Pairwise epistemic conditions for Nash equilibrium

Christian W. Bach & Elias Tsakas

Maastricht University

LSE Choice Group Seminar May 1, 2013

A B K A B K

- R

Roadmap

- 2 Our contribution
- 3 Our model

æ

Conventional wisdom for several years

- Nash equilibrium (NE) is based on
 - common knowledge of structure of the game,
 - 2 common knowledge of rationality,
 - 3 common knowledge of strategies being played.
- What we mean by "based on" did not become formal till Aumann & Brandenburger (1995).

伺 ト イミト イミト

Aumann & Brandenburger (1995)

- Aumann & Brandenburger (1995, ECTA; henceforth AB) were the first ones to interpret mixed strategies as conjectures and consequently a NE as a set of conjectures, rather than randomizations over actions.
- AB provided a formal set of epistemic conditions for NE:
 - common prior,
 - mutual belief in structure of the game,
 - In mutual belief in rationality,
 - common belief in conjectures.
- They stressed that *common belief enters the picture in an unexpected way... what is needed is common belief of the players' conjectures, not of the players' rationality*
- They challenged the widespread view that common belief in rationality is essential for NE.

Aumann & Brandenburger (1995)

- Aumann & Brandenburger (1995, ECTA; henceforth AB) were the first ones to interpret mixed strategies as conjectures and consequently a NE as a set of conjectures, rather than randomizations over actions.
- AB provided a formal set of epistemic conditions for NE:
 - common prior,
 - 2 mutual belief in structure of the game,
 - In mutual belief in rationality,
 - ommon belief in conjectures.
- They stressed that *common belief enters the picture in an unexpected way... what is needed is common belief of the players' conjectures, not of the players' rationality*
- They challenged the widespread view that common belief in rationality is essential for NE.

Aumann & Brandenburger (1995)

- Aumann & Brandenburger (1995, ECTA; henceforth AB) were the first ones to interpret mixed strategies as conjectures and consequently a NE as a set of conjectures, rather than randomizations over actions.
- AB provided a formal set of epistemic conditions for NE:
 - common prior,
 - 2 mutual belief in structure of the game,
 - In mutual belief in rationality,
 - Ommon belief in conjectures.
- They stressed that common belief enters the picture in an unexpected way... what is needed is common belief of the players' conjectures, not of the players' rationality
- They challenged the widespread view that common belief in rationality is essential for NE.

- 4 同 6 4 日 6 4 日 6

Subsequent contributions

- Polak (1999, ECTA) noticed that AB's conditions imply common belief in rationality in complete information games.
- Polak's result restored some of the initial confidence in the importance of common belief in rationality for NE.
- Barelli (2009, GEB) generalized AB by substituting
 - common prior with action consistency,
 - 2 common belief in conjectures with constant conjectures in the support of the action-consistent distribution.
- Barelli's conditions do not imply common belief in rationality, even in complete information games, thus confirming AB's initial intuition.
- His result hinges that absence of common belief in rationality from the set of epistemic conditions for NE may be attributed to the lack of a common prior.

Subsequent contributions

- Polak (1999, ECTA) noticed that AB's conditions imply common belief in rationality in complete information games.
- Polak's result restored some of the initial confidence in the importance of common belief in rationality for NE.
- Barelli (2009, GEB) generalized AB by substituting
 - common prior with action consistency,
 - 2 common belief in conjectures with constant conjectures in the support of the action-consistent distribution.
- Barelli's conditions do not imply common belief in rationality, even in complete information games, thus confirming AB's initial intuition.
- His result hinges that absence of common belief in rationality from the set of epistemic conditions for NE may be attributed to the lack of a common prior.

Subsequent contributions

- Polak (1999, ECTA) noticed that AB's conditions imply common belief in rationality in complete information games.
- Polak's result restored some of the initial confidence in the importance of common belief in rationality for NE.
- Barelli (2009, GEB) generalized AB by substituting
 - common prior with action consistency,
 - 2 common belief in conjectures with constant conjectures in the support of the action-consistent distribution.
- Barelli's conditions do not imply common belief in rationality, even in complete information games, thus confirming AB's initial intuition.
- His result hinges that absence of common belief in rationality from the set of epistemic conditions for NE may be attributed to the lack of a common prior.

- 4 同 6 4 日 6 4 日 6

Roadmap

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Global epistemic conditions

- All existing papers impose global epistemic conditions, e.g.,
 - mutual belief in rationality:
 - everybody believes that everybody is rational.
 - 2 common belief in conjectures:
 - ullet everybody believes that their conjectures are $\phi,$ and
 - everybody believes that everybody believes that their conjectures are $\phi,$ and

• • • •

- Such conditions imply pairwise epistemic conditions for every pair (*i*, *j*) of players:
 - pairwise mutual belief in rationality for every pair (i, j):
 - both believe that both are rational.
 - 2 pairwise common belief in conjectures for every pair (i, j):
 - both believe that their conjectures are (ϕ_i, ϕ_j) , and
 - both believe that both believe that their conjectures are (ϕ_i, ϕ_j) , and

イロン イヨン イヨン イヨン

• • •

Global epistemic conditions

- All existing papers impose global epistemic conditions, e.g.,
 - mutual belief in rationality:
 - everybody believes that everybody is rational.
 - 2 common belief in conjectures:
 - ullet everybody believes that their conjectures are $\phi,$ and
 - everybody believes that everybody believes that their conjectures are $\phi,$ and
 - • •
- Such conditions imply pairwise epistemic conditions for every pair (i, j) of players:
 - **1** pairwise mutual belief in rationality for every pair (i, j):
 - both believe that both are rational.
 - 2 pairwise common belief in conjectures for every pair (i, j):
 - both believe that their conjectures are (ϕ_i,ϕ_j) , and
 - both believe that both believe that their conjectures are (ϕ_i, ϕ_j) , and

イロト イポト イヨト イヨト

o . . .

Pairwise epistemic conditions

- We impose pairwise epistemic conditions *only for some pairs of players*.
- In our main result, we substitute
 - action-consistency with pairwise action consistency,
 - Inutual belief in the structure of the game with pairwise mutual belief in the structure of the game,
 - 3 mutual belief in rationality with pairwise mutual belief in rationality,
 - constant conjectures in the support of the action-consistent distribution with pairwise constant conjectures in the pairwise action-consistent distribution.
- In our corollary, we retain the CP and we substitute
 - mutual belief in the structure of the game with pairwise mutual belief in the structure of the game,
 - mutual belief in rationality with pairwise mutual belief in rationality,

Ocommon belief in conjectures with pairwise common belief in conjectures.

Pairwise epistemic conditions

- We impose pairwise epistemic conditions *only for some pairs of players*.
- In our main result, we substitute
 - action-consistency with pairwise action consistency,
 - In mutual belief in the structure of the game with pairwise mutual belief in the structure of the game,
 - mutual belief in rationality with pairwise mutual belief in rationality,
 - Constant conjectures in the support of the action-consistent distribution with pairwise constant conjectures in the pairwise action-consistent distribution.
- In our corollary, we retain the CP and we substitute
 - mutual belief in the structure of the game with pairwise mutual belief in the structure of the game,
 - mutual belief in rationality with pairwise mutual belief in rationality,

Ocommon belief in conjectures with pairwise common belief in conjectures.

() < </p>

Pairwise epistemic conditions

- We impose pairwise epistemic conditions *only for some pairs of players*.
- In our main result, we substitute
 - action-consistency with pairwise action consistency,
 - In the structure of the game with pairwise mutual belief in the structure of the game,
 - Imutual belief in rationality with pairwise mutual belief in rationality,
 - constant conjectures in the support of the action-consistent distribution with pairwise constant conjectures in the pairwise action-consistent distribution.
- In our corollary, we retain the CP and we substitute
 - mutual belief in the structure of the game with pairwise mutual belief in the structure of the game,
 - mutual belief in rationality with pairwise mutual belief in rationality,
 - Ocommon belief in conjectures with pairwise common belief in conjectures.

(4月) (4日) (4日)

• We weaken not only AB's but also Barelli's conditions.

- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

- We weaken not only AB's but also Barelli's conditions.
- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

- We weaken not only AB's but also Barelli's conditions.
- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

- We weaken not only AB's but also Barelli's conditions.
- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

向下 イヨト イヨト

Roadmap

Our contribution

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Normal form games

- Set of players $I = \{1, \ldots, n\}$
- Player *i*'s strategy $a_i \in A_i$
- Player *i*'s payoff function $g_i : A_i \times A_{-i} \to \mathbb{R}$
- Player *i*'s conjecture $\phi_i \in \Delta(A_{-i})$
- Strategy a_i is rational given ϕ_i if $a_i \in BR_i(\phi_i)$
- Player *i*'s mixed strategy $\sigma_i \in \Delta(A_i)$
- Nash equilibrium $(\sigma_1, \ldots, \sigma_n)$ if for all $i \in I$

$$a_i \in BR_i(\sigma_1 \times \cdots \times \sigma_{i-1} \times \sigma_{i+1} \times \cdots \times \sigma_n)$$

for all $a_i \in \text{supp}(\sigma_i)$

Belief

- State space Ω
- Player *i*'s information partition \mathcal{P}_i
- Player i's beliefs $p_i(\cdot;\omega)\in\Delta(\Omega)$ at $\omega\in\Omega$
 - Beliefs are \mathcal{P}_i -measurable
 - Players know their type (information set): $p_i(P_i(\omega);\omega) = 1$

A B K A B K

• \mathcal{P}_i -measurable strategy function $\mathbf{a}_i : \Omega \to A_i$

•
$$[a_i] := \{ \omega \in \Omega : \mathbf{a}_i(\omega) = a_i \}$$

•
$$[a_{-i}] := \bigcap_{j \neq i} [a_j]$$

• \mathcal{P}_i -measurable conjecture function $\phi_i : \Omega \to \Delta(A_{-i})$

•
$$\phi_i(\omega)(a_{-i}) := p_i([a_{-i}];\omega)$$

•
$$[\phi_i] := \{\omega \in \Omega : \phi_i(\omega) = \phi_i\}$$

•
$$[\phi_1,\ldots,\phi_n] := [\phi_1] \cap \cdots \cap [\phi_n]$$

• \mathcal{P}_i -measurable payoff function $\mathbf{g}_i : \Omega \times A \to \mathbb{R}$

•
$$[g_i] := \{ \omega \in \Omega : \mathbf{g}_i(\omega, \cdot) = g_i(\cdot) \}$$

•
$$[g_1,\ldots,g_n] := [g_1] \cap \cdots \cap [g_n]$$

• Player *i* is rational at ω if $\mathbf{a}_i(\omega)$ is a best response to $\phi_i(\omega)$

• $R_i := \{ \omega \in \Omega : \mathbf{a}_i(\omega) \in BR_i(\phi_i(\omega)) \}$

• \mathcal{P}_i -measurable strategy function $\mathbf{a}_i : \Omega \to A_i$

•
$$[a_i] := \{ \omega \in \Omega : \mathbf{a}_i(\omega) = a_i \}$$

•
$$[a_{-i}] := \bigcap_{j \neq i} [a_j]$$

• \mathcal{P}_i -measurable conjecture function $\phi_i: \Omega \to \Delta(A_{-i})$

•
$$\phi_i(\omega)(a_{-i}) := p_i([a_{-i}];\omega)$$

•
$$[\phi_i] := \{\omega \in \Omega : \phi_i(\omega) = \phi_i\}$$

•
$$[\phi_1,\ldots,\phi_n] := [\phi_1] \cap \cdots \cap [\phi_n]$$

• \mathcal{P}_i -measurable payoff function $\mathbf{g}_i : \Omega \times A \to \mathbb{R}$

•
$$[g_i] := \{\omega \in \Omega : \mathbf{g}_i(\omega, \cdot) = g_i(\cdot)\}$$

•
$$[g_1,\ldots,g_n] := [g_1] \cap \cdots \cap [g_n]$$

• Player *i* is rational at ω if $\mathbf{a}_i(\omega)$ is a best response to $\phi_i(\omega)$

• $R_i := \{ \omega \in \Omega : \mathbf{a}_i(\omega) \in BR_i(\phi_i(\omega)) \}$

• \mathcal{P}_i -measurable strategy function $\mathbf{a}_i : \Omega \to A_i$

•
$$[a_i] := \{\omega \in \Omega : \mathbf{a}_i(\omega) = a_i\}$$

•
$$[a_{-i}] := \bigcap_{j \neq i} [a_j]$$

• \mathcal{P}_i -measurable conjecture function $\phi_i:\Omega o \Delta(A_{-i})$

•
$$\phi_i(\omega)(a_{-i}) := p_i([a_{-i}];\omega)$$

•
$$[\phi_i] := \{\omega \in \Omega : \phi_i(\omega) = \phi_i\}$$

•
$$[\phi_1,\ldots,\phi_n] := [\phi_1] \cap \cdots \cap [\phi_n]$$

• \mathcal{P}_i -measurable payoff function $\mathbf{g}_i : \Omega \times A \to \mathbb{R}$

•
$$[g_i] := \{ \omega \in \Omega : \mathbf{g}_i(\omega, \cdot) = g_i(\cdot) \}$$

•
$$[g_1,\ldots,g_n] := [g_1] \cap \cdots \cap [g_n]$$

Player *i* is rational at ω if a_i(ω) is a best response to φ_i(ω)
R_i := {ω ∈ Ω : a_i(ω) ∈ BR_i(φ_i(ω))}

• \mathcal{P}_i -measurable strategy function $\mathbf{a}_i : \Omega \to A_i$

•
$$[a_i] := \{\omega \in \Omega : \mathbf{a}_i(\omega) = a_i\}$$

•
$$[a_{-i}] := \bigcap_{j \neq i} [a_j]$$

• \mathcal{P}_i -measurable conjecture function $\phi_i:\Omega o \Delta(A_{-i})$

•
$$\phi_i(\omega)(a_{-i}) := p_i([a_{-i}];\omega)$$

•
$$[\phi_i] := \{\omega \in \Omega : \phi_i(\omega) = \phi_i\}$$

•
$$[\phi_1,\ldots,\phi_n] := [\phi_1] \cap \cdots \cap [\phi_n]$$

• \mathcal{P}_i -measurable payoff function $\mathbf{g}_i : \Omega \times A \to \mathbb{R}$

•
$$[g_i] := \{ \omega \in \Omega : \mathbf{g}_i(\omega, \cdot) = g_i(\cdot) \}$$

• $[g_1, \dots, g_n] := [g_1] \cap \dots \cap [g_n]$

• Player *i* is rational at ω if $\mathbf{a}_i(\omega)$ is a best response to $\phi_i(\omega)$

•
$$R_i := \{\omega \in \Omega : \mathbf{a}_i(\omega) \in BR_i(\phi_i(\omega))\}$$

向下 イヨト イヨト

- A probability measure π ∈ Δ(Ω) is a common prior (CP), if for every i ∈ I and every ω ∈ Ω with π(P_i(ω)) > 0 it is the case that p_i(·; ω) = π(·|P_i(ω)).
- A probability measure μ ∈ Δ(Ω) is action-consistent if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu(\omega) \Big(\sum_{\omega' \in P_i(\omega)} p_i(\{\omega'\}; \omega) b(\omega') \Big)$$

for all $i \in I$.

- An action-consistent μ ∈ Δ(Ω) exists if and only if there is no mutually beneficial action-verifiable bet (Barelli, 2009).
- A common prior is always action-consistent.

- A probability measure π ∈ Δ(Ω) is a common prior (CP), if for every i ∈ I and every ω ∈ Ω with π(P_i(ω)) > 0 it is the case that p_i(·; ω) = π(·|P_i(ω)).
- A probability measure μ ∈ Δ(Ω) is action-consistent if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu(\omega) \Big(\sum_{\omega' \in P_i(\omega)} p_i(\{\omega'\}; \omega) b(\omega') \Big)$$

for all $i \in I$.

- An action-consistent μ ∈ Δ(Ω) exists if and only if there is no mutually beneficial action-verifiable bet (Barelli, 2009).
- A common prior is always action-consistent.

(1日) (1日) (日)

- A probability measure π ∈ Δ(Ω) is a common prior (CP), if for every i ∈ I and every ω ∈ Ω with π(P_i(ω)) > 0 it is the case that p_i(·; ω) = π(·|P_i(ω)).
- A probability measure μ ∈ Δ(Ω) is action-consistent if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu(\omega) \Big(\sum_{\omega' \in P_i(\omega)} p_i(\{\omega'\}; \omega) b(\omega') \Big)$$

for all $i \in I$.

- An action-consistent μ ∈ Δ(Ω) exists if and only if there is no mutually beneficial action-verifiable bet (Barelli, 2009).
- A common prior is always action-consistent.

(1) マン・ション・

- A probability measure π ∈ Δ(Ω) is a common prior (CP), if for every i ∈ I and every ω ∈ Ω with π(P_i(ω)) > 0 it is the case that p_i(·; ω) = π(·|P_i(ω)).
- A probability measure μ ∈ Δ(Ω) is action-consistent if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu(\omega) \Big(\sum_{\omega' \in P_i(\omega)} p_i(\{\omega'\}; \omega) b(\omega') \Big)$$

for all $i \in I$.

- An action-consistent μ ∈ Δ(Ω) exists if and only if there is no mutually beneficial action-verifiable bet (Barelli, 2009).
- A common prior is always action-consistent.

Interactive belief

• Player *i* believes *E*:

$$B_i(E) := \{ \omega \in \Omega : p_i(E; \omega) = 1 \}$$

• Mutual belief in *E*:

$$B(E):=B_1(E)\cap\cdots\cap B_n(E)$$

• Common belief in *E*:

$$CB(E) := B(E) \cap B(B(E)) \cap \cdots$$

イロト イヨト イヨト イヨト

æ

Interactive belief

• Player *i* believes *E*:

$$B_i(E) := \{ \omega \in \Omega : p_i(E; \omega) = 1 \}$$

• Mutual belief in *E*:

$$B(E) := B_1(E) \cap \cdots \cap B_n(E)$$

• Common belief in *E*:

$$CB(E) := B(E) \cap B(B(E)) \cap \cdots$$

イロト イヨト イヨト イヨト

æ

Interactive belief

• Player *i* believes *E*:

$$B_i(E) := \{ \omega \in \Omega : p_i(E; \omega) = 1 \}$$

• Mutual belief in *E*:

$$B(E) := B_1(E) \cap \cdots \cap B_n(E)$$

• Common belief in *E*:

$$CB(E) := B(E) \cap B(B(E)) \cap \cdots$$

Epistemic conditions for NE

Theorem (Aumann & Brandenburger, 1995)

Let $\pi \in \Delta(\Omega)$ be a common prior, and suppose that there is some $\omega \in \operatorname{supp}(\pi)$ such that $\omega \in B(R_1 \cap \cdots \cap R_n) \cap B([g_1, \dots, g_n]) \cap CB([\phi_1, \dots, \phi_n])$. Then, there exists a mixed strategy profile $(\sigma_1, \dots, \sigma_n)$ such that: (i) $\operatorname{marg}_{A_i}\phi_j = \sigma_i$ for all $j \in I \setminus \{i\}$, (ii) $(\sigma_1, \dots, \sigma_n)$ is a Nash equilibrium.

Theorem (Barelli, 2009)

Let $\mu \in \Delta(\Omega)$ be an action-consistent probability measure such that $(\phi_1(\omega'), \ldots, \phi_n(\omega')) = (\phi_1, \ldots, \phi_n)$ for all $\omega' \in supp(\mu)$. Moreover, assume that there is some $\omega \in supp(\mu)$ such that $\omega \in B(R_1 \cap \cdots \cap R_n) \cap B([g_1, \ldots, g_n])$. Then, there exists a mixed strategy profile $(\sigma_1, \ldots, \sigma_n)$ such that:

(i) marg_{A_i}
$$\phi_j = \sigma_i$$
 for all $j \in I \setminus \{i\}$,
(ii) $(\sigma_1, \dots, \sigma_n)$ is a Nash equilibrium

Epistemic conditions for NE

Theorem (Aumann & Brandenburger, 1995)

Let $\pi \in \Delta(\Omega)$ be a common prior, and suppose that there is some $\omega \in \operatorname{supp}(\pi)$ such that $\omega \in B(R_1 \cap \cdots \cap R_n) \cap B([g_1, \dots, g_n]) \cap CB([\phi_1, \dots, \phi_n])$. Then, there exists a mixed strategy profile $(\sigma_1, \dots, \sigma_n)$ such that: (i) $\operatorname{marg}_{A_i}\phi_j = \sigma_i$ for all $j \in I \setminus \{i\}$, (ii) $(\sigma_1, \dots, \sigma_n)$ is a Nash equilibrium.

Theorem (Barelli, 2009)

Let $\mu \in \Delta(\Omega)$ be an action-consistent probability measure such that $(\phi_1(\omega'), \ldots, \phi_n(\omega')) = (\phi_1, \ldots, \phi_n)$ for all $\omega' \in supp(\mu)$. Moreover, assume that there is some $\omega \in supp(\mu)$ such that $\omega \in B(R_1 \cap \cdots \cap R_n) \cap B([g_1, \ldots, g_n])$. Then, there exists a mixed strategy profile $(\sigma_1, \ldots, \sigma_n)$ such that:

(i)
$$marg_{A_i}\phi_j = \sigma_i \text{ for all } j \in I \setminus \{i\},$$

(ii) $(\sigma_1, \ldots, \sigma_n)$ is a Nash equilibrium.

Pairwise relationships

- Undirected graph $G = (I, \mathcal{E})$
 - set of players I
 - $\bullet\,$ set of symmetric binary relations between players ${\cal E}\,$
- Interpretations of G
 - pairwise relationships of purely epistemic nature
 - 2 physical network
- G-pairwise epistemic conditions are imposed for each $(i,j) \in \mathcal{E}$
- Global epistemic conditions are *G*-pairwise epistemic conditions for a complete *G*
- A biconnected graph remains connected after having removed an arbitrary player
Pairwise relationships

- Undirected graph $G = (I, \mathcal{E})$
 - set of players I
 - $\bullet\,$ set of symmetric binary relations between players ${\cal E}\,$
- Interpretations of G
 - pairwise relationships of purely epistemic nature
 - 2 physical network
- G-pairwise epistemic conditions are imposed for each $(i,j) \in \mathcal{E}$
- Global epistemic conditions are *G*-pairwise epistemic conditions for a complete *G*
- A biconnected graph remains connected after having removed an arbitrary player

- 4 同 6 4 日 6 4 日 6

Pairwise relationships

- Undirected graph $G = (I, \mathcal{E})$
 - set of players I
 - $\bullet\,$ set of symmetric binary relations between players ${\cal E}\,$
- Interpretations of G
 - pairwise relationships of purely epistemic nature
 - 2 physical network
- *G*-pairwise epistemic conditions are imposed for each $(i, j) \in \mathcal{E}$
- Global epistemic conditions are *G*-pairwise epistemic conditions for a complete *G*
- A biconnected graph remains connected after having removed an arbitrary player

Pairwise relationships

- Undirected graph $G = (I, \mathcal{E})$
 - set of players I
 - $\bullet\,$ set of symmetric binary relations between players ${\cal E}\,$
- Interpretations of G
 - pairwise relationships of purely epistemic nature
 - 2 physical network
- *G*-pairwise epistemic conditions are imposed for each $(i, j) \in \mathcal{E}$
- Global epistemic conditions are *G*-pairwise epistemic conditions for a complete *G*
- A biconnected graph remains connected after having removed an arbitrary player

(1) マン・ション・

 A probability measure µ_{i,j} ∈ Δ(Ω) is pairwise action-consistent between i and j if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu_{i,j}(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu_{i,j}(\omega) \Big(\sum_{\omega' \in P_k(\omega)} p_k(\{\omega'\}; \omega) b(\omega') \Big)$$

- A pairwise action-consistent µ_{i,j} ∈ Δ(Ω) between i and j exists if and only if there is no mutually beneficial action-verifiable bet for i and j.
- Action consistency implies pairwise action-consistency for every pair.
- Beliefs are G-pairwise action consistent if there exists a collection (μ_{i,j})_{(i,j)∈ε} of probability measures with ∩_{(i,j)∈ε} supp(μ_{i,j}) ≠ Ø such that μ_{i,j} is pairwise action-consistent between i and j, for each (i,j) ∈ ε.

 A probability measure µ_{i,j} ∈ Δ(Ω) is pairwise action-consistent between i and j if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu_{i,j}(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu_{i,j}(\omega) \Big(\sum_{\omega' \in P_k(\omega)} p_k(\{\omega'\}; \omega) b(\omega') \Big)$$

- A pairwise action-consistent µ_{i,j} ∈ Δ(Ω) between i and j exists if and only if there is no mutually beneficial action-verifiable bet for i and j.
- Action consistency implies pairwise action-consistency for every pair.
- Beliefs are G-pairwise action consistent if there exists a collection (μ_{i,j})_{(i,j)∈ε} of probability measures with ∩_{(i,j)∈ε} supp(μ_{i,j}) ≠ Ø such that μ_{i,j} is pairwise action-consistent between i and j, for each (i, j) ∈ ε.

 A probability measure µ_{i,j} ∈ Δ(Ω) is pairwise action-consistent between i and j if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu_{i,j}(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu_{i,j}(\omega) \Big(\sum_{\omega' \in P_k(\omega)} p_k(\{\omega'\}; \omega) b(\omega') \Big)$$

- A pairwise action-consistent µ_{i,j} ∈ Δ(Ω) between i and j exists if and only if there is no mutually beneficial action-verifiable bet for i and j.
- Action consistency implies pairwise action-consistency for every pair.
- Beliefs are *G*-pairwise action consistent if there exists a collection (μ_{i,j})_{(i,j)∈ε} of probability measures with ∩_{(i,j)∈ε} supp(μ_{i,j}) ≠ Ø such that μ_{i,j} is pairwise action-consistent between *i* and *j*, for each (*i*, *j*) ∈ ε.

 A probability measure µ_{i,j} ∈ Δ(Ω) is pairwise action-consistent between i and j if for every A-measurable random variable b : Ω → ℝ

$$\sum_{\omega \in \Omega} \mu_{i,j}(\omega) b(\omega) = \sum_{\omega \in \Omega} \mu_{i,j}(\omega) \Big(\sum_{\omega' \in P_k(\omega)} p_k(\{\omega'\}; \omega) b(\omega') \Big)$$

- A pairwise action-consistent µ_{i,j} ∈ Δ(Ω) between i and j exists if and only if there is no mutually beneficial action-verifiable bet for i and j.
- Action consistency implies pairwise action-consistency for every pair.
- Beliefs are *G*-pairwise action consistent if there exists a collection $(\mu_{i,j})_{(i,j)\in\mathcal{E}}$ of probability measures with $\bigcap_{(i,j)\in\mathcal{E}} \operatorname{supp}(\mu_{i,j}) \neq \emptyset$ such that $\mu_{i,j}$ is pairwise action-consistent between *i* and *j*, for each $(i,j)\in\mathcal{E}$.

• Beliefs are G-pairwise action-consistent

•
$$\mu_{A,B} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_5; \frac{1}{4} \times \omega_7\right) = \mu_{A,D}$$

• $\mu_{B,C} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_2; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_4\right) = \mu_{C,D}$

Beliefs are not action-consistent

イロン イヨン イヨン イヨン

3

• Beliefs are G-pairwise action-consistent

•
$$\mu_{A,B} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_5; \frac{1}{4} \times \omega_7\right) = \mu_{A,D}$$

• $\mu_{B,C} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_2; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_4\right) = \mu_{C,D}$

Beliefs are not action-consistent

→ Ξ → < Ξ →</p>

A ₽

• Beliefs are G-pairwise action-consistent

•
$$\mu_{A,B} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_5; \frac{1}{4} \times \omega_7\right) = \mu_{A,D}$$

• $\mu_{B,C} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_2; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_4\right) = \mu_{C,D}$

Beliefs are not action-consistent

(4回) (4回) (4回)

• Beliefs are G-pairwise action-consistent

•
$$\mu_{A,B} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_5; \frac{1}{4} \times \omega_7\right) = \mu_{A,D}$$

• $\mu_{B,C} = \left(\frac{1}{4} \times \omega_1; \frac{1}{4} \times \omega_2; \frac{1}{4} \times \omega_3; \frac{1}{4} \times \omega_4\right) = \mu_{C,D}$

• Beliefs are not action-consistent

(4回) (4回) (4回)

- If beliefs are pairwise action-consistent between i and j, the conjectures are pairwise constant in the support of the pairwise action-consistent distribution whenever
 (φ_i(ω), φ_j(ω)) = (φ_i, φ_j) for all ω ∈ supp(μ_{i,j}).
- If beliefs are *G*-pairwise action consistent, the conjectures are *G*-pairwise constant in the support of the pairwise action-consistent distributions whenever they are pairwise constant in the support of the pairwise action-consistent distributions for every $(i, j) \in \mathcal{E}$.

向下 イヨト イヨト

- If beliefs are pairwise action-consistent between i and j, the conjectures are pairwise constant in the support of the pairwise action-consistent distribution whenever
 (φ_i(ω), φ_j(ω)) = (φ_i, φ_j) for all ω ∈ supp(μ_{i,j}).
- If beliefs are G-pairwise action consistent, the conjectures are G-pairwise constant in the support of the pairwise action-consistent distributions whenever they are pairwise constant in the support of the pairwise action-consistent distributions for every (i, j) ∈ E.

向下 イヨト イヨト

• Conjectures are *G*-pairwise constant:

- $(\phi_A(\omega), \phi_B(\omega))$ constant in supp $(\mu_{A,B}) = \{\omega_1, \omega_3, \omega_5, \omega_7\}$
- $(\phi_B(\omega), \phi_C(\omega))$ constant in supp $(\mu_{B,C}) = \{\omega_1, \omega_2, \omega_3, \omega_4\}$
- $(\phi_C(\omega), \phi_D(\omega))$ constant in supp $(\mu_{C,D}) = \{\omega_1, \omega_2, \omega_3, \omega_4\}$
- $(\phi_D(\omega), \phi_A(\omega))$ constant in supp $(\mu_{D,A}) = \{\omega_1, \omega_3, \omega_5, \omega_7\}$

- Conjectures are G-pairwise constant:
 - $(\phi_A(\omega), \phi_B(\omega))$ constant in supp $(\mu_{A,B}) = \{\omega_1, \omega_3, \omega_5, \omega_7\}$
 - $(\phi_B(\omega), \phi_C(\omega))$ constant in supp $(\mu_{B,C}) = \{\omega_1, \omega_2, \omega_3, \omega_4\}$
 - $(\phi_C(\omega), \phi_D(\omega))$ constant in supp $(\mu_{C,D}) = \{\omega_1, \omega_2, \omega_3, \omega_4\}$
 - $(\phi_D(\omega), \phi_A(\omega))$ constant in supp $(\mu_{D,A}) = \{\omega_1, \omega_3, \omega_5, \omega_7\}$

3

Pairwise interactive belief

• Pairwise mutual belief between *i* and *j*:

$$B_{i,j}(E) := B_i(E) \cap B_j(E)$$

• Pairwise common belief between *i* and *j*:

$$CB_{i,j}(E) := B_{i,j}(E) \cap B_{i,j}(B_{i,j}(E)) \cap \cdots$$

<ロ> (日) (日) (日) (日) (日)

Pairwise interactive belief

• Pairwise mutual belief between *i* and *j*:

$$B_{i,j}(E) := B_i(E) \cap B_j(E)$$

• Pairwise common belief between *i* and *j*:

$$CB_{i,j}(E) := B_{i,j}(E) \cap B_{i,j}(B_{i,j}(E)) \cap \cdots$$

- 4 回 2 - 4 □ 2 - 4 □

G-pairwise mutual belief of payoffs

- Payoffs are G-pairwise mutually believed at ω whenever ω ∈ B_{i,j}([g_i] ∩ [g_j]) for all (i, j) ∈ ε
- *G*-pairwise mutual belief of payoffs is weaker than mutual belief in rationality on two dimensions

$$B([g_1,\ldots,g_n])\subseteq \bigcap_{(i,j)\in\mathcal{E}}B_{i,j}([g_i]\cap [g_j])$$

伺下 イヨト イヨト

G-pairwise mutual belief of payoffs

- Payoffs are G-pairwise mutually believed at ω whenever ω ∈ B_{i,j}([g_i] ∩ [g_j]) for all (i, j) ∈ ε
- *G*-pairwise mutual belief of payoffs is weaker than mutual belief in rationality on two dimensions

$$B([g_1,\ldots,g_n])\subseteq \bigcap_{(i,j)\in\mathcal{E}}B_{i,j}([g_i]\cap [g_j])$$

向下 イヨト イヨト

G-pairwise mutual belief in rationality

• Payoff functions are G-pairwise mutually believed at ω_1

- $[g_A] \cap [g_B] = \{\omega_1, \dots, \omega_8\} = [g_D] \cap [g_A]$
- $[g_B] \cap [g_C] = \{\omega_1, \ldots, \omega_4\} = [g_C] \cap [g_D]$

• Payoff functions are not mutually believed at $\omega_1 \notin B_A([g_C])$

イロン イ部ン イヨン イヨン 三日

G-pairwise mutual belief in rationality

• Payoff functions are G-pairwise mutually believed at ω_1

- $[g_A] \cap [g_B] = \{\omega_1, \dots, \omega_8\} = [g_D] \cap [g_A]$
- $[g_B] \cap [g_C] = \{\omega_1, \dots, \omega_4\} = [g_C] \cap [g_D]$

• Payoff functions are not mutually believed at $\omega_1 \notin B_A([g_C])$

(《圖》 《문》 《문》 - 문

G-pairwise mutual belief in rationality

• Payoff functions are G-pairwise mutually believed at ω_1

- $[g_A] \cap [g_B] = \{\omega_1, \ldots, \omega_8\} = [g_D] \cap [g_A]$
- $[g_B] \cap [g_C] = \{\omega_1, \dots, \omega_4\} = [g_C] \cap [g_D]$

Payoff functions are not mutually believed at ω₁ ∉ B_A([g_C])

・日・ ・ ヨ ・ ・ ヨ ・

3

- Rationality is G-pairwise mutually believed at ω whenever ω ∈ B_{i,j}(R_i ∩ R_j) for all (i,j) ∈ ε
- *G*-pairwise mutual belief in rationality is weaker than mutual belief in rationality on two dimensions

$$B(R_1,\ldots,R_n)\subseteq \bigcap_{(i,j)\in\mathcal{E}}B_{i,j}(R_i\cap R_j)$$

伺下 イヨト イヨト

- Rationality is G-pairwise mutually believed at ω whenever ω ∈ B_{i,j}(R_i ∩ R_j) for all (i,j) ∈ ε
- *G*-pairwise mutual belief in rationality is weaker than mutual belief in rationality on two dimensions

$$B(R_1,\ldots,R_n)\subseteq \bigcap_{(i,j)\in\mathcal{E}}B_{i,j}(R_i\cap R_j)$$

向下 イヨト イヨト

• Rationality is G-pairwise mutually believed at ω_1

- $R_A \cap R_B = \{\omega_1, \ldots, \omega_8\} = R_D \cap R_A$
- $R_B \cap R_C = \{\omega_1, \ldots, \omega_4\} = R_C \cap R_D$

• Rationality is not mutually believed at $\omega_1 \notin B_A(R_C)$

イロン イ部ン イヨン イヨン 三日

• Rationality is G-pairwise mutually believed at ω_1

- $R_A \cap R_B = \{\omega_1, \dots, \omega_8\} = R_D \cap R_A$
- $R_B \cap R_C = \{\omega_1, \ldots, \omega_4\} = R_C \cap R_D$

• Rationality is not mutually believed at $\omega_1 \notin B_A(R_C)$

- Rationality is G-pairwise mutually believed at ω_1
 - $R_A \cap R_B = \{\omega_1, \dots, \omega_8\} = R_D \cap R_A$
 - $R_B \cap R_C = \{\omega_1, \ldots, \omega_4\} = R_C \cap R_D$
- Rationality is not mutually believed at $\omega_1 \notin B_A(R_C)$

・日・ ・ ヨ ・ ・ ヨ ・ ・

3

Roadmap

2 Our contribution

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Main result

Theorem

Let G be a biconnected graph and (ϕ_1, \ldots, ϕ_n) a tuple of conjectures. Suppose that for every $(i, j) \in \mathcal{E}$ there exists a pairwise action-consistent distribution $\mu_{i,j} \in \Delta(S)$ between i and j such that $\phi_k(\omega') = \phi_k$ for every $k \in \{i, j\}$ and for every $\omega' \in \text{supp}(\mu_{i,i})$. Moreover, assume that there is some state $\omega \in \bigcap_{(i,i) \in \mathcal{E}} \operatorname{supp}(\mu_{i,j})$ such that $\omega \in B_{i,i}([g_i] \cap [g_i]) \cap B_{i,i}(R_i \cap R_i)$ for all $(i,j) \in \mathcal{E}$. Then, there exists a mixed strategy profile $(\sigma_1, \ldots, \sigma_n)$ such that: (i) marg_A, $\phi_i = \sigma_i$ for all $i \in I \setminus \{i\}$, (ii) $(\sigma_1, \ldots, \sigma_n)$ is a Nash equilibrium.

イロン イヨン イヨン イヨン

- Since G is biconnected, for each i, j, k ∈ I there exists a path connecting i and j that does not go through k. Hence, marg_{Ak}φ_i = marg_{Ak}φ_j =: σ_k.
- We show that \$\phi_1(a_2, \ldots, a_n) = \phi_1(a_2) \cdots \phi_{n-1}(a_n)\$. Then from the previous step it follows that \$\phi_1(a_2, \ldots, a_n) = \phi_1(a_2) \cdots \phi_1(a_n)\$.
- Hence, $\phi_i = \sigma_1 \times \cdots \times \sigma_{i-1} \times \sigma_{i+1} \times \cdots \times \sigma_n$.
- Finally, for every a_i ∈ supp(σ_i), by rationality a_i is a best response to φ_i and therefore to
 σ₁ ×···× σ_{i-1} × σ_{i+1} ×···× σ_n, thus implying that
 (σ₁,...,σ_n) is a NE.

- Since G is biconnected, for each i, j, k ∈ I there exists a path connecting i and j that does not go through k. Hence, marg_{Ak}φ_i = marg_{Ak}φ_j =: σ_k.
- We show that φ₁(a₂,..., a_n) = φ₁(a₂) ··· φ_{n-1}(a_n). Then from the previous step it follows that φ₁(a₂,..., a_n) = φ₁(a₂) ··· φ₁(a_n).

• Hence, $\phi_i = \sigma_1 \times \cdots \times \sigma_{i-1} \times \sigma_{i+1} \times \cdots \times \sigma_n$.

 Finally, for every a_i ∈ supp(σ_i), by rationality a_i is a best response to φ_i and therefore to
 σ₁ × · · · × σ_{i-1} × σ_{i+1} × · · · × σ_n, thus implying that
 (σ₁,...,σ_n) is a NE.

- Since G is biconnected, for each i, j, k ∈ I there exists a path connecting i and j that does not go through k. Hence, marg_{Ak}φ_i = marg_{Ak}φ_j =: σ_k.
- We show that $\phi_1(a_2, \ldots, a_n) = \phi_1(a_2) \cdots \phi_{n-1}(a_n)$. Then from the previous step it follows that $\phi_1(a_2, \ldots, a_n) = \phi_1(a_2) \cdots \phi_1(a_n)$.
- Hence, $\phi_i = \sigma_1 \times \cdots \times \sigma_{i-1} \times \sigma_{i+1} \times \cdots \times \sigma_n$.
- Finally, for every a_i ∈ supp(σ_i), by rationality a_i is a best response to φ_i and therefore to
 σ₁ × · · · × σ_{i-1} × σ_{i+1} × · · · × σ_n, thus implying that
 (σ₁,...,σ_n) is a NE.

- Since G is biconnected, for each i, j, k ∈ I there exists a path connecting i and j that does not go through k. Hence, marg_{Ak}φ_i = marg_{Ak}φ_j =: σ_k.
- We show that φ₁(a₂,..., a_n) = φ₁(a₂) ··· φ_{n-1}(a_n). Then from the previous step it follows that φ₁(a₂,..., a_n) = φ₁(a₂) ··· φ₁(a_n).
- Hence, $\phi_i = \sigma_1 \times \cdots \times \sigma_{i-1} \times \sigma_{i+1} \times \cdots \times \sigma_n$.
- Finally, for every a_i ∈ supp(σ_i), by rationality a_i is a best response to φ_i and therefore to
 σ₁ ×···× σ_{i-1} × σ_{i+1} ×···× σ_n, thus implying that
 (σ₁,...,σ_n) is a NE.

G-pairwise common belief of conjectures

- If there exists a common prior, *G*-pairwise constant conjectures in the support of the common prior, coincide with *G*-pairwise common belief in conjectures.
- Conjectures are *G*-pairwise commonly believed at ω whenever $\omega \in CB_{i,j}([\phi_i] \cap [\phi_j])$ for all $(i,j) \in \mathcal{E}$
- *G*-pairwise common belief in conjectures is weaker than common belief in rationality on two dimensions

$$B([\phi_1,\ldots,\phi_n])\subseteq\bigcap_{(i,j)\in\mathcal{E}}B_{i,j}([\phi_i]\cap[\phi_j])$$

伺い イヨト イヨト

G-pairwise common belief of conjectures

- If there exists a common prior, *G*-pairwise constant conjectures in the support of the common prior, coincide with *G*-pairwise common belief in conjectures.
- Conjectures are *G*-pairwise commonly believed at ω whenever $\omega \in CB_{i,j}([\phi_i] \cap [\phi_j])$ for all $(i,j) \in \mathcal{E}$
- *G*-pairwise common belief in conjectures is weaker than common belief in rationality on two dimensions

$$B([\phi_1,\ldots,\phi_n])\subseteq\bigcap_{(i,j)\in\mathcal{E}}B_{i,j}([\phi_i]\cap[\phi_j])$$

向下 イヨト イヨト

Pairwise epistemic conditions for NE with a CP

Corollary

Let G be a biconnected graph and (ϕ_1, \ldots, ϕ_n) a tuple of conjectures. Suppose that there exists a common prior $\pi \in \Delta(\Omega)$ and let $\omega \in \text{supp}(\pi)$ be such that $\omega \in B_{i,j}([g_i] \cap [g_j]) \cap B_{i,j}(R_i \cap R_j) \cap CB_{i,j}([\phi_i] \cap [\phi_j])$ for all $(i,j) \in \mathcal{E}$. Then, there exists a mixed strategy profile $(\sigma_1, \ldots, \sigma_n)$ such that:

(i)
$$marg_{A_i}\phi_j = \sigma_i$$
 for all $j \in I \setminus \{i\}$,
(ii) $(\sigma_1, \dots, \sigma_n)$ is a Nash equilibrium.

マロト イヨト イヨト
Background Contribution Model Results

Our results in the literature

- 4 回 2 - 4 □ 2 - 4 □

3

- Common prior
- Common belief of rationality
- G-pairwise common belief of conjectures
- *G* is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

• Common prior

- Common belief of rationality
- G-pairwise common belief of conjectures
- *G* is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

- Common prior
- Common belief of rationality
- G-pairwise common belief of conjectures
- *G* is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

- Common prior
- Common belief of rationality
- G-pairwise common belief of conjectures
- G is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

- Common prior
- Common belief of rationality
- G-pairwise common belief of conjectures
- G is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

イロト イポト イヨト イヨト

- Common prior
- Common belief of rationality
- G-pairwise common belief of conjectures
- G is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

イロト イポト イヨト イヨト

- Common prior
- Common belief of rationality
- G-pairwise common belief of conjectures
- G is connected (not biconnected)
- Ann and Carol still disagree on their marginal conjecture about Bob
- Still the supports of the conjectures form a best response set and therefore the strategy profile is rationalizable rationalizable (Tsakas, 2013)

• We weaken not only AB's but also Barelli's conditions.

- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We weaken not only AB's but also Barelli's conditions.
- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We weaken not only AB's but also Barelli's conditions.
- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We weaken not only AB's but also Barelli's conditions.
- We show that absence of common belief in rationality from the epistemic conditions for NE should not be necessarily attributed to the lack of a common prior.
- Our conditions do not require nor imply mutual belief in rationality, thus reinforcing AB's intuition about common belief in rationality not being crucial for NE.
- We provide a framework for studying solution concepts from a local perspective and/or embedding the epistemic approach to the theory of networks.

向下 イヨト イヨト

Thanks for listening!!!

伺下 イヨト イヨト

æ