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1. INTRODUCTION

In their seminal paper, Aumann and Brandenburger (1995) provided epistemic conditions for Nash

equilibrium. Accordingly, if there exists a common prior, then mutual belief in rationality and pay-

offs as well as common belief in each player’s conjecture about the opponents’ strategies imply Nash

equilibrium in normal form games with more than two players. As they pointed out, in their epistemic

conditions common knowledge1 enters the picture in an unexpected way ; in fact, they stressed that what

is needed is common knowledge of the players’ conjectures and not of the players’ rationality (Aumann

and Brandenburger, 1995, p. 1163). Their result challenged the widespread view that common belief in

rationality is essential for Nash equilibrium. Subsequently, Polak (1999) showed that in complete infor-

mation games, Aumann and Brandenburger’s conditions actually do imply common belief in rationality.

In a sense, his result thus restored some of the initial confidence in the importance of common belief in

rationality for Nash equilibrium. More recently, Barelli (2009) generalized Aumann and Brandenburger’s

result by substituting the common prior assumption with the weaker action-consistency property, and

common belief in conjectures with a weaker condition stating that conjectures are constant in the sup-

port of the action-consistent distribution. Thus, he provided sufficient epistemic conditions for Nash

equilibrium without requiring common belief in rationality, even in complete information games.

Here, we further generalize Aumann and Brandenburger’s seminal result by introducing even weaker

1We are indebted to Branden Fitelson, Amanda Friedenberg, Aviad Heifetz, Ron Holzman, Ronald Peeters, Andrés

Perea, Olivier Roy, Michael Trost, anonymous referees and the audiences in LSE, Technion (Haifa), Manchester, LOFT

(Sevilla), EEA-ESEM (Málaga), DGL (Munich) and CRETE (Milos) for useful comments and helpful discussions. Finan-

cial support from the Marie Curie Fellowship (PIEF-GA-2009-237614) is gratefully acknowledged.
1Aumann and Brandenburger (1995) actually use the term knowledge for probability-1 belief.
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epistemic conditions for Nash equilibrium than those by Barelli (2009). Our results are based on intro-

ducing pairwise epistemic conditions imposed only on some pairs of players, contrary to the existing

foundations of Aumann and Brandenburger (1995) and Barelli (2009) which correspond to pairwise epis-

temic conditions imposed on all pairs of players. Thus, our general contribution consists of providing a

general framework for modeling pairwise interactive beliefs of connected agents in a graph. Such a graph

can be interpreted either as an auxiliary tool used to merely weaken the customary global epistemic

conditions to local ones, or as a network representing physical connections between players. In the later

case, our framework opens up the possibility to connect epistemic game theory with the theory of social

networks, thus enabling a link between two independently developed streams of literature. Our specific

contribution consists of Theorem 1, in which we simultaneously replace (i) mutual belief in rationality

with pairwise mutual belief in rationality, (ii) mutual belief in payoffs with pairwise mutual belief in

payoffs, (iii) action-consistency with pairwise action-consistency, and (iv) constant conjectures in the

support of the action-consistent distribution with pairwise constant conjectures in the support of the

pairwise action-consistent distributions respectively, only for connected pairs of players. This difference

is particularly important for large games – e.g. economies with many agents – where global epistemic

conditions, such as requiring that every single player is certain that every other player is rational, can

be rather demanding. In this respect, our assumptions are more plausible, as they impose pairwise

conditions on relatively few pairs of players.

As a direct consequence of our main result, in Corollary 1, we also show that if a common prior exists,

then pairwise mutual belief in rationality, pairwise mutual belief in payoffs and pairwise common belief

in conjectures already suffice for a Nash equilibrium. The latter generalizes Aumann and Brandenburger

(1995) in an orthogonal way compared to Barelli (2009). The following figure illustrates the relationship

of our results to Aumann and Brandenburger (1995) and Barelli (2009).

Theorem 1

⇓

Corollary 1

Barelli (2009)

⇓

Aumann and Brandenburger (1995)⇒

⇒

Apart from introducing a new framework and from providing a more general foundation for Nash

equilibrium, we also contribute to the debate about the connection between common belief in rationality

and Nash equilibrium. Indeed, since our conditions are weaker than Barelli’s, they do not entail common

belief in rationality even in complete information games. Surprisingly however, our conditions do not

even require nor imply mutual belief in rationality. Thus, we reinforce Aumann and Brandenburger’s

intuition about common belief in rationality not being essential for Nash equilibrium, by showing that
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even mutual belief in rationality is not a crucial component. Moreover, as our corollary indicates, the

absence of common belief in rationality from the epistemic conditions for Nash equilibrium should not

be necessarily linked with the lack of a common prior, but instead it could be attributed to the fact

that epistemic restrictions can be local, rather than global as it was assumed in the literature so far.

2. PRELIMINARIES

2.1. Normal form games

Let
(
I, (Ai)i∈I , (gi)i∈I

)
be game in normal form, where I = {1, . . . , n} denotes the finite set of players

with typical element i, and Ai denotes the finite set of strategies, also called actions, with typical element

ai for every player i ∈ I. Moreover, define A := ×i∈IAi with typical element a := (a1, . . . , an) and

A−i := ×j∈I\{i}Aj with typical element a−i := (a1, . . . , ai−1, ai+1, . . . , an). The function gi : Ai×A−i → R

denotes player i’s payoff function.

A probability measure φi ∈ ∆(A−i) on the set of the opponents’ action combinations is called a conjec-

ture of i, with φi(a−i) signifying the probability that i attributes to the opponents playing a−i. Slightly

abusing notation, let φi(aj) := margAj
φi(aj) denote the probability that i assigns to j playing aj. Note

that it is standard to admit correlated beliefs, i.e. φi is not necessarily a product measure, hence the

probability φi(a1, . . . , ai−1, ai+1, . . . , an) can differ from the product φi(a1) · · ·φi(ai−1)φi(ai+1) · · ·φi(an)

of the marginal probabilities.2 We say that an action ai is a best response to φi, and write ai ∈ BRi(φi),

whenever

∑
a−i∈A−i

φi(a−i)gi(ai, a−i) ≥
∑

a−i∈A−i

φi(a−i)gi(a
′
i, a−i)

for all a′i ∈ Ai.

A randomization over a player’s actions is called mixed strategy, and is typically denoted by σi ∈ ∆(Ai)

for all i ∈ I. Let ∆(A1)× · · · ×∆(An) denote the space of mixed strategy profiles, with typical element

σ = (σ1, . . . , σn). Slightly abusing terminology, we say that a pure strategy ai ∈ Ai is a best response

to σ, and write ai ∈ BRi(σ), whenever ai is a best response to the product measure ×j 6=iσj, which is

an element of ∆(A−i). Nash’s notion of equilibrium can then be defined as follows: a mixed strategy

profile (σ1, . . . , σn) is a Nash equilibrium of the game Γ, whenever ai ∈ BRi(σ) for all ai ∈ supp(σi)

and for all i ∈ I.

2Intuitively, a player’s belief on his opponents’ choices can be correlated, even though players choose independently

from each other.
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2.2. Interactive beliefs

Following Aumann and Brandenburger (1995), let Si be a finite set of types for each player i, with

typical element si.
3 As usual, let S := S1 × · · · × Sn and S−i := S1 × · · · × Si−1 × Si+1 × · · · × Sn. An

element s = (s1, . . . , sn) of S is called state of the world, or simply state, while every subset of S is

called an event. The event [si] := {s ∈ S : projSi
s = si} contains all states at which i’s type is si. Each

type si ∈ Si is associated with a probability measure over S−i, called si’s theory, which is extended to

a distribution p(·; si) ∈ ∆(S) over the state space, by attaching to each E ⊆ S the probability that

si’s theory assigns to {s−i ∈ S−i : (si, s−i) ∈ E}. In line with Aumann and Brandenburger (1995) we

assume that p([si]; si) = 1. Therefore, the extension from si’s theory to p(·; si) is unique.

Belief is formalized in terms of events: the set of states where agent i believes E ⊆ S is defined as

Bi(E) := {s ∈ S : p(E; si) = 1}.

Then, it is said that i believes E at s, whenever s ∈ Bi(E). Actually, Aumann and Brandenburger (1995)

as well as subsequent papers (e.g., Polak, 1999; Barelli, 2009) use the term knowledge for probability-1

belief.

An event is mutually believed if everyone believes it. Formally, E ⊆ S is mutually believed at s,

whenever s ∈ B(E), where

B(E) :=
⋂
i∈I

Bi(E).

Iterating the mutual belief operator then yields higher-order mutual belief. Formally, m-th order mutual

belief in E is inductively defined by Bm(E) := B(Bm−1(E)) with B1(E) := B(E). Then, an event E

is commonly believed whenever everyone believes E, everyone believes that everyone believes E, etc.

Formally, common belief in E is expressed by the event

CB(E) :=
⋂
m>0

Bm(E).

For every player i ∈ I an action function ai : S → Ai specifies his action at each state, and it is

assumed to be Si-measurable, i.e., ai(s) = ai(s
′) if {s, s′} ⊆ [si], implying that i attaches probability 1

to his actual strategy. The event [ai] := {s ∈ S : ai(s) = ai} contains the states at which agent i plays

ai, while [a] := [a1] ∩ · · · ∩ [an] and [a−i] := [a1] ∩ · · · ∩ [ai−1] ∩ [ai+1] ∩ · · · ∩ [an].

The function φi : S → ∆(A−i) specifies i’s conjecture at every state, and is defined by

φi(s)(a−i) := p
(
[a−i]; si

)
3Our results can be generalized to arbitrary measurable types spaces, similarly to Aumann and Brandenburger (1995,

Section 6).
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for each a−i ∈ A−i. It follows by definition that φi is Si-measurable, i.e., φi(s) = φi(s
′) if {s, s′} ⊆ [si],

implying that i assign probability 1 to his actual conjecture. We define the events [φi] := {s ∈ S :

φi(s) = φi} and [φ1, . . . , φn] := [φ1] ∩ · · · ∩ [φn].

Finally, gi : S × A → R specifies i’s payoff function at each state of the world, and it is assumed

that gi is also Si-measurable, i.e. gi(s, a) = gi(s
′, a) if {s, s′} ⊆ [si] for all a ∈ A, which implies that

i attaches probability 1 to his actual payoff function. For some fixed gi : A → R, let [gi] := {s ∈ S :

gi(s, a) = gi(a), for all a ∈ A} denote the states where i’s payoff function is gi. Then, we also define

[g1, . . . , gn] := [g1] ∩ · · · ∩ [gn]. A game is said to be of complete information if there exists (g1, . . . , gn)

such that [g1, . . . , gn] = S.

Furthermore, player i is rational at some state s, whenever he maximizes his expected payoff at s

given his conjecture and payoff function. Formally,

Ri :=
{
s ∈ S : ai(s) ∈ BRi

(
φi(s)

) }
denotes the event that i is rational.

2.3. Common prior and action-consistency

A probability measure P ∈ ∆(S) is called a common prior, if for every i ∈ I and for every si ∈ Si, it

i sthe case that p(·; si) coincides with the conditional distribution of P given [si] whenever P
(
[si]
)
> 0.

Recently, Barelli (2009) relaxed the common prior assumption by introducing the weaker notion of

action-consistency. First, consider the set of A-measurable random variables, i.e. FA := {b : S →
R | a(s) = a(s′) ⇒ b(s) = b(s′)}. Following Barelli (2009) a function in FA is called action-verifiable.

Then, a probability measure µ ∈ ∆(S) is called action-consistent whenever

(1)
∑
s∈S

µ(s)b(s) =
∑
si∈Si

µ
(
[si]
)(∑

s′∈[si]

p(s′; si)b(s
′)
)
,

for every i ∈ I and for every b ∈ FA. When A is finite, action-consistency implies

(2) µ
(
[a]
)

=
∑
si∈Si

p
(
[a]; si

)
µ
(
[si]
)

for every i ∈ I and for every a ∈ A.

Barelli (2009) provided a characterization of action-consistency in terms of action-verifiable bets. A

bet is defined as a collection {bi}i∈I of random variables such that
∑

i∈I bi(s) = 0 for all s ∈ S, and is

called action-verifiable whenever bi ∈ FA for all i ∈ I. Then, Barelli (2009) showed that a probability

measure is action-consistent if and only if there is no mutually beneficial action-verifiable bet among all
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players. Formally, µ ∈ ∆(S) is action-consistent if and only if there exists no action-verifiable bet {bi}i∈I
such that

∑
s′∈[si] p(s

′; si)bi(s
′) ≥ 0 for all s ∈ supp(µ) and for all i ∈ I, with at least one inequality

being strict. Observe that if a common prior P exists, action-consistency is trivially satisfied by letting

µ = P .

If there is some action-consistent probability measure µ ∈ ∆(S), then conjectures are said to be

constant in the support of µ whenever there exists a profile of conjectures (φ1, . . . , φn) such that(
φ1(s), . . . ,φn(s)

)
= (φ1, . . . , φn) for all s ∈ supp(µ). Note that common belief of conjectures to-

gether with a common prior imply that conjectures are constant in the support of the action-consistent

probability distribution.

2.4. Epistemic foundations for Nash equilibrium

In their seminal paper, Aumann and Brandenburger (1995) provided epistemic conditions for Nash

equilibrium. Accordingly, if conjectures are derived from a common prior and are commonly believed,

while at the same time rationality as well as the payoff functions are mutually believed, then all players

different from i entertain the same marginal conjecture about i’s action, and the marginal conjectures

constitute a Nash equilibrium of the game. Formally, Aumann and Brandenburger’s epistemic founda-

tion for Nash equilibrium can be stated as follows.

Theorem A (Aumann and Brandenburger, 1995) Let
(
I, (Ai)i∈I , (gi)i∈I

)
be a game and (φ1, . . . , φn)

be a tuple of conjectures. Suppose that there is a common prior that attaches positive probability to a

state s ∈ S such that s ∈ B
(
[g1, . . . , gn]

)
∩ B(R1 ∩ · · · ∩ Rn) ∩ CB

(
[φ1, . . . , φn]

)
. Then, there exists a

mixed strategy profile (σ1, . . . , σn) such that

(i) margAi
φj = σi for all j ∈ I \ {i},

(ii) (σ1, . . . , σn) is a Nash equilibrium of
(
I, (Ai)i∈I , (gi)i∈I

)
.

Subsequently, Polak (1999) showed that in complete information games, common belief in conjectures

and mutual belief in rationality entail common belief in rationality. In the context of Theorem A,

Polak’s result implies that without common belief in rationality being present, sufficient conditions for

Nash equilibrium must fail to satisfy common belief in conjectures or mutual belief in rationality or the

common prior assumption.

Barelli (2009) showed that Aumann and Brandenburger’s conclusions still hold even if one simul-

taneously substitutes the common prior assumption with action-consistency, and common belief in

conjectures with constant conjectures in the support of the action-consistent distribution. Formally,

Barelli’s generalization of Theorem A can be stated as follows.
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Theorem B (Barelli, 2009) Let
(
I, (Ai)i∈I , (gi)i∈I

)
be a game and (φ1, . . . , φn) be a tuple of conjec-

tures. Suppose that there is an action-consistent µ ∈ ∆(S) such that
(
φ1(s

′), . . . ,φn(s′)
)

= (φ1, . . . , φn)

for every s′ ∈ supp(µ). Moreover, assume that there is some state s ∈ supp(µ) such that s ∈ B
(
[g1, . . . , gn]

)
∩

B(R1 ∩ · · · ∩Rn). Then, there exists a mixed strategy profile (σ1, . . . , σn) such that

(i) margAi
φj = σi for all j ∈ I \ {i},

(ii) (σ1, . . . , σn) is a Nash equilibrium of
(
I, (Ai)i∈I , (gi)i∈I

)
.

The preceding theorem is the first epistemic foundation for Nash equilibrium without common belief

in rationality in complete information games. However, note that Barelli’s result still maintains Aumann

and Brandenburger’s assumptions of mutual belief in rationality and payoffs.

In Section 4, we weaken the conditions of Barelli (2009), and a fortiori also the ones by Aumann

and Brandenburger (1995), thus obtaining a tight epistemic foundation for Nash equilibrium, without

requiring neither common belief in conjectures, nor mutual belief in rationality, nor mutual belief in the

payoff functions, nor action-consistency.

3. PAIRWISE EPISTEMIC CONDITIONS

3.1. Pairwise interactive beliefs

The standard intuitive explanation for the emergence of common belief is based on public announce-

ment. Accordingly, once an event is publicly announced it becomes commonly believed in the sense that

not only everyone believes in it, but also everyone believes that everyone in believes it, etc. Note that

for mutual belief to obtain, the agents are only required to each believe in the event, and hence mere

private announcements suffice.

Yet, an event may be publicly (privately) announced to some but not all players. For instance,

an event could be publicly (privately) announced to i and j, but not to k. Pairwise common belief

(pairwise mutual belief) in the event between i and j would then emerge, but not necessarily common

belief (mutual belief). Due to such epistemic possibilities we now introduce pairwise interactive belief

operators.

Let E ⊆ S be some event and i, j ∈ I be two players. We say that E is pairwise mutually believed

between i and j whenever they both believe in E. Formally, pairwise mutual belief in E between i and

j is denoted by the event

Bi,j(E) := Bi(E) ∩Bj(E).

Note that mutual belief implies pairwise mutual belief, but not conversely. We say that E is pairwise

commonly believed between i and j whenever E is commonly believed between them. Formally, m-th
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order pairwise mutual belief in E is inductively defined by Bm
i,j(E) := Bi,j(B

m−1
i,j (E)), with B1

i,j(E) :=

Bi,j(E). Pairwise common belief in E between i and j is then defined as the event

CBi,j(E) :=
⋂
m>0

Bm
i,j(E).

Observe that common belief implies pairwise common belief, but not conversely.

3.2. Pairwise action-consistency

According to Barelli’s characterization of action-consistency, a probability measure µ ∈ ∆(S) is action-

consistent if and only if there exists no mutually beneficial action-verifiable bet among all players. Now,

suppose that, while such a bet can exist among all players, it may still be the case that there is no

bilateral mutually beneficial action-verifiable bet between i and j. Then, although action-consistency

would be violated globally, it would still hold locally between i and j. Due to such possibilities, we

introduce the notion of pairwise action-consistency.

Formally, for two players i, j ∈ I, a probability measure µi,j ∈ ∆(S) is called pairwise action-consistent

between i and j if

(3)
∑
s∈S

µi,j(s)b(s) =
∑
sk∈Sk

µi,j

(
[sk]
)( ∑

s′∈[sk]

p(s′; sk)b(s′)
)
,

for every k ∈ {i, j} and every b ∈ FA. Similar to the global case of action-consistency, pairwise action-

consistency between i and j implies

(4) µi,j

(
[a]
)

=
∑
sk∈Sk

p
(
[a]; sk

)
µi,j

(
[sk]
)
,

for every k ∈ {i, j} and every a ∈ A. Observe that action-consistency trivially implies pairwise action-

consistency for any pair i and j, by letting µi,j = µ.

If a probability distribution µi,j ∈ ∆(S) is pairwise action-consistent between i and j, we say that con-

jectures are pairwise constant in the support of µi,j whenever there exists a tuple (φi, φj) of conjectures

such that
(
φi(s),φj(s)

)
= (φi, φj) for all s ∈ supp(µi,j).

3.3. G-pairwise epistemic conditions

In contrast to the standard notions of mutual belief, common belief and action-consistency, our cor-

responding pairwise epistemic conditions are only local, thus postulating the existence of exclusively

binary relations of epistemic relevance. Formally, we represent a set of such binary relations by means
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of an undirected graph G = (I, E), where the set of vertices I denotes the set of players, and edges E
describe binary symmetric relations (i, j) ∈ I × I between pairs of players.

In principle, the graph G does neither enrich the epistemic model nor add any additional structure

to the game whatsoever, but only provides a formal framework for imposing local pairwise restrictions

on the beliefs of the players, e.g. a graph containing an edge between i and j but not between j and k

can be used to model a situation where an event is pairwise mutually believed between i and j but not

between j and k. Yet, there exist two complementary interpretations of G. First of all, the connectedness

of two agents by an edge may be of purely epistemic character. Secondly, G may also be interpreted as

a social network, in which, for instance, agents believe in the rationality of their respective neighbors

only. This latter interpretation is further discussed in Section 5.

Next, some graph theoretic notions are recalled. A sequence (ik)mk=1 of players is a path whenever

(ik, ik+1) ∈ E for all k ∈ {1, . . . ,m − 1}, i.e. in a path every two consecutive players are linked by an

edge. Moreover, a graph G is called connected if it contains a path (ik)mk=1 such that for every i ∈ I

there is some k ∈ {1, . . . ,m} with ik = i. Besides, G is biconnected if for every i, j, k ∈ I there exists a

path from i to j that does not go through k. Intuitively, a graph is biconnected if the induced subgraph

that is obtained after removing an arbitrary i ∈ I is still connected. In fact, in the context of social

networks this assumptions seems quite plausible, as it states that there is no agent whose removal would

disconnect the population into two components. Several well-known classes of undirected graphs are

biconnected, such as for instance Hamiltonian graphs.4 Finally, G is complete, if (i, j) ∈ E for all i, j ∈ I.

Specific types of pairwise epistemic conditions are now introduced.

Definition 1 Let
(
I, (Ai)i∈I , (gi)i∈I

)
be a game, G = (I, E) be an undirected graph, s be a state, and

(φ1, . . . , φn) be a tuple of conjectures.

• Rationality is G-pairwise mutually believed at s whenever s ∈ Bi,j(Ri ∩Rj) for all (i, j) ∈ E .

• Payoffs are G-pairwise mutually believed at s whenever s ∈ Bi,j([gi] ∩ [gj]) for all (i, j) ∈ E .

• Conjectures are G-pairwise commonly believed at s whenever s ∈ CBi,j([φi]∩ [φj]) for all (i, j) ∈ E .

The standard notions of mutual belief in rationality, mutual belief in payoffs and common belief in

conjectures are weakened by G-pairwise mutual belief in rationality, G-pairwise mutual belief in payoffs

4A graph is Hamiltonian if it contains a cycle in which every vertex appears exactly once.
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and G-pairwise common belief in conjectures, respectively. Formally, observe that

B(R1 ∩ · · · ∩Rn) ⊆
⋂

(i,j)∈E

Bi,j(Ri ∩Rj),

B
(
[g1, . . . , gn]

)
⊆

⋂
(i,j)∈E

Bi,j

(
[gi] ∩ [gj]

)
,

CB
(
[φ1, . . . , φn]

)
⊆

⋂
(i,j)∈E

CBi,j

(
[φi] ∩ [φj]

)
.

Indeed, our concepts are weaker than the standard notions on two distinct dimensions. Firstly, the

events rationality, payoffs and conjectures in Definition 1 only refer to the rationality, the payoffs and

the conjectures of the two connected player, rather than of every i ∈ I. Secondly, our previously defined

conditions impose epistemic restrictions only on the pairs of connected players in the graph, whereas

standard interactive belief does so across all pairs of players.

Definition 2 Let
(
I, (Ai)i∈I , (gi)i∈I

)
be a game, G = (I, E) be an undirected graph, and (φ1, . . . , φn)

be a tuple of conjectures.

• Beliefs are G-pairwise action-consistent if there exists a collection (µi,j)(i,j)∈E of probability mea-

sures with
⋂

(i,j)∈E supp(µi,j) 6= ∅ such that µi,j is pairwise action-consistent between i and j, for

every (i, j) ∈ E .

• If beliefs are G-pairwise action-consistent, then the conjectures are G-pairwise constant in the sup-

ports of the action-consistent distributions whenever
(
φi(s),φj(s)

)
= (φi, φj) for all s ∈ supp(µi,j),

and for every (i, j) ∈ E .

Observe that pairwise action-consistency is not a transitive property, i.e. pairwise action-consistency

between i and j and pairwise action-consistency between j and k, do not necessarily imply pairwise

action-consistency between i and k. Hence, G-pairwise action-consistency does not necessarily yield

action-consistency, even if G is connected.

Below, we illustrate our G-pairwise epistemic conditions by means of an example, and we also show

that they are in fact weaker than the corresponding global conditions imposed by Aumann and Bran-

denburger (1995) and Barelli (2009).

Example 1 Consider the game
(
I, (Ai)i∈I , (gi)i∈I

)
, where I = {Alice, Bob, Claire,Donald} and Ai =

{h, `} for all i ∈ I, and the players are abbreviated by A, B, C and D. The (commonly believed)

payoff functions are as follows: Alice receives 1 utility unit whenever she coordinates with Claire and

0 otherwise, i.e. Alice’s payoff is equal to 1 if and only if aA = aC . Claire receives 1 utility unit if

she chooses the same strategy as at least two other players and 0 otherwise. Finally, Bob and Donald

always receive 1 utility unit, regardless of the action profile being chosen.
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Now, assume the type spaces

SA = {s1A(`), s2A(`)},

SB = {s1B(`), s2B(h), s3B(`), s4B(h)},

SC = {s1C(`), s2C(`)},

SD = {s1D(`), s2D(h), s3D(h), s4D(`)},

where the respective action in parenthesis denotes the corresponding player’s action at each state given

by the function ai. Moreover, suppose that the corresponding beliefs of each type of Alice are given by

p(·; s1A) =
(1

4
× (s1A, s

1
B, s

1
C , s

1
D) ;

1

4
× (s1A, s

2
B, s

1
C , s

1
D) ;

1

4
× (s1A, s

3
B, s

2
C , s

3
D) ;

1

4
× (s1A, s

4
B, s

2
C , s

3
D)
)

p(·; s2A) =
(

1× (s2A, s
1
B, s

1
C , s

2
D)
)

with, for example, p(·; s2A) =
(
1×(s2A, s

1
B, s

1
C , s

2
D)
)

signifying that s2A attaches probability 1 to the actual

state being (s2A, s
1
B, s

1
C , s

2
D). The corresponding beliefs for each type of Bob are given by

p(·; s1B) =
(1

2
× (s1A, s

1
B, s

1
C , s

1
D) ;

1

2
× (s2A, s

1
B, s

1
C , s

2
D)
)

p(·; s2B) =
(1

2
× (s1A, s

2
B, s

1
C , s

1
D) ;

1

2
× (s2A, s

2
B, s

1
C , s

2
D)
)

p(·; s3B) =
(1

2
× (s1A, s

3
B, s

2
C , s

3
D) ;

1

2
× (s2A, s

3
B, s

2
C , s

4
D)
)

p(·; s4B) =
(1

2
× (s1A, s

4
B, s

2
C , s

3
D) ;

1

2
× (s2A, s

4
B, s

2
C , s

4
D)
)
,

the corresponding beliefs for each type of Claire are given by

p(·; s1C) =
(1

4
× (s1A, s

1
B, s

1
C , s

1
D) ;

1

4
× (s2A, s

1
B, s

1
C , s

2
D) ;

1

4
× (s1A, s

2
B, s

1
C , s

1
D) ;

1

4
× (s2A, s

2
B, s

1
C , s

2
D)
)

p(·; s2C) =
(

1× (s1A, s
4
B, s

2
C , s

3
D)
)
,

and the corresponding beliefs for each type of Donald are given by

p(·; s1D) =
(1

2
× (s1A, s

1
B, s

1
C , s

1
D) ;

1

2
× (s1A, s

2
B, s

1
C , s

1
D)
)

p(·; s2D) =
(1

2
× (s2A, s

1
B, s

1
C , s

2
D) ;

1

2
× (s2A, s

2
B, s

1
C , s

2
D)
)

p(·; s3D) =
(1

2
× (s1A, s

3
B, s

2
C , s

3
D) ;

1

2
× (s1A, s

4
B, s

2
C , s

3
D)
)

p(·; s4D) =
(1

2
× (s2A, s

3
B, s

2
C , s

4
D) ;

1

2
× (s2A, s

4
B, s

2
C , s

4
D)
)
.

Now, consider the Hamiltonian, and therefore biconnected graph G = (I, E), defined by

I = {Alice, Bob, Claire,Donald},

E = {(Alice, Bob), (Bob, Claire), (Claire,Donald), (Donald, Alice)}.

First, observe that the beliefs are G-pairwise action-consistent. Indeed, the probability distributions

µA,B =
(1

4
× (s1A, s

1
B, s

1
C , s

1
D) ;

1

4
× (s1A, s

2
B, s

1
C , s

1
D) ;

1

4
× (s1A, s

3
B, s

2
C , s

3
D) ;

1

4
× (s1A, s

4
B, s

2
C , s

3
D)
)

= µD,A
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and

µB,C =
(1

4
× (s1A, s

1
B, s

1
C , s

1
D) ;

1

4
× (s2A, s

1
B, s

1
C , s

2
D) ;

1

4
× (s1A, s

2
B, s

1
C , s

1
D) ;

1

4
× (s2A, s

2
B, s

1
C , s

2
D)
)

= µC,D

are pairwise action-consistent between Alice and Bob, between Bob and Claire, between Claire and

Donald, as well as between Donald and Alice, respectively. Moreover the intersection of their supports is

non-empty as (s1A, s
1
B, s

1
C , s

1
D) ∈ supp(µi,j) for all (i, j) ∈ E . However, by repeatedly applying Equation

(2) to every a ∈ A, it obtains that if a probability measure µ ∈ ∆(S) is action-consistent, then

1
2
µ
(
[s1A]
)

= µ
(
[s1B]

)
+ µ

(
[s3B]

)
= µ

(
[s2B]

)
+ µ

(
[s4B]

)
, which implies µ

(
[s1A]
)

= 1. Hence, it follows by

Equation (1) that
∑

s∈[s1A]

(
µ(s)− p(s; s1A)

)
b(s) = 0 for all b ∈ FA, thus inducing µ(s) = p(s; s1A) for all

s ∈ S. Similarly, it can be shown that µ(s) = p(s; s1C) for all s ∈ S. Therefore, we obtain

µ(s1A, s
3
B, s

2
C , s

3
D) = p

(
(s1A, s

3
B, s

2
C , s

3
D); s1C

)
6= p

(
(s1A, s

3
B, s

2
C , s

3
D); s1A

)
= µ(s1A, s

3
B, s

2
C , s

3
D),

which is a contradiction, thus implying that there exists no action-consistent probability distribution

µ ∈ ∆(S).

Moreover, for every (i, j) ∈ E , conjectures are pairwise constant in supp(µi,j). For instance, at all

states in supp(µA,B) = {(s1A, s1B, s1C , s1D), (s1A, s
2
B, s

1
C , s

1
D), (s1A, s

3
B, s

2
C , s

3
D), (s1A, s

4
B, s

2
C , s

3
D)}, Bob assigns

probability 1
2

to everybody else playing ` and probability 1
2

to Alice and Claire playing ` and Donald

playing h. However, note that conjectures are not commonly believed at (s1A, s
1
B, s

1
C , s

1
D). In fact, they

are not even G-pairwise commonly believed at (s1A, s
1
B, s

1
C , s

1
D), as at this state Bob attaches probability

1
2

to Alice being certain that Donald will play h and probability 1
2

to Alice being uncertain about

Donald’s action.

Furthermore, observe that rationality is G-pairwise common belief at (s1A, s
1
B, s

1
C , s

1
D), and therefore

it is also G-pairwise mutual belief. However, rationality is not mutually believed at (s1A, s
1
B, s

1
C , s

1
D).

Indeed, Alice does not believe that Claire is rational at (s1A, s
1
B, s

1
C , s

1
D), since ` is not a best response

for Claire at (s1A, s
4
B, s

2
C , s

3
D), because both Bob and Donald play h at this state.

Finally, note that for each i ∈ I, all players besides i share the same marginal conjecture about

i’s action at (s1A, s
1
B, s

1
C , s

1
D), i.e. margAi

φj(s
1
A, s

1
B, s

1
C , s

1
D) = σi for all j ∈ I \ {i}, where the mixed

strategy σi assigns probability 1 to ` if i ∈ {Alice, Claire} and is uniformly distributed over {h, `} if

i ∈ {Bob,Donald}. Also, (σA, σB, σC , σD) constitutes a Nash equilibrium. /

In the previous example, Barelli’s sufficient conditions for Nash equilibrium are violated. In fact,

neither action-consistency, nor mutual belief in rationality hold at (s1A, s
1
B, s

1
C , s

1
D). Instead, G-pairwise
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action-consistency, together withG-pairwise constant conjectures in the supports of the action-consistent

distributions, as well as G-pairwise mutual belief in rationality obtain at (s1A, s
1
B, s

1
C , s

1
D). Moreover, ob-

serve that the conclusions of Aumann and Brandenburger (1995) as well as of Barelli (2009) do hold,

i.e., all players entertain the same marginal conjectures about each of their opponents’ strategy, and

these marginal conjectures form a Nash equilibrium. The natural question then arises whether there

exists a general relation between our G-pairwise epistemic conditions and Nash equilibrium.

4. PAIRWISE EPISTEMIC FOUNDATIONS FOR NASH EQUILIBRIUM

We now weaken the sufficient conditions for Nash equilibrium by Barelli (2009), and also by Au-

mann and Brandenburger (1995) by means of pairwise epistemic conditions. Indeed, the following re-

sult shows that G-pairwise mutual belief rationality, G-pairwise mutual belief of payoffs, G-pairwise

action-consistency and G-pairwise constant conjectures in the support of the pairwise action-consistent

probability distributions suffice for Nash equilbrium, if G is biconnected.

Theorem 1 Let
(
I, (Ai)i∈I , (gi)i∈I

)
be a game, G = (I, E) be a biconnected graph and (φ1, . . . , φn) be a

tuple of conjectures. Suppose that for every (i, j) ∈ E there exists a pairwise action-consistent distribution

µi,j ∈ ∆(S) between i and j such that φk(s′) = φk for every k ∈ {i, j} and for every s′ ∈ supp(µi,j).

Moreover, assume that there is some state s ∈
⋂

(i,j)∈E supp(µi,j) such that s ∈ Bi,j

(
[gi]∩ [gj]

)
∩Bi,j(Ri∩

Rj) for all (i, j) ∈ E. Then, there exists a mixed strategy profile (σ1, . . . , σn) such that

(i) margAi
φj = σi for all j ∈ I \ {i},

(ii) (σ1, . . . , σn) is a Nash equilibrium of
(
I, (Ai)i∈I , (gi)i∈I

)
.

The contribution of the previous result to the epistemic foundation of Nash equilibrium is twofold.

Firstly, we relax the epistemic conditions of Barelli (2009), and a fortiori also the standard conditions

by Aumann and Brandenburger (1995), by no longer requiring neither mutual belief in rationality, nor

mutual belief in payoffs, nor action-consistency.

Secondly, Theorem 1 offers further insight on the relation between Nash equilibrium and common belief

in rationality. In fact, for many years the predominant view suggested that common belief in rationality

was an essential element of Nash equilibrium. This view was challenged by Aumann and Brandenburger

(1995) who required only mutual belief in rationality in their foundation for Nash equilibrium. Polak

(1999) later observed that Aumann and Brandenburger’s conditions actually do imply common belief

in rationality in complete information games. In a sense, his result thus restored some of the initial

confidence in the importance of common belief in rationality in the context of Nash equilibrium. More

recently, Barelli (2009) provided epistemic conditions for Nash equilibrium without common belief in
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rationality, even in complete information games, thus confirming Aumann and Brandenburger’s initial

intuition about the non-necessity of common belief in rationality for Nash equilibrium. Our Theorem 1

reinforces Aumann and Brandenburger’s intuition about common belief in rationality not being essential

for Nash equilibrium by providing sufficient conditions for Nash equilibrium that – surprisingly – neither

require nor imply mutual belief in rationality. To see this, consider Example 1, and observe that at

(s1A, s
1
B, s

1
C , s

1
D), which satisfies all the conditions of our theorem, Alice does not believe that Claire is

rational, as (s1A, s
1
B, s

1
C , s

1
D) 6∈ BA(RC).

Finally, note that Barelli’s extension of Aumann and Brandenburger (1995) is based on weakening

the common prior assumption. The following result, which is a direct consequence of our Theorem

1, also generalizes Aumann and Brandenburger (1995), in an orthogonal way to Barelli (2009). More

specifically, it is shown that if there exists a common prior and G is a biconnected graph, then G-

pairwise mutual belief in rationality, G-pairwise mutual belief in payoffs and G-pairwise common belief

in conjectures suffice for Nash equilibrium.

Corollary 1 Let
(
I, (Ai)i∈I , (gi)i∈I

)
be a game, G = (I, E) be a biconnected graph and (φ1, . . . , φn)

be a tuple of conjectures. Suppose that there is a common prior attaching positive probability to some

state s ∈ S such that s ∈ Bi,j

(
[gi]∩ [gj]

)
∩Bi,j(Ri∩Rj)∩CBi,j

(
[φi]∩ [φj]

)
for all (i, j) ∈ E. Then, there

exists a mixed strategy profile (σ1, . . . , σn) such that

(i) margAi
φj = σi for all j ∈ I \ {i},

(ii) (σ1, . . . , σn) is a Nash equilibrium of
(
I, (Ai)i∈I , (gi)i∈I

)
.

The preceding result indicates that common – or even mutual – belief in rationality may be absent

from the epistemic conditions for Nash equilibrium, even if a common prior does exist.

5. DISCUSSION

5.1. Tightness

The assumption of the graph being biconnected is crucial for Theorem 1. Indeed, it is now shown

by means of an example that the graph simply being connected does not suffice for the conclusions of

Theorem 1 to obtain, even if payoffs and rationality are commonly believed, and a common prior exists.

In that sense our epistemic foundations are tight.

Example 2 Consider the anti-coordination game
(
I, (Ai)i∈I , (gi)i∈I

)
, where I = {Alice, Bob, Claire},
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Ai = {h, `} for all i ∈ I, the players are abbreviated by A,B, C and D respectively, and

gi(aA, aB, aC) =

 0 if aA = aB = aC ,

1 otherwise.

Now, assume the type spaces

SA = {s1A(h), s2A(h)},

SB = {s1B(h), s2B(`)},

SC = {s1C(`)},
where the respective action in parenthesis denotes the corresponding player’s action at every state given

by the function ai. Moreover, assume that the players entertain a common prior

P uniformly distributed over
{

(s1A, s
1
B, s

1
C), (s2A, s

2
B, s

1
C)
}
.

Let G = (I, E) be a connected graph such that

I = {Alice, Bob, Claire},

E = {(Alice, Bob), (Bob, Claire)}.
Note that at every s ∈ S, rationality is commonly believed, and conjectures are G-pairwise commonly

believed. Moreover, at (s1A, s
1
B, s

1
C), Alice is certain that Bob chooses h and Claire chooses `, whereas

Claire’s conjecture attaches probability 1
2

to both of her opponents playing h, and 1
2

to Alice playing

h and Bob playing `. Therefore, Alice and Claire disagree on their marginal conjectures about Bob’s

action, implying that the conclusion of Theorem 1 does not hold. In fact, all conditions of Theorem 1

are satisfied apart from G being biconnected. Hence, G simply being connected instead of biconnected

does not suffice for Nash equilibrium. /

In general, the conclusions of Theorem 1 fail for a merely connected – but not biconnected – graph,

because in order for players i and j to agree on their marginal conjectures about a third player k, there

must exist a path connecting i and j which does not pass through k. Otherwise, it cannot be inductively

established that i and j have the same marginal conjecture about k’s strategies.

5.2. Social network interpretation

As already mentioned, in principle the graph G does not add any additional structure to the game

and is only used to describe pairwise epistemic conditions. Yet, G can be interpreted as a social network.

In such a case, our conditions can be perceived as the steady state of a sequence of private communi-

cation correspondences between connected agents, e.g. similarly to Parikh and Krasucki (1990). This
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is particularly interesting for games with many players, e.g. large economies where agents may learn

relevant personal characteristics – such as rationality, conjectures or preferences – of their neighbors

only. However, note that our aim is not to explicitly model how pairwise interactive belief emerges in a

dynamic setting, but rather to study the players’ beliefs and actions, once convergence to such a state

has already occurred. In any case, our graph theoretic assumption of biconnectedness appears natural

in a social network context, as it admits all networks the connectivity of which does not rely on a single

agent.

5.3. Knowledge and belief

Our sufficient conditions for Nash equilibrium are formulated in terms of probability-1 belief, instead

of knowledge, similarly to most existing epistemic foundations for Nash equilibrium in the literature

(Aumann and Brandenburger, 1995; Perea, 2007; Barelli, 2009). Hence, players are not required to satisfy

the truth axiom, implying that players may hold false beliefs. In particular, player i may wrongly attach

probability 1 to the event that j’s conjecture is φj. In an earlier version of this paper, we prove Corollary

1 in a partitional model using knowledge instead of probability-1 belief (Bach and Tsakas, 2012). Note

that such an approach does not restrict the state space to have a product structure as opposed to the

type-based one employed here.

5.4. Belief in an opponent’s conjecture

Already Aumann and Brandenburger (1995) recognize the conceptual difficulty in assuming belief

in an opponent’s conjecture. We do not intend to provide any remedy to this problematic assumption

whatsoever, as we also assume that players believe in the conjectures of some of their opponents. Thus,

the conceptual issue imposed by assuming belief in opponents’ conjectures persists. However, we show

that less belief about the opponents’ conjectures is actually needed for Nash equilibrium to obtain.
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APPENDIX A: PROOFS

Proof of Theorem 1: (i). Let (i, j) ∈ E and observe that φi(s
′) = φi for all s′ ∈ supp(µi,j) by hypothesis. Then, for

each a−i ∈ A−i, it follows that

p
(
[a−i]; s

′
i

)
= φi(s

′)(a−i)(5)

= φi(a−i)

for every s′ ∈ supp(µi,j), and therefore

p
(
[a−i]; s

′
i

)
µi,j

(
[s′i]
)

= φi(a−i)µi,j

(
[s′i]
)

for all s′i ∈ Si. Then, sum over Si, and it follows from Equation (4) that

µi,j

(
[a−i]

)
=

∑
s′i∈Si

p
(
[a−i]; s

′
i

)
µi,j

(
[s′i]
)

=
∑
s′i∈Si

φi(a−i)µi,j

(
[s′i]
)

= φi(a−i)
∑
s′i∈Si

µi,j

(
[s′i]
)

= φi(a−i).(6)

Then, for each k ∈ I \ {i} and every ak ∈ Ak it holds that

(7) µi,j

(
[ak]
)

= φi(ak).

Repeating the same steps for player j, we obtain µi,j

(
[ak]
)

= φj(ak), which implies margAk
φi = margAk

φj whenever

k ∈ I \ {i, j}. Finally, recall that G is a biconnected graph, implying that there is a path going through every player in

I \ {k}. Hence, it follows from repeatedly applying the previous step that

margAk
φ1 = margAk

φ2 = · · · = margAk
φk−1

= margAk
φk+1 = · · · = margAk

φn

=: σk.

Proof of (ii). Firstly, observe that for every event E ⊆ S,

(8) p([ai] ∩ E; si) = p([ai]; si) · p(E; si).

Next, we show that for all i ∈ I,

(9) φi = σ1 × · · ·σi−1 × σi+1 × · · · × σn.

First, let us introduce some additional notation: For a non-empty strict subset J ⊂ I, let AJ := ×k∈JAk with typical
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element (ak)k∈J . Then, for an arbitrary (i, j) ∈ E with i ∈ I \ J and j ∈ J the following equations hold:

φi
(
(aj)j∈J

)
= µi,j

(⋂
k∈J

[ak]
) (

by Eq.(6)
)

=
∑

s′j∈Sj

p
(⋂
k∈J

[ak]; s′j

)
µi,j

(
[s′j ]
) (

by Eq.(4)
)

=
∑

s′j∈Sj

p
(
[aj ]; s

′
j

)
p
( ⋂
k∈J\{j}

[ak]; s′j

)
µi,j

(
[s′j ]
) (

by Eq.(8)
)

= φj
(
(ak)k∈J\{j}

) ∑
s′j∈Sj

p
(
[aj ]; s

′
j

)
µi,j

(
[s′j ]
) (

by Eq.(5)
)

= φj
(
(ak)k∈J\{j}

)
µi,j

(
[aj ]
) (

by Eq.(4)
)

= φj
(
(ak)k∈J\{j}

)
φi(aj)

(
by Eq.(7)

)
= φ`

(
(ak)k∈J\{j}

)
φi(aj), for all ` ∈ (I \ J) ∪ {j}

(
by part (i)

)
(10)

Now, consider an arbitrary a−i ∈ A−i. Let J1 = I \ {i}, and observe that since the graph is connected there exists some

j1 ∈ J1 such that (i, j1) ∈ E . Then, it follows from Eq. (10) that

φi(a−i) = φ`
(
(ak)k∈J1\{j1}

)
φi(aj1)

for all ` ∈ {i, j1}. Now, define J2 := J1 \ {j1}, and observe that since the graph is connected there exist some j2 ∈ J2 and

i2 ∈ I \ J2 such that (i2, j2) ∈ E . Then, the previous step together with part (i) imply

φi
(
(ak)k∈J1\{j1}

)
= φ`

(
(ak)k∈J2\{j2}

)
φi(aj2).

for all ` ∈ {i, j1, j2}. Continue inductively to obtain

φi(a−i) = φi(a1) · · ·φi(ai−1) · φi(ai+1) · · ·φi(an),

and hence (9) obtains. Finally, ai ∈ BRi(φi) for all ai ∈ supp(φi) follows directly from applying Aumann and Branden-

burger (1995, Lem. 4.2) to all pairs of connected players. Q.E.D.

Proof of Corollary 1: For an arbitrary edge (i, j) ∈ E , let Fi,j := CBi,j

(
[φi] ∩ [φj ]

)
. Firstly, observe that

Fi,j ⊆ Bi

(
[φi]
) (

by Aumann and Brandenburger (1995, Lem. 4.3)
)

= [φi]
(
by Aumann and Brandenburger (1995, Lem. 2.6)

)
.(11)

Secondly, let µi,j := P (·|Fi,j), and note that it is a well-defined probability measure as P (Fi,j) > 0 holds by hypothesis.

For each k ∈ {i, j}, it is the case that∑
s∈S

µi,j(s)b(s) =
∑
s′∈S

P (s′|Fi,j)b(s
′)

=
∑
s′∈S

( ∑
[sk]⊆Fi,j

P
(
s′
∣∣ [sk]

)
P
(
[sk]

∣∣ Fi,j

))
b(s′)

(
since Fi,j is Sk-measurable

)
=
∑
s′∈S

( ∑
[sk]⊆Fi,j

p(s′; sk)µi,j

(
[sk]
))
b(s′)

=
∑

sk∈Sk

µi,j

(
[sk]
)( ∑

s′∈[sk]

p(s′; sk)b(s′)
)
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for every b ∈ FA. Hence, µi,j is pairwise action-consistent between i and j. Moreover, it follows from (11) that k’s

conjecture is constant in supp(µi,j) for each k ∈ {i, j}. Then, the result follows directly from Theorem 1. Q.E.D.
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