened: in Nguyen and Tan (2021) the sender privately observes the realized signal and can 
send any message to the receiver, while in Lipnowski et al. (2019) and Min (2020) the realized signal is always sent to 
the receiver with some positive probability. Guo and Shmaya (2021) study a model similar to the one of Nguyen and Tan 
(2021), with the difference that the sender does not reveal ex-ante the experiment to the receiver.

Endogenous constraints can also emerge in settings where information is transmitted via mediators (Kosenko, 2018). 
In this paper, the sender communicates the signal realization to the mediator, who subsequently communicates it to the 
receiver via a noisy channel of his choice. That way, the sender’s information is distorted.

There is also related literature in the context of cheap talk games: Blume et al. (2007) introduce noisy communication 
to a standard game á la Crawford and Sobel (1982) in an analogous way to our variant of Kamenica and Gentzkow’s (2011)
persuasion game. They show that noise may lead to increases of aggregate welfare, similarly to our leading example (though 
for different reasons). Related are also the papers of Blume and Board (2013, 2014), who study noise due to language 
barriers and intentional vagueness. The general problem of strategic information transmission through noisy channels is 
studied in Le Treust and Tomala (2018).

Finally, our model is also related to recent work on endogenous information distortions. For instance, Frankel and Kartik 
(2021) study data manipulation, focusing on the problem of a designer who allocates resources across the (data-generating) 
agents. In another recent paper, Perez-Richet and Skreta (2021) study a model where a principal designs a test (which 
technically corresponds to the noisy channel in our case), a persuader chooses a manipulation technology (which technically 
corresponds to the experiment in our case), and the receiver decides whether to approve a technology or not. Our model 
takes the test as an exogenous parameter and focuses on the choice of the persuader, while in their case the focus is on 
how to design the test in order to avoid manipulation. Of course, while the two papers bear similarities in the analysis and 
the results (see discussion after Proposition 1), the applications that they address are very different.

The paper is structured as follows: Section 2 introduces our model, and presents the equilibrium analysis and our leading 
example. Section 3 contains our main results on monotonicity of the sender’s expected utility with respect to the informa-
tiveness of the noisy channel. Section 4 discusses our analysis on the importance of the complexity of the message space. 
Finally, Section 5 contains a concluding discussion. All proofs are relegated to Appendix A.

4 For a recent overview, we refer to Kamenica (2019).
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Fig. 2. The sender chooses the experiment in the form of conditional probabilities, α1 := π(s1|ω1) and α2 := π(s2|ω2). A message s ∈ S is first realized. 
Then, it is (possibly) distorted, with exogenous and commonly known error probabilities ε1 := p(s2|s1) and ε2 := p(s1|s2).

2. Persuasion game with noise

2.1. Noisy information structures

Let � = {ω1, . . . , ωN } be a (finite) set of states and A be a compact action space. There are two players, a (female) sender 
and a (male) receiver, with a common full-support prior μ0 ∈ �(�), and continuous utility functions, v : A × � → R and 
u : A × � →R respectively. Whenever there are only two states in �, we identify the prior with the probability it attaches 
to ω1, in which case with a slight abuse of notation we write μ0 ∈ [0, 1].

Let S = {s1, . . . , sK } be the finite set of messages that can be encoded with the available technology. A (noisy) information 
structure consists of an experiment π : � → �(S) chosen by the sender, and an exogenously given (noisy) channel p : S →
�(S) that may distort the message that was realized during the experiment.5 Thus, p(s′|s) denotes the probability that the 
receiver observes s′ when s has been realized.

A channel is called binary whenever K = 2 (Fig. 2). A channel is called noiseless whenever p(s|s) = 1 for all s ∈ S . 
Throughout the paper we assume that error probabilities are relatively small, suggesting that we depart relatively little 
from the original Bayesian persuasion game, i.e., formally, p(s|s) > 1/2 for all s ∈ S .

It is important to stress that messages are not ex ante attached to a particular meaning. Instead, meaning is acquired via the 
experiment and then distorted by the noisy channel. Notably, the error probabilities do not depend on the meaning that 
a message carries, but on the underlying technology, i.e., on how easy it is to confuse messages during gathering/process-
ing/transmitting information.

Example 1. Suppose that a municipality (the sender) announces that an environmental experiment will be carried out to test 
the water quality at the local beach. The quality of the water is either good (state ω1) or bad (state ω2). The set of messages 
corresponds to the different flag colors that the beach can be awarded, viz., {blue (s1), red (s2)}. An experiment is identified 
by the conditional probabilities of obtaining each flag color given each quality level. However, with a small probability, a 
swimmer (the receiver) may forget the meaning that is attached to each color. Such error probabilities depend on the choice 
of the messages, e.g., if the municipality had chosen to use {orange (s1), red (s2)} instead of {blue (s1), red (s2)}, the error 
probabilities would have been larger, as it would have been easier to confuse orange with red than it is to confuse blue 
with red. On the other hand, if the municipality had decided to use the messages {safe (s1), dangerous (s2)}, the error 
probabilities would have been even lower. �

Throughout the paper, we regularly focus on some special cases of noisy channels that we find interesting for studying 
certain applications. A channel p is called symmetric whenever p(s|t) = p(t|s) for all s, t ∈ S . Such channels can be inter-
preted by means of an underlying metric that measures the distance between any two messages, and the error probability 
depends on said distance.6 For instance, in the previous example, the probability of confusing blue with red is the same as 
the probability of confusing red with blue. The simplest form of a symmetric channel appears when the receiver observes 
the true message with probability 1 − ε and every other message with equal probability ε/(K − 1). These last channels are 
called strongly symmetric. In practice, we can assume a strongly symmetric channel when the messages cannot be bundled 
into similarity classes, e.g., in the previous example, if we use three primary colors {blue (s1), red (s2), yellow (s3)}, the 
probability of confusing red with yellow is equal to the probability of confusing red with blue.

An information structure (π, p) induces a signal σ : � → �(S) such that

σ(s|ω) =
∑
t∈S

p(s|t)π(t|ω). (1)

5 In their recent paper, Le Treust and Tomala (2019) consider a sender who chooses an experiment π : �n → �(Sk), and each message in the realized 
sequence (s1, . . . , sk) ∈ Sk goes through the same noisy channel p : S → �(S). The idea is that the sender designs n independent experiments that yield k
data points that are independently distorted before being observed by the receiver. In this sense, our model can be viewed as a special case of theirs with 
n = k = 1.

6 Well-known examples of symmetric channels contain different versions of noisy typewriters (Cover and Thomas, 2006) and different versions of circu-
lant matrices, which constitute a special case of Latin squares (Marshall et al., 2011).
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Fig. 3. The set of feasible profiles of posteriors for the channel of Fig. 2: The posterior μ1 (resp., μ2) is obtained when the message s1 (resp., s2) is 
realized. Every signal σ ∈ 	p leads to a unique pair (μ1, μ2) in the inner shaded area (i.e., in the union of the two leaves).

With a slight abuse of terminology, we will often say that the sender chooses the signal σ rather than the experiment π . 
The set of experiments is denoted by 
, whereas the set of feasible signals (given the channel p) is denoted by 	p ⊆ 
, 
with equality holding if and only if p is noiseless. Whenever it is clear which is the noisy channel that we have in mind, 
we omit reference to the subscript p, thus simply writing 	.

After the sender having chosen some signal σ ∈ 	p and the receiver having observed some message s ∈ S , the receiver 
forms a posterior belief μs ∈ �(�) via Bayes rule, viz., for each ω ∈ �,

μs(ω) = μ0(ω)σ (s|ω)

〈μ0,σ (s|·)〉 , (2)

where 〈·, ·〉 denotes the inner product, as usual. Each signal σ ∈ 	p induces a profile of posteriors (μ1, . . . , μK ), where 
μk := μsk is the posterior given the message sk . Each posterior μ ∈ {μ1, . . . , μK } occurs with probability 〈μ0, σ({s ∈ S :
μs = μ}|·)〉.

Example 2. Whenever the state space and the channel are both binary, the set of feasible profiles of posteriors takes the 
form that is illustrated in Fig. 3 (borrowed from Le Treust and Tomala, 2019, Figure 5). Clearly, it will either be the case that 
μ2 ≤ μ0 ≤ μ1 (bottom-right leaf) or μ1 ≤ μ0 ≤ μ2 (top-left leaf). The extreme points at the bottom-right corner

(μ+
1 ,μ−

2 ) =
(

μ0(1 − ε1)

μ0(1 − ε1) + (1 − μ0)ε2
,

μ0ε1

μ0ε1 + (1 − μ0)(1 − ε2)

)
, (3)

and at the top-left corner

(μ−
1 ,μ+

2 ) =
(

μ0ε2

μ0ε2 + (1 − μ0)(1 − ε1)
,

μ0(1 − ε2)

μ0(1 − ε2) + (1 − μ0)ε1

)
, (4)

correspond to the profiles of posteriors induced by the two perfectly informative experiments, i.e., when (α1, α2) = (1, 1)

and (α1, α2) = (0, 0) respectively. Notably, the set of feasible profiles of posteriors does not have a product structure. This 
means that noise does not just restrict the posterior beliefs that can be achieved, but also the way feasible posteriors can 
be combined with each other, e.g., although the sender can achieve every μ1 ∈ [μ0, μ+

1 ] and every μ2 ∈ [μ−
2 , μ0], it is 

not necessarily the case that she can simultaneously achieve every pair (μ1, μ2) ∈ [μ0, μ+
1 ] × [μ−

2 , μ0]. As it will become 
apparent later on, this is exactly the reason why the sender sometimes prefers the channel to be more noisy. �

2.2. Equilibrium analysis

Once the receiver has formed some posterior μ ∈ �(�), he chooses an action that maximizes his expected utility,

uμ(a) :=
∑
ω∈�

μ(ω)u(a,ω).

Since uμ is continuous over the compact set A, a maximum always exists. If there are multiple maxima, the receiver chooses 
the one that maximizes the sender’s expected utility (given μ). If there are multiple sender-preferred maxima, the receiver 
picks an arbitrary one. We denote the receiver’s optimal action, given the posterior μ, by â(μ).
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Then, the sender’s expected utility from σ ∈ 	 (given that she anticipates the receiver to choose optimally) is equal to

v̂(σ ) :=
∑
ω∈�

μ0(ω)
∑
s∈S

σ(s|ω)v(â(μs),ω). (5)

An optimal signal for the sender is one from arg maxσ∈	 v̂(σ ). We denote the (sender’s) value of her optimal signal by

v̂∗
p := max

σ∈	p
v̂(σ ). (6)

Throughout the paper, we call the (noisy persuasion) game trivial whenever the completely uninformative signal is 
optimal, implying that persuasion attempts cannot really help the sender. We find such cases uninteresting, and thus we 
only consider non-trivial games.

Remark 1. Using standard tools, one can easily show that an optimal signal always exists. This follows directly from the 
sender’s expected utility being an upper semi-continuous function over a compact set. �

The fact that the set of feasible posterior profiles does not have a product structure (e.g., see Example 2) implies that we 
cannot use the concavification technique to compute the optimal signal in general. So, let us focus on some special cases of 
economic interest.7

We begin with a binary state space � = {ω1, ω2} and a binary action space A = {a1, a2}. The sender has state-
independent preferences such that v(a1, ω) = 1 and v(a2, ω) = 0 for both ω ∈ �, i.e., she wants to persuade the sender 
to choose a1. On the other hand, the receiver’s utility function is such that u(a1, ω1) > u(a2, ω1) and u(a2, ω2) > u(a1, ω2), 
where without loss of generality we normalize u(a1, ω2) = u(a2, ω1) = 0. That is, the receiver wants to match the state, and 
therefore he chooses a1 if and only if his posterior attaches to ω1 probability larger or equal than the cutoff

μ̄ := u(a2,ω2)

u(a1,ω1) + u(a2,ω2)
.

We impose two assumptions to avoid the game being trivial. First, we assume that the threshold is above the prior: other-
wise, the receiver would anyway choose the sender’s desired action a1, implying that the completely uninformative signal 
would be trivially optimal. Second, we assume that there exists some signal yielding with positive probability larger or equal 
than the threshold: otherwise, the receiver would always choose a2 (irrespective of the signal), implying that the sender 
would remain indifferent across all signal, and a fortiori the completely uninformative signal would again be trivially opti-
mal. We refer to this game as the noisy prosecutor-judge game, due to its resemblance to the original example of Kamenica 
and Gentzkow (2011).

Proposition 1. Consider the noisy prosecutor-judge game together with a strongly symmetric channel with error probability ε and K
messages. Then, a signal is optimal, if and only if, there is some s̃ ∈ S such that μs = μ̄ for all s ∈ S \ {s̃}. Moreover, the value of the 
optimal signal is equal to

v̂∗
p = μ0

μ̄

(
1 − ε

K − 1

)
. (7)

The structure of the optimal signal resembles to some extent the one in Perez-Richet and Skreta (2021), where exactly 
one message leads to the undesirable action, and all other messages lead to the sender’s preferred action.8 Our result 
emphasizes that the sender’s value is strictly increasing in K and approaches the value of standard noiseless game as 
K goes to infinity, i.e., intuitively, in the presence of noise, more complex communication channels are strictly beneficial for the 
sender, and in the limit infinite complexity removes the restrictions imposed by the presence of noise. This follows from the 
fact that all messages that lead to the sender’s preferred action, do so by inducing exactly the threshold posterior belief, 
and the total probability of this posterior belief being realized increases with the number of messages. In the context of 
Example 1, the optimal signal will be such that the swimmer will visit the beach upon seeing any color except red, and the 
municipality always becomes strictly better off by complicating the flag system, i.e., by introducing more and more colors. 
The latter is in contrast with the usual setting of Kamenica and Gentzkow (2011), where the complexity of the optimal 
signal is bounded by the number number of states. Interestingly, our conclusion is aligned with recent work on persuasion 
with coarse communication, where increased complexity always benefits the sender (Aybas and Turkel, 2020). We further 
elaborate on the role of complexity in Section 4.

7 We thank an anonymous referee for suggesting this approach.
8 Of course, in their result the optimal signal will use uncountably many messages in equilibrium, as opposed to our case, where the number of messages 

is exogenously restricted to K . Furthermore, in their case, different messages induce different posteriors (above the threshold), as opposed to our result 
where all “good messages” induce the same posterior, viz., exactly the threshold.
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(μ).8.3 1.5.2

v̂∗
p

v̂∗

Fig. 4. Persuading the regulator: The sender’s expected utility is a function of the receiver’s posterior beliefs, and it is depicted by the thick grey line. The 
respective concave closure is depicted by the thin black line. The sender’s value without noise is equal to v̂∗ , whereas his value with noise being given by 
the channel p is equal to v̂∗

p .

Finally, it is worthwhile pointing out that the size of K is inconsequential for the receiver. This is because the optimal 
signal leads to a distribution of posteriors that puts positive probability to some posterior below the prior and the remain-
ing probability is exactly at the threshold posterior. This means that the sender’s non-preferred action is optimal for the 
receiver for both of these posteriors, because for the high posterior the receiver is indifferent between the two actions. 
As a result, the receiver’s expected utility will always remain equal to the one he would have received if the sender had 
chosen the completely uninformative signal (irrespective of K ). So, overall, increased complexity leads to a Pareto improve-
ment.

2.3. Leading example: persuading the regulator

Let us formalize our leading example from the introduction. Accordingly, a pharmaceutical company (sender) wants 
to submit an application to the regulator (receiver) for an experimental drug to be approved for commercial use. It is 
common knowledge that the drug is effective at state ω1 which occurs with probability μ0 = 0.5, and it is ineffective 
at ω2. An application consists of a clinical trial, which is modeled in its reduced form as an experiment over a binary 
information structure. The error probabilities ε1 = ε2 = 0.2 capture noise in the implementation of the trial. Therefore, we 
obtain μ−

1 = μ−
2 = 0.2 and μ+

1 = μ+
2 = 0.8.

Upon receiving some message from {s1, s2}, the regulator announces in a press release an updated probability of the 
drug being effective, i.e., formally, the regulator’s set of actions is A = [0, 1]. The regulator’s utility function is such that the 
unique optimal action is to report truthfully. Indeed, his utility is given by u(a, ω1) = −(1 −a)2 and u(a, ω2) = −a2 for each 
a ∈ [0, 1], implying that his expected utility uμ(a) = −μ(1 − a)2 − (1 − μ)a2 is maximized at a = μ for every μ ∈ [0, 1].

The company’s utility depends solely on the regulator’s report, and it is assumed to be increasing in the reported prob-
ability, with a jump at 0.8, which is the probability threshold for the drug to be approved. Intuitively, the sender has 
reputation concerns in the sense that she cares about the reported belief being as high as possible, but at the same time he 
enjoys some bonus utility if the drug is approved. Thus, we henceforth refer to the posterior that attaches to ω1 probability 
larger than 0.5 (resp., smaller than 0.5) as the good posterior (resp., bad posterior).

Let us first observe that the sender will benefit from a signal only if the good posterior is 0.8. In order to achieve the 
good posterior of 0.8, it must necessarily be the case that the bad posterior is 0.2 (see Fig. 3). Hence, the value of the 
optimal signal is equal to v̂∗

p = 1/2 (see Fig. 4). In fact, this profile of posteriors can be achieved if the sender designs a 
fully informative experiment.

Following the analysis of Kamenica and Gentzkow (2011), the optimal signal in the noiseless case is the one that com-
bines the good posterior 0.8 with the bad posterior 0.3, thus yielding value v̂∗ = 5/8, thus v̂∗ > v̂∗

p . That is, ideally the 
sender wants to increase the probability of the drug’s success under the bad posterior, without trading off approval of 
the drug under the good posterior. Interestingly, the presence of noise leads to a more informative optimal signal. Thus, 
given that the receiver’s expected utility function is convex, more noise turns out to be beneficial for the receiver. This 
conclusion is similar to the one of Blume et al. (2007) for the noisy cheap-talk game, although in their case the analysis is 
different.
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ω2

ω1

s2
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s2

s1

s2

s1
μ0

1 − μ0

α1

α2

1 − ε1

1 − ε2

1 − ρ1

1 − ρ2

(a) There exists a second channel r that further distorts the message, after 
the original distortion induced by the channel p. The probabilities to have 
such additional distortions are ρ1 := r(s2|s1) and ρ2 := r(s1|s2).

ω2

ω1

s2

s1

s2

s1
μ0

1 − μ0

α1

α2

1 − δ1

1 − δ2

(b) The garbled channel q is obtained by combining the 
two channels, p and r , thus obtaining error probabilities 
δ1 := (1 − ε1)ρ1 + ε1(1 − ρ2) and δ2 := ε2(1 − ρ1) + (1 −
ε2)ρ2.

Fig. 5. Garbling with a binary state space: The channel q is more noisy than the channel p.

As shown in Proposition 1, a richer message space could increase value the sender could obtain from an optimally 
designed experiment compared to v̂∗

p . Namely, with a message space {s1, s2, s3} and a strongly symmetric noisy channel 
p′ with total error probability ε = 0.2, an optimal experiment could lead the receiver to form the good posterior 0.8 upon 
observing two of the three messages, say s1 and s2, and to form a bad posterior of approximately 0.11 upon observing s3.9

In this case, an optimal experiment would yield to the sender value v̂∗
p′ = 9/16, for which it holds that v̂∗ > v̂∗

p′ > v̂∗
p .

3. Does more noise harm the sender?

Let us now turn to one of the main research questions of the paper, viz., is more noise always harmful or are there cases 
where it is beneficial for the sender? Formally speaking, is the sender’s value increasing with respect to the informativeness of the 
noisy channel? We study this question both for binary and for some more general information structures.

In order to tackle this question in a systematic way, we first recall Blackwell’s informativeness relation over the set of 
noisy channels (Blackwell, 1951, 1953). We say that q is a garbling of p (viz., q is more noisy than p) whenever there is a 
channel r : S → �(S) such that

q(t|s) =
∑
u∈S

p(u|s)r(t|u) (8)

for each s, t ∈ S . In this case we write p � q and q = p ◦ r. Intuitively, a garbling is obtained by adding another channel to 
the right of the original channel, e.g., a garbling of the channel p (from Fig. 2) is illustrated below (in Fig. 5).

Then, our question is formalized as follows: does p � q always imply v̂∗
p ≥ v̂∗

q ? Our intuition says that most probably this 
will have to be the case. In the most obvious special case, where p is noiseless, noise is trivially harmful for the sender, 
as 	q ⊆ 
 = 	p . Moreover, when the sender and receiver have aligned preferences, it is again quite clear that more noise 
is harmful for the sender. This follows directly from Blackwell’s well-known theorem (Blackwell, 1951, 1953). In particular, 
since the receiver’s optimal expected utility is convex on �(�), so will be the sender’s expected utility. Then, by the fact 
that the posteriors under the more informative channel p are more dispersed than the posteriors under the less informative 
channel q, the value of the sender decreases as we add more noise. However, it turns out that our initial intuition is not 
correct in general. Namely, the sender’s value is not always increasing in the channel’s informativeness, i.e., more noise may 
be beneficial for the sender.

Leading example (continued). Recall the example from Section 2.3, where ε1 = ε2 = 0.2, and suppose that 0 < ρ1 < 0.5
and ρ2 = 0. Then, the garbled channel q will be such that δ1 = 0.2 + 0.8ρ1 and δ2 = 0.2(1 − ρ1). For instance, if ρ1 = 0.2, 
garbling p with r leads the set of feasible profiles of posteriors to change from the points in the black graph to those in the 
gray graph in Fig. 6. This means that we can now achieve a larger bad posterior (viz., μ2 = 0.3 instead of μ2 = 0.2) without 
reducing the good posterior (viz., μ1 = 0.8). As a result, we obtain v̂∗

q > v̂∗
p , thus violating monotonicity.

Intuitively, r further distorts our data (besides the distortion due to p) only if the bad message is realized, but not if 
the good message is realized. This is convenient for the sender, as additional data distortions occur only in the bad case 
(which can only get better), but not in the good case. Overall, more noise leads to a less informative signal, which makes 
the sender better off and the receiver worse off. �

Remark 2. The fact that in the previous example, more noise leads to a less informative optimal signal is mere coincidence. 
For instance, in the noisy judge-prosecutor game, the optimal signal under q would have been more informative than the 
one under p, and both agents would have been better off. In general, as we have already mentioned, the receiver’s expected 
utility is a convex function, and therefore it is increasing in the informativeness of the optimal signal, which in turn depends 
not only on the channel but also on the underlying preferences of the two agents. �

9 In this case, there are several optimal experiments for the sender, all of which yield the same value for the receiver. One of those would be π(s1|ω1) =
π(s2|ω1) = 1/2 and π(s1|ω2) = π(s2|ω2) = 1/56.
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Fig. 6. The effect of garbling on the set of feasible profiles of posteriors: the black graph corresponds to the profile of posteriors under p, whereas the 
gray graph corresponds to the profiles of posteriors under q.

The question then becomes: can we identify the garblings that always make the sender worse off, irrespective of the preference 
profile and the prior? This would essentially account to finding the garblings that shrink the set of feasible profiles of poste-
riors. For now, we focus on binary channels in order to be able to provide a full characterization, which will, in turn, allow 
us to get good intuition. Later on, we provide extensions to channels of arbitrary cardinality. Let us stress that in all cases 
the state space is of an arbitrary finite cardinality.

Proposition 2. Let p and q be binary channels such that q = p ◦ r, as in Fig. 5. Then, v̂∗
p ≥ v̂∗

q for all pairs of utility functions and all 
priors, if and only if, the following condition holds:

ε1

1 − ε1
≤ ρ1

ρ2
≤ 1 − ε2

ε2
. (9)

The interpretation of the previous result can be twofold. According to our first interpretation, if we start with a channel 
p and we mix it with another channel r, the resulting (more noisy) channel q = p ◦ r will always make the sender worse 
off whenever r is “sufficiently symmetric”, i.e., if ρ1 and ρ2 are sufficiently close to each other, in which case ρ1/ρ2 is 
sufficiently close to 1. The idea is that, in this case, q will be more noisy than p, but nonetheless “similar” in terms of the 
underlying structure. In Fig. 6, this would correspond to the gray leaves being contained in the black leaves, i.e., the black 
leaves shrink inwards, without rotating much around (μ0, μ0). Conversely, if ρ1 is sufficiently far from ρ2, the leaves will 
rotate, thus leading to new profiles of posterior beliefs. In this case, there will always exist utility functions that make the 
sender prefer q over p.

According to the second interpretation, if we start with a very noisy channel p then it becomes easier to break mono-
tonicity, i.e., if the error probabilities ε1 and ε2 are large in the first place (close to 0.5), then there are many channels r that 
will violate condition (9), whereas if we start with a channel that does not induce a lot of noise (i.e., both error probabilities 
are close to 0), fewer channels r lead to such violations. The idea here is that, if the receiver has little trust in his source 
in the first place, there are more instances of even more mistrust where the sender is better off. In Fig. 6, this would be 
illustrated by black leaves that are small and thin in the first place, and therefore it would be easier for the gray leaves to 
rotate slightly outside the black ones.

So far, our monotonicity analysis has focused on binary channels. Do our conclusions carry on to more general channels? 
Let us first stress that obtaining a full characterization result by means of a simple formula à la condition (9) would be 
too ambitious given the complexity of the problem. Hence, we are going to establish sufficient conditions for some special 
cases, along the lines of the first interpretation that we provided above. Namely, we will show that within classes of similar 
channels, more noise always makes the sender worse off.

We first focus on the class of symmetric channels. We show that between two Blackwell-comparable symmetric channels, 
the sender is always better off with the more informative one.

Proposition 3. Let p and q be symmetric channels such that p � q. Then, v̂∗
p ≥ v̂∗

q for all pairs of utility functions and all priors.
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We now focus on cases where the channel r is strongly symmetric. This is a generalization of condition (9) when 
ρ1 = ρ2 to any two channels p and q. Again it turns out that such garblings always make the sender worse off in equilib-
rium.

Proposition 4. Let r be a strongly symmetric channel such that q = p ◦ r. Then, v̂∗
p ≥ v̂∗

q for all pairs of utility functions and all priors.

Both previous results rely on the fact that the set of signals shrinks (i.e., 	q ⊆ 	p), and as a result the set of feasible 
profiles of posteriors shrink too. Hence, the sender maximizes his expected utility function over a smaller domain, thus 
leading to v̂∗

p ≥ v̂∗
q irrespective of the prior and the players’ preferences. Let us briefly explain why we obtain 	q ⊆ 	p in 

each of the previous results.
Both results make use of the fact that each signal σ ∈ 	p is identified by a mapping from � to �(B p) ⊆ �(S), implying 

that (�(B p))� represents 	p . Hence, �(Bq) ⊆ �(B p) implies 	q ⊆ 	p .
In Proposition 3, we start with the matrix representation of a noisy channel. Accordingly, p is represented by the stochas-

tic transition matrix P , where Pk, := p(s|sk). Then, we show that every column of Q is a convex combination of the 
columns of P , implying by symmetry that every row of Q is a convex combination of the rows of P . Hence, �(Bq) ⊆ �(B p), 
which in turn implies 	q ⊆ 	p .

In Proposition 4, we show that garbling p with a strongly symmetric channel r leads to shrinking of �(B p). The under-
lying idea is that each q(·|s) will lie on the linear segment that connects p(·|s) with the center of �(S). Then, given that the 
center lies in the interior of �(B p), every q(·|s) lies inside �(B p). Therefore, �(Bq) ⊆ �(B p), and consequently 	q ⊆ 	p .

4. Does the sender like complex information structures?

As it is well-known, in standard persuasion games the sender can always achieve her value with a given –relatively 
small– number of messages, viz., there exists always an optimal signal (for the sender) that uses no more messages than 
the number of states (Kamenica and Gentzkow, 2011). In other words, there exists an upper bound on the complexity of 
the signal that the sender needs to use in order to maximize her expected utility, and this maximum complexity depends 
merely on the complexity of the state space. However, as Proposition 1 suggests, in the usual judge-prosecutor game, if 
the experiment is distorted by a strongly symmetric channel, a more complex message space always benefits the sender. 
In this section, we generalize this insight to every underlying persuasion game and many different ways of increasing the 
complexity of a channel.10

To do so, we first need to be precise on how the complexity of the channel can increase. First of all, it is clearly the 
case that if we increase the complexity of the channel by adding messages –or groups of messages– that do not interact 
with each other, we will eventually trivially get a noiseless channel. For instance, if next to the messages {blue, red} we 
add the messages {good, bad}, it will most likely be the case that the former will not be confused with the later, and as 
a consequence we will be able to achieve all signals over a binary message space. So let us focus on cases where we can 
only add messages that interact with each other. In principle, this can be done in many different ways. Let us illustrate this 
point by means of our earlier example.

Example 1 (continued). Suppose that we begin with a binary strongly symmetric channel p:

red

blue

red

blue

The bold arrows represent probability 0.85 and the thin ones represent probability 0.15, i.e., we have p(blue|blue) =
p(red|red) = 0.85. Now, consider the following two ways of replacing p with a more complex channel:

• The municipality introduces additional distinct colors, thus obtaining an expanded message space {blue, red, yellow,

green}. Nevertheless, the probability of not confusing colors remains the same, i.e., q(blue|blue) = q(red|red) =
q(yellow|yellow) = q(green|green) = 0.85.

10 Again, we would like thank an anonymous referee for raising this interesting question.
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red

green

yellow

blue

red

green

yellow

blue

Once again, the thick arrows represent probability 0.85, while the thin arrows now stand for probability 0.05.
• The municipality introduces different shades for some of the existing colors, thus obtaining the message space 

{blue, dark red, light red}. The total probability of not confusing colors remains the same, i.e., p̄({dark red, light red}
|dark red) = p̄({dark red, light red}|light red) = 0.85 and p̄(blue|blue) = 0.85. At the same time, different shades of 
the same color are almost indistinguishable, i.e., p̄(light red|dark red) = p̄(dark red|light red) = 0.35 and p̄(dark red|
dark red) = p̄(light red|light red) = 0.50.

light
red

dark
red

blue

light
red

dark
red

blueblue

red

blue

red.15

.35

.5

.15

.35

.5

.85

.075

.075

Notice that both ways of expanding the message space keep certain elements of the structure of p unchanged, e.g., in both 
cases the probability of not confusing colors remains the same. �

Let us now introduce a general procedure to make a channel more complex. First, take each message sk ∈ S and create 
an arbitrary number of duplicates, thus obtaining an entire set Sk of duplicate messages with typical element s̄k . Note 
that not all messages in S have necessarily the same number of duplicates. Thus, we obtain an enlarged set of messages 
S̄ := S1 ∪ · · · ∪ Sk . Then, we define the channel p̄ : S̄ → �( S̄) as follows. For every pair of messages s̄k ∈ Sk and s̄ ∈ S:

(a) If s̄k and s̄ are not duplicates of the same original message, i.e., if k �= , then

p̄(s̄|s̄k) = p(s|sk)

|S| .

That is, each duplicate of sk distributes uniformly across the duplicates of s the error probability that sk assigned to s

under the original channel.
(b) If s̄k and s̄ are duplicates of the same original message, i.e., if k = , then

p̄(s̄|s̄k) = p̄(s̄k|s̄).

That is, the probability p(sk|sk) of correctly observing sk in the original channel, is distributed in a symmetric way 
within Sk .

Whenever the previous two conditions are satisfied we write p̄ � p.
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Example 1 (continued). Recall the second way of expanding channel p, which was done by introducing different shades. We 
started with the messages {blue, red}, which we expanded to {blue, dark red, light red}, i.e., the only duplicate of blue is 
blue itself, while the duplicates of red are dark red and light red. Notice that the total error probability of one set of dupli-
cates agrees with the original probabilities, e.g., p̄({dark red, light red}|blue) = p(red|blue) = 0.15. Moreover, conditional on 
blue each shade of red receives the same probability, e.g., p̄(dark red|blue) = p̄(light red|blue) = 0.075. And finally, within 
the red shades, noise is symmetric, e.g., this means that p̄(light red|dark red) = p̄(dark red|light red) = 0.35. �

Obviously, there are multiple channels p̄ that we can obtain from p using the previous procedure, which differ in the 
number of duplicates we introduce for each of the original messages as well as on the probability of correctly observing 
each duplicate message. But as the following result shows, this way will always be beneficial for the sender.

Proposition 5. If p̄ � p, then v̂ ∗̄
p ≥ v̂∗

p for all pairs of utility functions and all priors.

Let us briefly sketch the proof of the previous result in the context of our earlier example. For any experiment over 
the message space {blue, red}, consider the experiment over the expanded message space {blue, dark red, light red} such 
that the total conditional probability of red is distributed uniformly across dark red and light red, while the conditional 
probability of blue remains the same (given each state). Then, we show that the two experiments (when distorted by the 
corresponding channels) yield the same distribution of posteriors. Hence, whatever expected utility the sender can achieve 
under p, she will also be able to achieve under p̄.

Remark 3. Of course, quite likely, this inequality will be strict, i.e., the sender will typically strictly benefit from expanding 
the message space in such a way. This is because under the more complex channel p̄ there will always exist distributions 
of posteriors that cannot be achieved under p. Hence, there will always be preference profiles that will make the sender 
strictly better off under p̄ compared to the situation under p (similarly to Proposition 2). In fact, the class of such games is 
quite rich. �

Now, if we combine the previous result with Proposition 4, we can essentially generalize the conclusion of Proposition 1
to any persuasion game.

Corollary 1. Let p : S → �(S) and q : S̄ → �( S̄) be two strongly symmetric channels with | S̄| = M · |S| for some integer M > 1. 
Moreover, we assume that the corresponding total error probabilities are denoted by ε := p(s′|s) and δ := q(s̄′|s̄) for any two distinct 
s, s′ ∈ S and any two distinct s̄, ̄s′ ∈ S̄ . Then, if the error probabilities satisfy

|S|
|S| − 1

ε ≥ | S̄|
| S̄| − 1

δ,

it will be the case that v̂∗
q ≥ v̂∗

p for all pairs of utility functions and all priors.

The underlying idea is that q is more beneficial to the sender due to the fact that it has more available messages, even 
in cases where it has strictly larger total error probability. In fact, we identify the trade-off between the channel complexity 
(measured by the cardinality of the message space) and the size of the total error probability, i.e., multiplying the number 
of messages by M allows us to decrease the total error probability by a factor of |S|−1

|S| · | S̄|
| S̄|−1

, without making the sender 
worse off. For instance, if p and q are strongly symmetric channels with 2 and 4 messages respectively, q will make the 
sender better off whenever the error δ ≤ 3

2 ε, i.e., even in cases where δ is larger than ε. Of course, a direct consequence is 
that, if we increase the number of messages by some factor while maintaining the total error probability fixed (i.e., while 
taking ε = δ), the sender becomes better off. Let us illustrate this last point in our working example.

Example 1 (continued). We will proceed into steps.
First, we take the strongly symmetric channel p with two colors (viz., blue and red) and probability of seeing the correct 

color equal to 0.85. Then, we construct the more complex channel p̄ as follows. First, we duplicate each color by taking 
the respective dark and light shades, i.e., we now have four messages in total (viz., light blue, dark blue, light red and dark 
red). The total probability of seeing a shade of the incorrect color remains the same and is split uniformly across the two 
shades, e.g., p̄(light red|light blue) = p̄(dark red|light blue) = 0.15/2 = 0.075. The probability of seeing the wrong shade of 
the correct color is also set equal to 0.075, thus implying that every mistake occurs the same probability 0.075, while the 
probability of seeing the correct color is equal to 0.775. Of course, by construction p̄ is more complex than p, and therefore 
by Proposition 5 it always makes the sender better off.

In the second step, take the strongly symmetric channel q with the same message space as p̄ (viz., light blue, dark blue, 
light red and dark red) and probability of seeing the correct color equal to 0.85, which is of course higher than 0.775. Hence, 
by Proposition 3, the sender will always be better off with q than with p̄. Therefore, by transitivity, q will always be better 
for the sender than p. �
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Notice that this last comparison (between two strongly symmetric channels that differ only in the number of messages, 
while having the same total error probability) will often make the sender to strictly prefer the more complex. This is because 
the distributions of posteriors that can be achieved in one case are a strict superset of the distributions that can be achieved 
in the other. Hence, for a large family of utility functions this additional complexity will lead to a strict improvement for 
the sender.

Finally, it is worthwhile pointing out that, unlike the specific case of the judge-prosecutor example, no general conclusion 
can be drawn regarding the effect of complexity on the receiver’s expected utility in equilibrium. Depending on the specific 
case in which we make the channel more complex, the resulting optimal signal could be more informative, but it could 
also be less informative. Then, given that the receiver’s indirect utility function is always convex, such increased complexity 
could respectively be beneficial or harmful for the receiver.

5. Discussion

5.1. Endogenous noise

An interesting extension of our model is to consider experiment-dependent noisy channels. Consider the following exam-
ple.11 There are two different species of blue birds and one species of red birds. A company commissions an environmental 
report on the numbers of the different species, which is necessary in order for a proposed project to be approved by the 
corresponding agency. It is probably easier to make mistakes when trying to distinguish two blue birds, as opposed to 
when trying to distinguish a blue from a red bird. Here, it seems natural to assume that the noisy channel depends on the 
experiment that the sender has chosen.

Such an extension would be relevant for various applications, which would be certainly interesting to study in follow-up 
papers. It is important to stress that the way noise is endogenized often depends on its source. For instance, noise can be 
increasing in the informativeness of the experiment when it captures mistakes in the implementation of the experiment, 
i.e., more informative experiments require larger and more complex datasets, and are therefore more prone to mistakes. On 
the other hand, noise can also be decreasing in the informativeness of the experiment if it captures the communication 
errors or mistakes due to limited understanding, i.e., data leading to more clear-cut conclusions are misunderstood less 
often. Along these lines, related is also the work of Kosenko (2018) on Bayesian persuasion with mediators, where noise 
becomes endogenous through the preferences of the mediator.

5.2. Correlation in message realization

In noisy persuasion games with multiple receivers, the optimal signal often depends on whether the realizations of the 
noisy channel are independent or correlated across receivers. For instance, in a voting environment à la Alonso and Câmara 
(2016), the politician chooses an experiment π , then a message s ∈ S is drawn from π(·|ω), and finally each voter observes 
the distorted message t ∈ S which is drawn from the error distribution p(·|s). If we then assume that all voters observe the 
same distorted message (i.e., the errors are perfectly correlated across voters), noise can capture mistakes in the politician’s 
campaign or in the media coverage, which are perceived symmetrically across voters. If on the other hand, we wanted to 
model mistakes due to the voters’ limited ability to understand the message, or due to the fact that the voters do not fully 
trust the message they hear, we would assume that a different distorted message t is drawn from p(·|s) independently for 
each voter. And of course, one could study intermediate cases with different correlation structures. Overall, it is not just 
the model of the distortions but also their source that affects the optimal signal. Understanding the role of correlation of 
distortions across receivers is an interesting problem for future research.

Appendix A. Proofs

Proof of Proposition 1. Fix an optimal experiment π , writing for simplicity xk := π(sk|ω1) and yk := π(sk|ω2), and addi-
tionally ξk := (1 − ε)xk + ε

K−1 (1 − xk) and ψk := (1 − ε)yk + ε
K−1 (1 − yk). Note that the posterior belief given sk will be 

equal to

μk := μ0ξk

μ0ξk + (1 − μ0)ψk
.

Without loss of generality, we assume that μ1 ≥ μ2 ≥ · · · ≥ μK , with at least one inequality being strict.

Step 1. Let us first prove that μ1 = μ̄. We proceed by contradiction, assuming that μ1 > μ̄. Since μ1 > μ0, it will be 
the case that μ0 > μK , implying that yK > 0. Now, for any λ ∈ (0, yK ), define the new experiment πλ which is exactly 
the same as π except for the fact that yλ

1 := y1 + λ and yλ
K := yK − λ. The new posteriors that we will obtain (for the 

respective messages) will be μλ
1, . . . , μλ

K . Obviously, we have μλ
k = μk for all k ∈ {2, . . . , K − 1}. Moreover, note that μλ

1

11 We are greatly indebted to an anonymous referee for suggesting this extension and the corresponding example.
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is continuously decreasing in λ, and likewise μλ
K is continuously increasing in λ. So, we can select some λ small enough 

such that μK < μ̄ ≤ μλ
1 < μ1. Hence, the receiver chooses a1 under π , if and only if, he chooses a1 under πλ . Then, letting 

M := max{k = 1, . . . , K |μk ≥ μ̄}, the expected probability of the receiver choosing a1 (and a fortiori the sender’s expected 
utility) is equal to

μ0

M∑
k=1

ξk + (1 − μ0)

M∑
k=1

ψk

under the experiment π , and equal to

(1 − μ0)
(

1 − ε − ε

K − 1

)
λ + μ0

M∑
k=1

ξk + (1 − μ0)

M∑
k=1

ψk

under the experiment πλ . Note that ε + ε
K−1 < 2ε < 1, implying that πλ is better than π for the sender, thus reaching a 

contradiction.

Step 2. By the previous step, we have

ψk = μ0(1 − μ̄)

(1 − μ0)μ̄
ξk

for every k = 1, . . . , M . Thus, the sender’s expected utility is equal to

μ0

μ̄

M∑
k=1

ξk = μ0

μ̄

(
1 − ε − ε

K − 1

) M∑
k=1

xk + μ0

μ̄

ε

K − 1
M.

This is strictly increasing in 
∑M

k=1 xk and in M . Hence, it must be the case that 
∑M

k=1 xk = 1 and M = K − 1, implying that 
the value of the optimal signal is

v̂∗
p = μ0

μ̄

(
1 − ε

K − 1

)
,

which completes the proof. �
Proof of Proposition 2. Recall that the state space is � = {ω1, . . . , ωN }. Thus, we can identify each experiment π ∈ 
 with 
the vector (π1, . . . , πN ) ∈ [0, 1]N , where πn := π(s1|ωn) for every n = 1, . . . , N . Now, consider a binary channel p with error 
probabilities ε1 := p(s2|s1) and ε2 := p(s1|s2). Similarly to an experiment, each signal σ ∈ 	p is identified by the vector 
(σ1, . . . , σN) ∈ [0, 1]N , where σn := σ(s1|ωn) for every n = 1, . . . , N . So, the set of feasible signals is

	p :={
(σ1, . . . , σN ) ∈ [0,1]N : there is a vector (π1, . . . ,πN) ∈ [0,1]N such that

σn = πn(1 − ε1) + (1 − πn)ε2 for every n = 1, . . . , N
}

.

The latter can be rewritten as

	p =
{

(σ1, . . . , σN ) ∈ [0,1]N : 0 ≤ σn − ε2

1 − ε1 − ε2
≤ 1

}

=
{

(σ1, . . . , σN ) ∈ [0,1]N : ε2 ≤ σn ≤ 1 − ε1

}
,

which is obviously nonempty, as ε1 < 1/2 and ε2 < 1/2.

Now consider a garbling q = p ◦ r, where δ1 := q(s2|s1) and δ2 := q(s1|s2) are the error probabilities of q, while ρ1 := r(s2|s1)

and ρ2 := r(s1|s2) are the error probabilities of r. Then, it is easy to see that the following equivalences hold

	q ⊆ 	p ⇔ ε1 ≤ δ1 and ε2 ≤ δ2

⇔ ε1

1 − ε1
≤ ρ1

ρ2
≤ 1 − ε2

ε2
, (A.1)

where the last pair of inequalities is our condition (9).

Sufficiency: It follows directly from (A.1) combined with the fact that 	q ⊆ 	p implies v̂∗
p ≥ v̂∗

q .

Necessity: Suppose that condition (9) does not hold, implying by (A.1) that either δ1 < ε1 or δ2 < ε2. For the time being, 
consider a binary state space � = {ω1, ω2} with prior μ0 = 1/2. Then, under the more noisy channel q, if the sender chooses 
the signal σ ′ ∈ 	q with σ ′ = 1 − δ1 and σ ′ = δ2, the receiver’s profile of posterior beliefs will become
1 2
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(μ′
1,μ

′
2) =

(
1 − δ1

1 − δ1 + δ2
,

δ1

1 + δ1 − δ2

)
∈ Mq, (A.2)

where Mq is the set of feasible profiles of posteriors under the channel q. Likewise, if she chooses the signal σ ′′ ∈ 	q with 
σ ′′

1 = δ1 and σ ′′
2 = 1 − δ2, the receiver’s profile of posterior beliefs will become

(μ′′
1,μ′′

2) =
(

δ1

1 + δ1 − δ2
,

1 − δ1

1 − δ1 + δ2

)
∈ Mq, (A.3)

noticing that obviously (μ′
1, μ′

2) = (μ′′
2, μ′′

1) = (μ−, μ+). In order for {(μ′
1, μ

′
2), (μ

′′
1, μ′′

2)} ∩Mp �= ∅, there must exist some 
σ = (σ1, σ2) ∈ 	p such that

(
σ1

1 + σ1 − σ2
,

1 − σ1

1 − σ1 + σ2

)
∈ {

(μ′
1,μ

′
2), (μ

′′
1,μ′′

2)
}

. (A.4)

Simple algebra yields that (μ′
1, μ′

2) =
( σ1

1+σ1−σ2
, 1−σ1

1−σ1+σ2

)
holds if and only if the system

[
δ2 1 − δ1

1 − δ2 δ1

]
·
[
σ1
σ2

]
=

[
1 − δ1
1 − δ2

]
(A.5)

has a solution in 	p . Note that the determinant of the coefficient matrix is equal to δ1 + δ2 − 1 �= 0, implying that the 
system has a unique solution. But, then by construction this solution is (1 − δ1, 1 − δ2) which does not belong to 	p . 
Likewise, (μ′′

1, μ′′
2) = ( σ1

1+σ1−σ2
, 1−σ1

1−σ1+σ2

)
holds if and only if

[
1 − δ2 δ1

δ2 1 − δ1

]
·
[
σ1
σ2

]
=

[
δ1
δ2

]
(A.6)

has a solution in 	p . The determinant of the coefficient matrix is equal to 1 − δ1 + δ2 �= 0, implying that once again the 
system has a unique solution. And again by construction this solution is (δ1, δ2) which does not belong to 	p . Now, take 
utility functions such that the receiver’s unique optimal choice is to choose the action A = [0, 1] that matches his posterior 
belief, while the sender prefers the receiver to choose either μ− or μ+ , i.e., formally, let v(μ−, ω) = v(μ+, ω) = 1 for both 
ω ∈ �, while v(a, ω) = 0 for all other a ∈ A and all ω ∈ �. This implies that v̂∗

q = 1 > v̂∗
p .

Finally, consider the case of a finite state space �̃ = {ω̃1, . . . , ω̃N } and let E = {E1, E2} be a partition of �̃ together with 
a prior such that μ0(E1) = μ0(E2) = 1/2. Then, suppose that both agents have E-measurable utility functions. In particular, 
the utility of each agent at each ω̃ ∈ E1 is the same as the utility at ω1 in the binary case above, and likewise for every 
ω̃ ∈ E2 and ω2. This implies that the analysis will be identical to the one of the binary case, and therefore once again we 
will obtain v̂∗

q = 1 > v̂∗
p , thus completing the proof. �

Lemma A1. Take two channels p and q such that every row of Q can be written as a convex combination of the rows of P . Then, 
	q ⊆ 	p .

Proof. If every row of Q can be written as a convex combination of the rows of P , it will be the case that Bq ⊆ �(B p). 
Therefore, 	q ⊆ 	p . �
Lemma A2. Let P and Q be two doubly stochastic matrices such that P is nonsingular. Furthermore, let R be some stochastic matrix 
such that Q = P R. Then, R is doubly stochastic.

Proof. Since P is nonsingular, there exists a square (inverse) matrix B such that P B = B P = I , where I is the identity 
matrix. By B P = I it follows that 

∑K
k=1 Bn,k Pk,n = 1 and also 

∑K
k=1 Bn,k Pk,m = 0 for all m �= n. Thus, using the fact that P is 

doubly stochastic, we obtain

1 =
K∑

m=1

K∑
k=1

Bn,k Pk,m =
K∑

k=1

Bn,k. (A.7)

Now, multiply both sides of Q = P R with B (from the left) to obtain R = B Q , thus implying

Rn,m =
K∑

k=1

Bn,k Q k,m. (A.8)

Since R is by hypothesis (row) stochastic, it suffices to prove that the entries of each column sum up to 1. Indeed,
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K∑
n=1

Rn,m =
K∑

n=1

K∑
k=1

Bn,k Q k,m =
K∑

k=1

Q k,m = 1, (A.9)

with (A.9) following from (A.7) and the fact that Q is doubly stochastic. �
Proof of Proposition 3. By symmetry both P and Q are doubly stochastic. Moreover, by p(s|s) > 1/2 it follows that P is 
diagonally dominant, and therefore it is nonsingular (Levy-Desplanques Theorem). Hence, by Lemma A2, it follows that R
is doubly stochastic too. Therefore, every column of Q can be written as a convex combination of columns of P . But then, 
since P and Q are symmetric, every column vector is also a row vector in each of them. Hence, every row of Q can also 
be written as a convex combination of rows of P . Therefore, by Lemma A1 we obtain 	q ⊆ 	p . Thus, v̂∗

q ≤ v̂∗
p . �

Proof of Proposition 4. Since r is strongly symmetric, we obtain r(s|s) = 1 − ρ and r(t|s) = ρ
K−1 for every t �= s. Therefore, 

for every s ∈ S , we obtain

q(·|s) = (1 − ρ)p(·|s) + ρ

K − 1
(1 − p(·|s)). (A.10)

Hence, q(·|s) lies on the straight line that connects p(·|s) and ( 1
K , . . . , 1

K ). But then, by p(s|s) > 1/2 for all s ∈ S it follows 
that ( 1

K , . . . , 1
K ) belongs to the interior of �({p(·|s1), . . . , p(·|sK )}). In other words, all rows of Q can be written as convex 

combinations of the rows of P . Hence, by Lemma A1, we obtain 	q ⊆ 	p , and therefore v̂∗
p ≥ v̂∗

q . �
Proof of Proposition 5. For any fixed experiment π : � → �(S), take the experiment π̄ : � → �( S̄) such that

π̄ (s̄k|ω) := π(sk|ω)

|Sk| (A.11)

for each s̄k ∈ Sk , each k = 1, . . . , K and each ω ∈ �. Then, we obtain

σ̄ (s̄k|ω) =
K∑

=1

∑
s̄∈S

π̄ (s̄|ω)p̄(s̄k|s̄) (A.12)

= π(sk|ω)

|Sk|
∑

s̄′k∈Sk

p̄(s̄k|s̄′
k) +

∑
�=k

π(s|ω)

|S|
∑

s̄∈S

p̄(s̄k|s̄) (A.13)

= π(sk|ω)

|Sk|
∑

s̄′k∈Sk

p̄(s̄′
k|s̄k) +

∑
�=k

π(s|ω)

|S|
∑

s̄∈S

p(sk|s)

|Sk| (A.14)

= π(sk|ω)

|Sk| · p̄(Sk|s̄k) +
∑
�=k

π(s|ω)

|S| · |S| · p(sk|s)

|Sk| (A.15)

= π(sk|ω)

|Sk| · p(sk|sk) +
∑
�=k

π(s|ω)

|S| · |S| · p(sk|s)

|Sk| (A.16)

= 1

|Sk|
∑

s∈S

π(s|ω)p(sk|s) (A.17)

= σ(sk|ω)

|Sk| , (A.18)

where the Equation (A.12) follows from the definition of a signal; Equations (A.13) follows from (A.11); Equation (A.14)
follows from p̄ being more complex than p; Equation (A.15) follows from summing up over Sk and S respectively; Equation 
(A.16) follows again from p̄ being more complex than p; Equation (A.17) follows from summing up over all elements of S; 
and finally Equation (A.18) follows from the definition of a signal.

Therefore, the posterior probability of ω upon observing s̄k is equal to

μ̄k(ω) = μ0(ω)σ̄ (s̄k|ω)

〈μ0, σ̄ (s̄k|·)〉 = μ0(ω)
σ(sk|ω)

|Sk|
〈μ0,

σ (sk|·)|Sk| 〉 = μk(ω),

i.e., all duplicates s̄k ∈ Sk under π̄ yield the same belief as sk itself under π . Finally, notice that
60



E. Tsakas and N. Tsakas Games and Economic Behavior 130 (2021) 44–61
∑
ω∈�

σ̄ (Sk|ω) =
∑
ω∈�

∑
s̄k∈Sk

σ̄ (s̄k|ω) =
∑
ω∈�

∑
s̄k∈Sk

σ(sk|ω)

|Sk|
∑
ω∈�

σ(sk|ω),

i.e., the total probability of obtaining a duplicate in Sk under π̄ is equal to the probability of obtaining sk under π . Hence, 
the distribution of posteriors induced by π̄ is the same as the distribution of posteriors induced by π . Therefore, the set of 
distributions of posteriors that can be achieved via the channel p is a subset of the set of distributions of posteriors that 
can be achieved via the channel p̄, which completes the proof. �
Proof of Corollary 1. For convenience, we use the notation K := |S| and L := | S̄|. Then, we begin by partitioning the message 
space S̄ into K equivalence classes, {S1, . . . , S K }, each containing M messages. By strong symmetry of q, for every s̄k, ̄s′

k ∈ Sk

and every S , we obtain q(S|s̄k) = q(S|s̄′
k). Moreover, again by strong symmetry of q, for every s̄k, ̄s′

k ∈ Sk we obtain 
q(s̄′

k|s̄k) = q(s̄k|s̄′
k). Hence, if we take the message space S = {s1, . . . , sK } together with the auxiliary channel p̃ : S → �(S)

defined by p̃(s|sk) := q(S|s̄k), it will be the case that q � p̃. Therefore, by Proposition 5, we get

v̂∗
q ≥ v̂∗

p̃ . (A.19)

Now, notice that p̃ is a strongly symmetric channel with total error probability

p̃(s′|s) = L(K − 1)

(L − 1)K
δ.

On the other hand, p is also strongly symmetric with the same number of messages as p̃ and total error probability ε, 
which by hypothesis is (weakly) larger than L(K−1)

(L−1)K δ. Hence, there exists a strongly symmetric channel r such that p = p̃ ◦ r, 
and by Proposition 4, we obtain

v̂∗
p̃ ≥ v̂∗

p. (A.20)

Finally, combining (A.19) and (A.20) completes the proof. �
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