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Abstract

We study common belief of weak-dominance rationality in strategic-
form games with ordinal utilities, employing a qualitative model of be-
liefs. We characterize two standard solution concepts for such games:
the Iterated Deletion of Börgers-dominated Strategies (IDBS) and the
Iterated Deletion of Inferior Strategy Profiles (IDIP). We do so by
imposing nested restrictions on the doxastic models: namely, the re-
spective epistemic conditions differ in the fact that IDIP requires the
truth axiom whereas IDBS does not. Hence, IDIP refines IDBS.
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1. Introduction

Traditionally, game-theoretic analysis has been based on the assumption that
the game under consideration is common knowledge among the players. That
is, besides postulating that the rules of the game (i.e., the set of players, the
set of strategies and the outcome which is associated with each strategy pro-
file) are commonly known, we typically assume that the players have vNM
preferences and that these preferences are also commonly known.1 Under
these assumptions, common belief of rationality characterizes correlated ra-
tionalizability; that is, the strategy profiles that survive the Iterated Deletion
of Strictly Dominated Strategies are exactly those that can be rationally
played under common belief of (Bayesian) rationality (e.g., see Branden-
burger and Dekel, 1987; Tan and Werlang, 1988).

While it is certainly reasonable to assume that the rules of the game are
commonly known, the last two assumptions seem harder to justify at the
outset. The issue with the preferences being commonly known has already
been addressed by Harsanyi (1967-68) and the extensive literature on in-
complete information games that followed his seminal contribution. Within
Harsanyi’s extended model, rationality and common belief of (Bayesian) ra-
tionality characterizes interim correlated rationalizability (e.g., see Dekel et
al., 2007; Ely and Peski, 2006). However, in Harsanyi’s program, preferences
are still assumed to be vNM and therefore the utilities of the game outcomes
remain cardinal.

Relaxing this assumption can be motivated not only from a theoretical,
but also from an applied point of view, given that in lab experiments we typi-
cally test predictions obtained by employing solution concepts for games with
ordinal utilities. From a theoretical standpoint, the main consequence of pos-
tulating only ordinal utilities is that we have to replace the usual models of
probabilistic beliefs with Kripke structures, and thus abandon the standard
notion of Bayesian rationality. The two usual alternatives are a weak notion
of rationality which is typically employed to characterize Iterated Deletion
of Strictly Dominated Strategies (see Section 4) and a strong notion of ra-
tionality, often called weak-dominance rationality (Hillas and Samet, 2014).
In this paper we investigate the content of the notion of common belief of
(weak-dominance) rationality in strategic-form games with ordinal payoffs.

1These assumptions are consistent with extending Savage’s standard decision-theoretic
framework to an interactive setting (e.g., see Epstein and Wang, 1996).
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In particular, we consider qualitative doxastic models, which consist, for
each player, of a belief operator (which is represented by a Kripke structure)
and a specification of the set of the opponents’ strategy profiles deemed pos-
sible at each state. Then, a strategy is said to be weak-dominance rational
(henceforth, simply called rational) at some state whenever it is not weakly
dominated relative to the opponents’ strategy profiles that are deemed possi-
ble. Within this model, we provide a full characterization of two standard
solution concepts for strategic-form games with ordinal utilities, viz., Iter-
ated Deletion of Börgers-dominated Strategies (Börgers, 1993, henceforth
IDBS) and Iterated Deletion of Inferior Strategy Profiles (the pure-strategy
version of strong rationalizability à la Stalnaker, 1994, henceforth IDIP). In
particular, we show that IDBS is characterized by common belief in ratio-
nality within the class of models that satisfy Consistency (Theorem 1), while
IDIP is characterized by common belief in rationality within the sub-class of
models that satisfy Truth (Theorem 2). The previous results complete the
epistemic analysis of strategic-form games with ordinal utilities, by providing
not only sufficient but also necessary conditions.2

With the above-mentioned results, not only do we manage to put under
the same umbrella two main solution concepts for games with ordinal utili-
ties, but we also manage to prove that they monotonically refine each other
(Corollary 1): our results imply that IDIP refines IDBS.3 As we will point
out, while one can prove the same result algorithmically via the correspond-
ing procedures, our approach allows us to epistemically pin down the reason
for the aforementioned refinement. In particular, the difference between the
two concepts is attributed to the Truth Axiom.

The paper is structured as follows: In Section 2 we introduce the notion
qualitative doxastic model of a strategic-form game; in Section 3 we define
our notion of rationality and prove our characterization results; in Section
4 we present some additional results; Section 5 concludes. All proof are
relegated to the Appendix.

2Earlier results of Apt and Zvesper (2010) and Hillas and Samet (2014) provided
(merely) sufficient conditions in similar frameworks.

3It is trivial to show that, in turn, IDBS refines IDSDS: the Iterated Deletion of Strictly
Dominated Strategies.
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2. Qualitative models of ordinal games

2.1. The underlying ordinal game

A finite strategic-form game with ordinal payoffs is a quintuple
G = 〈I, (Si)i∈I , O, z, (�i)i∈I〉, where I = {1, . . . , n} is a finite set of play-
ers, Si is a finite set of strategies of player i ∈ I with S = S1 × · · · × Sn

being the set of strategy profiles, O is a finite set of outcomes, z : S → O
is a function that associates with every strategy profile s = (s1, . . . , sn) ∈ S
an outcome z(s) ∈ O, �i is player i’s ordinal ranking of the outcomes, i.e., a
binary relation on O which is complete (for all o, o′ ∈ O, o �i o

′ or o′ �i o)
and transitive (for all o, o′, o′′ ∈ O, if o �i o

′ and o′ �i o
′′ then o �i o

′′). The
interpretation of o �i o

′ is that player i considers outcome o to be at least as
good as outcome o′.

Games are often represented in reduced form by replacing the triple
〈O, z, (�i)i∈I〉 with a list (πi)i∈I of payoff functions, where πi : S → R is
any real-valued function that satisfies the property that, for all s, s′ ∈ S,
πi(s) ≥ πi(s

′) if and only if z(s) �i z(s′). In the following we will adopt
this more succinct representation of strategic-form games. It is important to
note, however, that the payoff functions are taken to be purely ordinal and
one could replace πi with any other function obtained by composing πi with
an arbitrary strictly increasing function on the set of real numbers.4

A strategic-form game provides only a partial description of an interactive
situation, since it does not specify what choices the players make, nor what
beliefs they have about their opponents’ choices. A specification of these
missing elements is obtained by introducing the notion of a “model of the
game” (Section 2.3), which represents a possible context in which the game
is played.

2.2. Qualitative beliefs

2.2.1. Belief operators

The players’ beliefs are represented by means of a finite model 〈Ω, (Bi)i∈I〉,
where Ω is a finite set of states (or possible worlds). As usual, 2Ω denotes
the collection of all subsets of Ω (i.e., events), while ¬E := Ω\E denotes the

4This is in contrast to von Neumann-Morgenstern utility functions which are invariant
only with respect to positive affine transformations.
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complement of E for each event E ⊆ Ω. Moreover, for every player i ∈ I,
Bi : 2Ω → 2Ω is the belief operator that associates with each E ⊆ Ω the set
of states BiE where E is believed by i ∈ I. The belief operator is assumed
to satisfy the following property: for every E ⊆ Ω and every i ∈ I,

(D) Consistency: BiE ⊆ ¬Bi¬E.

Consistency rules out the possibility that a player may simultaneously believe
an event E and its complement ¬E.

Later in the paper we restrict attention to belief operators that satisfy
the stronger property that beliefs cannot be erroneous: for every E ⊆ Ω and
every i ∈ I,

(T ) Truth: BiE ⊆ E.

Remark 1. It is customary in the literature to further restrict the belief
operators to satisfy the following properties: for every E ⊆ Ω and every
i ∈ I,

(4) Positive Introspection: BiE ⊆ BiBiE,

(5) Negative Introspection: ¬BiE ⊆ Bi¬BiE.

Since our results do not require such restrictions, we will adopt a “minimal-
istic” approach and refrain from imposing Positive and/or Negative Intro-
spection of beliefs.

2.2.2. Semantic characterization of the belief operators

It is common in the literature to characterize belief operators by means of
binary relations in Kripke frames. A Kripke frame is a tuple 〈Ω, (Bi)i∈I〉
where Bi ⊆ Ω × Ω is a binary relation on Ω that describes i’s doxastic
accessibility at each state: the interpretation of ωBiω′ is that at state ω
player i considers state ω′ possible. In the game-theoretic literature, it is more
common to view Bi as a function that associates with every state ω ∈ Ω the
set of states Bi(ω) ⊆ Ω that player i considers possible at ω and to call such
a function a possibility correspondence or information correspondence (e.g.,
Brandenburger and Keisler, 2006). Of course, the two views (binary relation
and possibility correspondence) are equivalent: given a relation Bi ⊆ Ω×Ω,
define Bi(ω) = {ω′ ∈ Ω : ωBiω′}; conversely, given a function Bi : Ω → 2Ω
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define ωBiω′ if and only if ω′ ∈ Bi(ω).5 A belief operator Bi is characterized
by a binary relation Bi if, for every E ⊆ Ω,

BiE = {ω ∈ Ω : Bi(ω) ⊆ E}.

A Kripke frame is said to be a

� KD frame if the relation Bi is serial : for all ω ∈ Ω, Bi(ω) 6= ∅.

� KT frame if the relation Bi is reflexive: ω ∈ Bi(ω) for all ω ∈ Ω.6

It is well known that seriality characterizes Consistency (Property (D) of
the belief operator), and reflexivity characterizes Truth (Property (T ) of the
belief operator).7

2.3. Doxastic models of games

So far we have introduced the notion of a frame rather abstractly, viz., we
have not assigned a meaning to the states and thus to the possible events.
We now give an interpretation to the states by introducing a strategy func-
tion σi : Ω→ Si for each player i ∈ I. Thus, each state ω ∈ Ω is associated
with the strategy profile σ(ω) =

(
σ1(ω), . . . , σn(ω)

)
. We denote by σ−i(ω)

the profile of strategies played, at ω, by the players other than i, that is,
σ−i(ω) =

(
σ1(ω), . . . , σi−1(ω), σi+1(ω), . . . , σn(ω)

)
; thus the entire profile,

σ(ω), can also be denoted by
(
σi(ω), σ−i(ω)

)
.

5For more details on Kripke frames see, e.g., Aumann (1999); Battigalli and Bonanno
(1999); Chellas (1980); van Ditmarsch et al. (2015); Fagin et al. (1995); Hughes and Cress-
well (1968); Kripke (1959).

6For completeness we mention that a Kripke frame is said to be a

� K4 frame if the relation Bi is transitive: if ω′ ∈ Bi(ω) then Bi(ω′) ⊆ Bi(ω).

� K5 frame if the relation Bi is euclidean: if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω′).

7Furthermore, transitivity characterizes Positive Introspection (Property (4) of the be-
lief operator) and euclideanness characterizes Negative Introspection (Property (5) of the
belief operator): see Remark 1. A Kripke frame is KD45 if it satisfies seriality, trasitivity
and euclideanness; by transitivity and euclideanness, we obtain that KD45 Kripke frames
satisfy the property that Bi(ω′) = Bi(ω) for every ω′ ∈ Bi(ω). A Kripke frame is S5 or
KT5 if it satisfies euclideanness and reflexivity (note that these two properties together
imply both seriality and transitivity); in this case, we typically use the term “knowledge”
instead of “belief”. It is straightforward to see that in an S5 Kripke frame Bi is an
equivalence relation.
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For an arbitrary si ∈ Si, we define the event ||si|| := {ω ∈ Ω : σi(ω) = si}.
We impose the following standard (measurability) property, for every i ∈ I
and every si ∈ Si:

(Σ0) Knowledge of own strategy: ||si|| = Bi||si||.

That is, each player knows her own strategy: at every state player i plays si
if and only if she believes that she plays si.

Definition 1. Given a strategic-form game with ordinal payoffs
G = 〈I, (Si, πi)i∈I〉 a qualitative doxastic model of G is a tuple
M = 〈Ω, (Bi)i∈I , (σi)i∈I〉, where

- Ω is finite,

- Bi is the belief operator of player i, and

- σi is a strategy function that satisfies Knowledge-of-own-strategy (prop-
erty (Σ0)).

Then, we define:

MD : the class of models where each belief operator satisfies
Consistency (Property (D)).

MT : the class of models where each belief operator satisfies
Truth (Property (T )).

Note that, since reflexivity implies seriality, MT ⊂MD.

Remark 2. We briefly remark on how to relate the “orthodox” approach,
based on probabilistic beliefs, and our more general, qualitative, approach.
When beliefs are represented by probability distributions, one defines a func-
tion pi : Ω→ ∆(Ω)

(
with ∆(Ω) being the set of probability distributions over

Ω
)

where pi,ω (we use the notation pi,ω rather than pi(ω)) are the probabilistic
beliefs of player i at state ω. For the probabilistic case, our Bi(ω) coincides
with the support of pi,ω, that is, Bi(ω) = {ω′ ∈ Ω : pi,ω(ω′) > 0} so that
the expression “player i believes event E” is interpreted as “player i attaches
probability 1 to E”.8

8In probabilistic models it is customary to impose the restriction that

if pi,ω(ω′) > 0 then pi,ω′ = pi,ω
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3. Common belief of rationality

Fix a player i and two strategies a, b ∈ Si of player i. We denote by

‖b � a‖ = {ω ∈ Ω : πi(b, σ−i(ω)) ≥ πi(a, σ−i(ω))}

the event that strategy b yields at least as high a payoff for player i as strategy
a. Similarly, ‖b � a‖ = {ω ∈ Ω : πi(b, σ−i(ω)) > πi(a, σ−i(ω))} is the event
that b is strictly preferred to a by i. Finally, ‖b ∼ a‖ = ‖b � a‖ \ ‖b � a‖ =
{ω ∈ Ω : πi(b, σ−i(ω)) = πi(a, σ−i(ω))} denotes the event that i is indifferent
between a and b.

Definition 2. Player i is (weak-dominance) rational at state ω whenever,
for all b ∈ Si,

if ω ∈ Bi‖b � σi(ω)‖ then ω ∈ Bi‖b ∼ σi(ω)‖. (1)

Let Ri ⊆ Ω be the event that player i is rational and R =
⋂

i∈I Ri be the
event that all players are rational.

Intuitively, if at ω player i believes that b yields at least as high a payoff
as the chosen strategy σi(ω), then he does not consider it possible that b
yields a strictly higher payoff than σi(ω), i.e., σi(ω) is not weakly dominated
by any b ∈ Si given the strategy profiles that are played by the opponents at
the doxastically accessible states. For a formal definition of weak dominance
relative to a subset of the opponents’ strategy profiles, see Section 3.1.

We want to investigate the implications of common belief of rationality.
Given an event E, let BIE =

⋂
i∈I BiE denote the event that all the players

believe E. Then the event that E is commonly believed, denoted by CBE,
is defined as the infinite intersection CBE = BIE ∩BIBIE ∩BIBIBIE ∩ · · · ,
that is, the event that everybody believes E, and everybody believes that
everybody believes E, and everybody believes that everybody believes that
everybody believes E, and so on. It is well-known that, for every state ω
and every event E, ω ∈ CBE if and only if B∗(ω) ⊆ E, where B∗(ω) is the
transitive closure of

⋃
i∈I Bi(ω).9 We are interested in the event that there is

to capture the fact that the player knows her own beliefs. It follows from this restriction
that Bi satisfies seriality, transitivity and euclideanness, that is, the corresponding Kripke
frame is a KD45 frame.

9B∗ is thus defined as follows: ω′ ∈ B∗(ω) if and only if there is a sequence {ω1, . . . , ωm}
in Ω and a sequence {i1, . . . , im−1} in I such that (1) ω1 = ω, (2) ωm = ω′, and (3) for
every j = 1, . . . ,m− 1, ωj+1 ∈ Bij (ωj).
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common belief of rationality, henceforth denoted by CBR. In particular, we
ask the question: which strategy profiles are compatible with states in CBR?

Definition 3. We say that common belief of rationality in a class of models
M (epistemically) characterizes the set S∗ ⊆ S of strategy profiles whenever
the following two conditions hold:

(A) in every model M ∈M, if ω ∈ CBR then σ(ω) ∈ S∗,

(B) for every s ∈ S∗, there exists a model M ∈ M and a state ω in that
model such that σ(ω) = s and ω ∈ CBR.

In the following sections, we will epistemically characterize two well-
known solution concepts for ordinal strategic-form games by means of com-
mon belief of rationality, by successively imposing stronger properties on
the models of qualitative beliefs. That way, (i) we will place these different
solution concepts under the same umbrella of common belief of rationality,
and (ii) we will formally order the solution concepts in terms of the strategy
profiles that they predict.

3.1. Iterated Deletion of Börgers-dominated Strategies

Börgers (1993) introduced a notion of pure-strategy dominance which is
stronger than strict dominance. Let a, b ∈ Si be two pure strategies of player
i, and let X−i ⊆ S−i be a non-empty set of strategy-profiles of the players
other than i. We say that b weakly dominates a relative to X−i whenever:
(1) πi(b, x−i) ≥ πi(a, x−i) for all x−i ∈ X−i, and
(2) there exists some x̂−i ∈ X−i such that πi(b, x̂−i) > πi(a, x̂−i).
Then, a pure strategy a ∈ Si is Börgers-dominated (henceforth B-dominated)
if for every non-empty subset X−i ⊆ S−i there exists a strategy b ∈ Si (which
is allowed to vary with X−i) such that b weakly dominates a relative to X−i.
The Iterated Deletion of B-dominated Strategies (IDBS) is the following al-
gorithm: reduce the game by deleting, for each player, all the strategies that
are B-dominated and then repeat the procedure in the reduced game, and so
on, until there are no B-dominated strategies left.

Definition 4. Given a strategic-form game with ordinal payoffs
G = 〈I, (Si, πi)i∈I〉, recursively define the sequence of reduced games
{G0, G1, . . . , Gm, . . . } as follows: for each i ∈ I,
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(4.1) let B0
i = Si, and let E0

i ( B0
i be the set of i’s strategies that are

B-dominated in G0 = G;

(4.2) for each m ≥ 1 let Gm−1 be the reduced game with strategy sets Bm−1
i ,

and define Bm
i = Bm−1

i \ Em−1
i , where Em−1

i ( Bm−1
i is the set of i’s

strategies that are B-dominated in Gm−1.

Let B∞i =
⋂∞

m=0B
m
i . The strategy profiles in B∞ = B∞1 × · · · × B∞n are

those surviving IDBS.

Since the strategy sets are finite, there exists an integer r such that B∞ =
Bk for every k ≥ r, that is, the procedure terminates after finitely many steps.
Furthermore, it is straightforward to verify that B∞ 6= ∅.

For example, in the game of Figure 1, strategy a of Player 1 is B-dominated.
Indeed, a is weakly dominated by b relative to {d} and also relative to {d, e},
and it is weakly dominated by c relative to {e}. Eliminating a for Player 1,
we are left with a reduced game where for Player 2 d is strictly dominated
by e (thus B-dominated). In the game remaining after the deletion of d, for
Player 1 b is strictly dominated by c (thus B-dominated). Hence in this game
B∞ = {(c, e)}.

a

Player 1 b

c

1 , 1 1 , 0

2 , 0 1 , 1

0 , 0 2 , 1

d

Player 2

e

Figure 1: B∞ = {(c, e)}.

Theorem 1 (Characterization of IDBS). In the class of models MD, com-
mon belief of rationality characterizes IDBS. Formally,

(A1) in every model M ∈MD, if ω ∈ CBR then σ(ω) ∈ B∞,

(B1) for every s ∈ B∞, there exists a model M ∈MD and a state ω in that
model such that σ(ω) = s and ω ∈ CBR.
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Intuitively, the proof of the result relies on the observation that a strategy
is B-dominated (in the full game) if and only if it is not (weak-dominance)
rational at any state of any consistent frame. A similar intuition carries for
the later iterations.10

A weaker version of (A1) follows from Apt and Zvesper (2010). In par-
ticular, they show that in every KD45 frame, common belief in rationality
leads to strategy profiles consistent with IDBS. The latter follows from the
fact that B-dominance is monotonic (without actually using any of the intro-
spection axioms), i.e., if a is B-dominated relative to some X−i ⊆ S−i then
it is also B-dominated relative to every nonempty subset of X−i.

Now turning to (B1) which is arguably the more challenging and innova-
tive part of our previous result, note that in order to “rationalize” a strategy
profile in B∞, it may be necessary for a player to have erroneous beliefs. To
see this, consider the game in Figure 2, where B∞ = S, that is, IDBS does not
eliminate any strategy; in particular, (a, d) ∈ B∞.11 Consider an arbitrary
MD-model of this game and a state ω0 such that σ(ω0) = (a, d). Since, for
every s2 ∈ {c, d}; π1(b, s2) ≥ π1(a, s2), ‖b � a‖ = Ω; thus B1(ω0) ⊆ ‖b � a‖,
that is, ω0 ∈ B1‖b � a‖. Hence, if Player 1 is rational at ω0 (according to
Definition 2) then ‖b � a‖∩B1(ω0) = ∅. Thus, σ2(ω) = c for all ω ∈ B1(ω0).
In particular, it must be that ω0 /∈ B1(ω0). Thus at state ω0 Player 2 actually
plays d but Player 1 – who plays a – must erroneously believe that Player 2
is playing c.

In the next section we investigate the consequences of ruling out false
beliefs.

3.2. Iterated Deletion of Inferior Strategy Profiles

The following algorithm is the pure-strategy version of a procedure first intro-
duced by Stalnaker (1994) and further studied in Bonanno (2008); Bonanno
and Nehring (1998); Hillas and Samet (2014); Trost (2013). Unlike the IDBS

10 Dekel and Siniscalchi (2015) provide a characterization of IDBS in a “quantita-
tive” framework: they assume cardinal utilities (vNM preferences) and use the notion of
Bayesian rationality (expected utility maximization) but employ an incomplete informa-
tion model where players have uncertainty (probabilistic beliefs) over the risk preferences
of their opponents, while the ordinal rankings are commonly known.

11For Player 1, a is weakly dominated by b relative to {d} and {c, d} but not relative
to {c}; for Player 2, d is weakly dominated by c relative to {a} but not relative to {b} or
{a, b} and c is weakly dominated by d relative to {b} but not relative to {a} or {a, b}.
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a

b

Player 1
1 , 1 1 , 0

1 , 0 2 , 2

c

Player 2

d

Figure 2: Rationalization of (a, d) requires erroneous beliefs.

procedure considered above, this procedure merely deletes strategy profiles,
rather than individual strategies. In particular, let X ⊆ S be a set of strat-
egy profiles (not necessarily having a product structure). A strategy profile
x ∈ X is inferior relative to X if there exist a player i and a strategy si ∈ Si

of player i (with si not necessarily belonging to the projection of X onto Si)
such that
(1) πi(si, x−i) > πi(xi, x−i), and
(2) for all s−i ∈ S−i, either (xi, s−i) /∈ X or πi(si, s−i) ≥ πi(xi, s−i).
The Iterated Deletion of Inferior Profiles (IDIP) is the following algorithm:
reduce the game by deleting all the inferior strategy profiles and then repeat
the procedure by eliminating inferior profiles relative to the strategy profiles
that have not been eliminated so far, until there are no inferior profiles left.
Formally, the algorithm is defined as follows:

Definition 5. Given a strategic-form game with ordinal payoffs
G = 〈I, (Si, πi)i∈I〉, recursively define the sequence of sets of strategy profiles
{U0, U1, . . . , Um, . . . } as follows:

(5.1) let U0 = S, and let F 0 ( U0 be the set of inferior strategy profiles
relative to U0;

(5.2) for each m ≥ 1 let Um = Um−1 \ Fm−1, where Fm−1 ( Um−1 is the set
of strategy profiles in Um−1 that are inferior relative to Um−1.

Then U∞ =
⋂∞

m=0 U
m denotes the strategy profiles surviving IDIP.

Once again, since the strategy sets are finite, there exists an integer r
such that U∞ = Uk for every k ≥ r, i.e., the procedure terminates after
finitely many steps. Besides, it is straightforward to verify that U∞ 6= ∅.
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a

b

Player 1
1 , 1 1 , 2

1 , 1 2 , 0

c

Player 2

d

Figure 3: IDIP.

As an illustration of this procedure, consider the game in Figure 3.
In this game (a, d) is inferior relative to U0 = S since π1(b, d) > π1(a, d)
and π1(b, c) = π1(a, c) (and (a, c) ∈ S). No other strategy profile is inferior
relative to U0 and thus F 0 = {(a, d)} so that U1 = {(a, c), (b, c), (b, d)}. Now
(b, d) is inferior relative to U1 since π2(b, c) > π2(b, d) and (a, d) /∈ U1. No
other strategy profile is inferior relative to U1 and thus F 1 = {(b, d)} so that
U2 = {(a, c), (b, c)}. Since no strategy profile is inferior relative to U2, we
have that U∞ = U2.

We now turn to investigating the consequences of ruling out false beliefs.
At state ω player i has correct beliefs if ω is one of the states that player i
considers possible at ω, that is, if ω ∈ Bi(ω). Let Ti = {ω ∈ Ω : ω ∈ Bi(ω)}
be the event that player i has correct beliefs. Imposing the Truth condition
(Property (T)) on the belief operator of player i amounts to requiring that
Ti = Ω. Recall from Definition 1 thatMT (MD denotes the class of finite
qualitative doxastic models that rule out false beliefs.

Theorem 2 (Characterization of IDIP). When erroneous beliefs are ruled
out, common belief of rationality characterizes IDIP. Formally,

(A2) in every model M ∈MT , if ω ∈ CBR then σ(ω) ∈ U∞,

(B2) for every s ∈ U∞, there exists a model M ∈MT and a state ω in that
model such that σ(ω) = s and ω ∈ CBR.

The intuition behind the previous result is as follows: a strategy profile is
not inferior (in the full game) if and only if it is (weak-dominance) rational
for all player to play according to this profile at some state deemed possible
by all players where this profile is played. The same logic applies to later
iterations.
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Property (T ) says that no player can have false beliefs. This is a stronger
condition than simply requiring that it is commonly believed that every
player has correct beliefs. In fact, in order to get a characterization of the set
U∞, common belief that all players have correct beliefs is not sufficient: it
only yields common belief that only strategy profiles in U∞ are played (see
Section 4.2).

A weaker version of (A2) follows from Hillas and Samet (2014). In partic-
ular, they show that in every S5 frame, common belief in rationality yields
strategy profiles that survive the Stalnaker procedure (i.e., the mixed strategy
version of IDIP), taking an approach similar to the one in Apt and Zvesper
(2010). In this respect, our paper completes the picture by providing a full
epistemic characterization of IDIP, viz., in particular by proving (B2).

4. Discussion

4.1. Monotonicity result

We have characterized two well-known solution concepts for games with or-
dinal payoffs (viz., IDBS and IDIP) by means of restrictions imposed on the
belief operator.12 A direct implication of our results (Theorems 1 and 2) is
the following (monotonicity) result.

Corollary 1 (Monotonicity result). U∞ ⊆ B∞.

The proof follows directly from the fact thatMT (MD. Without invok-
ing Theorems 1 and 2 this monotonicity result would not be straightforward
to establish, since there are games where Bm ( Um for some m > 0, as
illustrated in the game in Figure 4.
In this game, c is B-dominated, while no other strategy is subsequently elim-
inated. That is, B∞ = B1 = {a, b} × {d, e}. On the other hand, the only
inferior strategy profile relative to the entire game is (c, e), and therefore
U1 ) B1. However, (c, d) is inferior relative to U1, thus implying that
B∞ = B2 = U2 = U∞, consistently with the conclusions of Corollary 1.

12A weaker notion of rationality than the one given in Definition 2 would yield a char-
acterization of the Iterated Deletion of Strictly Dominated Strategies within the class of
modelsMD, namely the following definition: player i is rational at state ω if for all b ∈ Si,
ω /∈ Bi‖b � σi(ω)‖.

14



a

Player 1 b

c

1 , 1 2 , 1

2 , 1 0 , 1

1 , 1 1 , 1

d

Player 2

e

Figure 4: Monotonicity.

Note that we are not claiming that ours is the only way to prove Corollary
1. In fact, using the fact that IDBS and IDIP are order-independent, one can
show that IDIP refines IDBS. However, our approach (via the two character-
ization Theorems, 1 and 2), not only proves the aforementioned refinement,
but also manages to attribute it to the Truth Axiom.

4.2. Correct beliefs

As we have already mentioned, common belief in correct beliefs does not
suffice for a strategy that survives IDIP to be played. Recall that Ti =
{ω ∈ Ω : ω ∈ Bi(ω)} is the event that player i has correct beliefs and
that imposing the Truth condition (Property (T)) on the belief operator of
player i amounts to requiring that Ti = Ω. A weaker condition is – possibly
erroneous – common belief that every player has correct beliefs. This can be
expressed as the event CBT where T =

⋂
i∈I Ti is the event that all players

have correct beliefs.
The following example shows that it is possible that ω ∈ CBR ∩ CBT

and yet the strategy profile played at ω does not survive IDIP.13 Consider the
following model of the game shown in Figure 5: Ω = {ω1, ω2, ω3},B1(ω1) =
{ω1},B1(ω2) = B1(ω3) = {ω3},B2(ω1) = B2(ω2) = {ω1},B2(ω3) = {ω3},
σ1(ω1) = b, σ1(ω2) = σ1(ω3) = a, σ2(ω1) = σ2(ω2) = d and σ2(ω3) = c.
Then σ(ω2) = (a, d) /∈ U∞ and yet ω2 ∈ CBR ∩ CBT (in fact, B∗(ω2) =

13Note that, in this example, the belief relations of both players are serial, transitive
and euclidean, that is, the belief operators satisfy Consistency, Positive Introspection and
Negative Introspection.
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{ω1, ω3},T = {ω1, ω3} and R = Ω). Note that, in this model, at state ω2

both players have false beliefs; in particular, although it is common belief at
ω2 that only strategy profiles in U∞ are played, the strategy profile actually
played does not belong to U∞.

a

b

Player 1
1 , 1 1 , 0

1 , 0 2 , 2

c

Player 2

d

Figure 5: Common belief in correct beliefs is not sufficient for U∞.

Although common belief in correct beliefs does not suffice for IDIP, it
does guarantee common belief in the event that only strategy profiles in U∞

are played. Let U∞ = {ω ∈ Ω : σ(ω) ∈ U∞}.

Proposition 1. In every model M ∈MD, CBR ∩ CBT ⊆ CBU∞.

The condition that there is common belief that all players have correct
beliefs (ω ∈ CBT) is necessary for Proposition 1. To see this, consider the
game shown in Figure 6, where U∞ = {(a, c), (b, c)}.

a

b

Player 1
1 , 1 1 , 1

1 , 1 2 , 0

c

Player 2

d

Figure 6: Correct beliefs.

Consider the following model of this game: Ω = {ω1, ω2},B1(ω1) = B1(ω2) =
{ω2},B2(ω1) = {ω1},B2(ω2) = {ω2}, σ1(ω1) = σ1(ω2) = a, σ2(ω1) = d, σ2(ω2) =
c. Then R = CBR = Ω, while U∞ = {ω2} (since σ(ω1) = (a, d) /∈ U∞).
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Since B∗(ω1) = {ω1, ω2}, ω1 ∈ CBR but ω1 /∈ CBU∞. In this model, at state
ω1 Player 1 has false beliefs (T1 = {ω2}) and thus ω1 /∈ CBT.14

The following Corollary shows that if, to the hypotheses of Proposition
1, we add the further hypothesis that at least one player does not have false
beliefs, then it follows that the strategy profile actually played also belongs
to U∞. Let T∪ =

⋃
i∈I Ti be the event that at least one player has correct

beliefs.

Corollary 2. In every model M ∈ MD, CBR ∩ CBT ∩ T∪ ⊆ U∞. That
is, common belief of rationality, common belief of correct beliefs and correct
beliefs of at least one player imply IDIP.

5. Conclusion

We have studied the behavioral implications of common belief of rational-
ity in strategic-form games with ordinal utilities, using qualitative beliefs.
Focusing on ordinal utilities is relevant both theoretically (as we implicitly
relax the admittedly unrealistic assumption of commonly known vNM pref-
erences), as well as empirically (as experimental economists typically use
solution concepts for games with ordinal payoffs for their benchmark theo-
retical predictions).

Our main contribution is twofold. Firstly, we provide a full characteriza-
tion of two well-known solution concepts for games with ordinal payoffs in
terms of common belief of rationality, by gradually strengthening the prop-
erties of the doxastic model that we use. Then, as a consequence of our
characterization results, we prove that the aforementioned solution concepts
monotonically refine each other, that is., IDIP refines IDBS.

The qualitative doxastic model that we have used is quite permissive, in
that it does not specify the relative likelihood between any two events. Thus
our model weakens earlier models on qualitative beliefs, which typically rely
on likelihood relations.15

14Note that this is a KD45 frame (the beliefs of both players satisfy Consistency, Positive
Introspection and Negative Introspection: see Footnote 2.2.2) and yet the common belief
relation is not euclidean (that is, the common belief operator does not satisfy Negative
Introspection). Bonanno and Nehring (2000) have shown that Negative Introspection of
common belief is equivalent to the property that whenever a player believes that an event
E is commonly believed then E is indeed commonly believed.

15Qualitative beliefs have been extensively studied in the literature since the early con-
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Our qualitative doxastic model is also related to the literature on possi-
bility models (e.g., Brandenburger and Keisler, 2006) and knowledge-belief
models (e.g., Meier, 2008). In particular, using our terminology, in its sim-
plest form a possibility model is essentially a Kripke structure that merely
employs a belief operator, whereas a knowledge-belief model is also endowed
with a probabilistic belief over the set of states that are deemed possible.

There are also qualitative models of knowledge and beliefs (e.g., Lorini,
2016) that employ two Kripke relations: an equivalence relation representing
knowledge and a sub-relation of the equivalence relation representing beliefs.
For our results there is no need to employ a two-level epistemic structure:
belief is all that is needed.

A. Proofs

Proof of Theorem 1. (A1) Fix a strategic-form game with ordinal pay-
offs, a model M ∈ MD and a state ω1 in M . Suppose that ω1 ∈ CBR,
that is, B∗(ω1) ⊆ R. We want to show that σ(ω1) ∈ B∞. The proof is by
induction.

Base Step. First we show (by contradiction) that, for every player i ∈ I
and for every ω ∈ B∗(ω1), σi(ω) /∈ E0

i (see Definition 4). Suppose not. Then
there exist a player i and an ω2 ∈ B∗(ω1) such that σi(ω2) ∈ E0

i , that is,
strategy σi(ω2) of player i is B-dominated relative to S−i, that is, for every
non-empty X−i ⊆ S−i there exists a strategy si ∈ Si such that:
(I) for all x−i ∈ X−i, πi(si, x−i) ≥ πi(σi(ω2), x−i), and
(II) there exists an x̂−i ∈ X−i such that πi(si, x̂−i) > πi(σi(ω2), x̂−i).
Let X−i = σ−i

(
Bi(ω2)

)
= {s−i ∈ S−i : s−i = σ−i(ω) for some ω ∈ Bi(ω2)}.

Note that, by Consistency (Property (D)), Bi(ω2) 6= ∅ and thus X−i 6= ∅.
Let si ∈ Si and x̂−i ∈ X−i satisfy (I) and (II) above and let ω̂ ∈ Bi(ω2) be

tributions of de Finetti (1949) and Koopman (1940). Most papers in the literature have
focused on whether a qualitative likelihood relation can be represented by a probability
measure (Kraft et al., 1959; Mackenzie, 2017; Scott, 1964; Scott and Suppes, 1958; Ville-
gas, 1967) and on the respective logical foundations (Gärdenfors, 1975; Segerberg, 1971;
van der Hoek, 1996). For an early overview of qualitative beliefs see Fishburn (1986). To
the best of our knowledge there has not been any attempt to embed qualitative probability
in a game-theoretic model. Notice that there is a duality between the approach adopted
in these models and the one taken by preference-based models of beliefs in games (e.g., Di
Tillio, 2008), which starts with a preference relation over acts and derives the collection
of Savage-null events.
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such that σ−i(ω̂) = x̂−i. Then, by (I), Bi(ω2) ⊆ ‖si � σi(ω2)‖, that is,

ω2 ∈ Bi‖si � σi(ω2)‖

and, by (II), Bi(ω2) ∩ ‖si � σi(ω2)‖ ⊇ {ω̂} 6= ∅, that is (recall that, by
Property (Σ0), σi(ω̂) = σi(ω2)),

ω2 /∈ Bi‖si ∼ σi(ω2)‖.

Hence ω2 /∈ Ri (Definition 2). Since Ri ⊆ R, it follows that ω2 /∈ R,
contradicting our hypothesis that ω2 ∈ B∗(ω1) and B∗(ω1) ⊆ R. Thus we
have shown that

for every ω ∈ B∗(ω1), σi(ω) ∈ Si\E0
i = B1

i .

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every player
j ∈ I and for every ω ∈ B∗(ω1), σj(ω) ∈ Bm

j , that is, B∗(ω1) ⊆ Bm. We
want to show (by contradiction) that, for every player i ∈ I and for every
ω ∈ B∗(ω1), σi(ω) /∈ Em

i . Suppose not. Then there exist a player i and an
ω2 ∈ B∗(ω1) such that σi(ω2) ∈ Em

i , that is, strategy σi(ω2) of player i is
B-dominated relative to Bm

−i: for every X−i ⊆ Bm
−i there exists a strategy

si ∈ Si such that:
(I ′) for all x−i ∈ X−i, πi(si, x−i) ≥ πi(σi(ω2), x−i) and
(II ′) there exists an x̂−i ∈ X−i such that πi(si, x̂−i) > πi(σi(ω2), x̂−i).
Let X−i = σ−i

(
Bi(ω2)

)
= {s−i ∈ S−i : s−i = σ−i(ω) for some ω ∈ Bi(ω2)}.

Note, again, that, by Consistency (Property (D)), Bi(ω2) 6= ∅ and thus
X−i 6= ∅. By the induction hypothesis and the fact that Bi(ω2) ⊆ B∗(ω2) ⊆
B∗(ω1) (the latter inclusion follows from transitivity of B∗), X−i ⊆ Bm

−i. Let
si ∈ Si and x̂−i ∈ X−i satisfy (I ′) and (II ′) above and let ω̂ ∈ Bi(ω2) be such
that σ−i(ω̂) = x̂−i. Then, by (I ′),

ω2 ∈ Bi‖si � σi(ω2)‖

and, by (II ′), ‖si � σi(ω2)‖ ∩ Bi(ω2) 6= ∅, that is,

ω2 /∈ Bi‖si ∼ σi(ω2)‖.

Hence ω2 /∈ Ri (Definition 2). Since Ri ⊆ R, it follows that ω2 /∈ R,
contradicting our hypothesis that ω2 ∈ B∗(ω1) and B∗(ω1) ⊆ R.

Thus we have shown that, for every player i ∈ I and for every state
ω ∈ B∗(ω1), σi(ω) ∈

⋂∞
m=1 B

m
i = B∞i .
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It only remains to show that σi(ω1) ∈ B∞i . Take any ω2 ∈ Bi(ω1). Since
Bi(ω1) ⊆ B∗(ω1), ω2 ∈ B∗(ω1). Thus σi(ω2) ∈ B∞i . By (Σ0), since ω2 ∈
Bi(ω1), σi(ω2) = σi(ω1). Thus σi(ω1) ∈ B∞i .

(B1) Given a game G construct the following model M ∈ MD: Ω = B∞ =
B∞1 × · · · × B∞n ; for every player i and for every s ∈ B∞, σi : B∞ → Si is
defined by σi(s) = si (that is, σi(s) is the ith coordinate of s). To define
Bi first note that, by Definition of B∞, every si ∈ B∞i is not B-dominated
relative to B∞−i, that is, there exists an Xsi

−i ⊆ B∞−i (note that this set may
vary with si, hence the superscript ‘si’) such that, for all s′i ∈ Si, there exists
an x̂−i ∈ Xsi

−i such that either

πi(s
′
i, x̂−i) < πi(si, x̂−i) (A.1)

or, for all x−i ∈ Xsi
−i,

πi(s
′
i, x̂−i) ≤ πi(si, x̂−i). (A.2)

For every si ∈ B∞i fix one such set Xsi
−i (there may be several) and define

Bi(si, s′−i) = {si} ×Xsi
−i. By construction, (si, x̂−i) ∈ Bi(s) and thus, either,

by (A.1), s /∈ Bi‖s′i � si‖ or, by (A.2), ‖s′i � si‖∩Bi(s) = ∅. It follows that,
for every i ∈ I and for every s ∈ B∞, s ∈ Ri and thus B∞ = R = CBR.

The proof of Theorem 2 makes use of Proposition 1 and Corollary 2,
which are proved below.

Proof of Theorem 2. (A2) Given a game, consider a model M ∈ MT .
Then T = CBT = T∪ = Ω (so that CBR ∩ CBT ∩ T∪ = CBR). Let
ω ∈ CBR. Then, by Corollary 2 (Section 4.2), ω ∈ U∞.

(B2) Given a game construct the following model of it: Ω = U∞; for
every player i and for every s ∈ U∞, Bi(s) = {s′ ∈ U∞ : s′i = si} (that is,
s′ ∈ Bi(s) if and only if both s and s′ belong to U∞ and player i’s strategy is
the same in s and s′); σi : U∞ → Si is defined by σi(s) = si (that is, σi(s) is
the ith coordinate of s). Note that each relation Bi is an equivalence relation
(in particular it satisfies reflexivity). Fix an arbitrary state s ∈ U∞ and an
arbitrary player i and suppose that, for some s′i ∈ Si, πi(s

′
i, s−i) > πi(si, s−i),

that is, s ∈ ‖s′i � si‖, so that ‖s′i � si‖ ∩ Bi(s) ⊇ {s} 6= ∅. Then, by
definition of U∞, there exists an ŝ−i ∈ S−i such that (si, ŝ−i) ∈ U∞ and
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πi(s
′
i, ŝ−i) < πi(si, ŝ−i); by construction, (si, ŝ−i) ∈ Bi(s) so that s /∈ Bi‖s′i �

si‖. Thus, by Definition 2, player i is rational at state s, that is, s ∈ Ri.
Since i and s were chosen arbitrarily, it follows that R = U∞.

Proof of Corollary 1. Fix an arbitrary s ∈ U∞. Then, by Theorem
2, there exists some model in M ∈ MT such that for some state ω (in this
model), σ(ω) = s and ω ∈ CBR. Since MT ⊆ MD it follows that M ∈ MD,
and therefore, by Theorem 1, s ∈ B∞, thus proving that U∞ ⊆ B∞.

Proof of Proposition 1. Fix a strategic-form game and a model M ∈
MD. Suppose that ω1 ∈ CBR ∩ CBT, i.e., B∗(ω1) ⊆ R ∩ T. We want to
show that σ(ω1) ∈ U∞. As before, the proof is by induction.

Initial Step. First we show (by contradiction) that, for every ω ∈ B∗(ω1),
σ(ω) /∈ F 0 (see Definition 5). Suppose, that there exists an ω2 ∈ B∗(ω1) such
that σ(ω2) ∈ F 0, that is, σ(β) is inferior relative to the entire set of strategy
profiles S. Then there exists a player i and a strategy ŝi ∈ Si such that

πi(ŝi, s−i) ≥ πi(σi(ω2), s−i), for all s−i ∈ S−i, (A.3)

πi(ŝi, σ−i(ω2)) > πi(σi(ω2), σ−i(ω2)). (A.4)

Hence, for every ω ∈ Bi(ω2), πi(ŝi, σ−i(ω)) ≥ πi(σi(ω2), σ−i(ω)), that is,
ω2 ∈ Bi‖ŝi � σi(ω2)‖. Furthermore, since B∗(ω1) ⊆ T ⊆ Ti and ω2 ∈
B∗(ω1), ω2 ∈ Bi(ω2). Hence, by (A.3), ‖ŝi � σi(ω2)‖ ∩ Bi(ω2) 6= ∅ , so
that, by Definition 2, player i is not rational at state ω2, contradicting the
hypothesis that ω2 ∈ B∗(ω1) and ω1 ∈ CBR. Thus, for every ω ∈ B∗(ω1),
σ(ω) ∈ U0\F 0 = U1 (recall that U0 = S).

Inductive Step. Fix an integer m ≥ 1 and suppose that, for every ω ∈
B∗(ω1), σ(ω) ∈ Um. We want to show that, for every ω ∈ B∗(ω1), σ(ω) /∈
Fm. Suppose, by contradiction, that there exists an ω2 ∈ B∗(ω1) such that
σ(ω2) ∈ Fm, that is, σ(ω2) is inferior relative to Um. Then there exist a
player i and a strategy s̃i ∈ Si such that

πi(s̃i, σ−i(ω2)) > πi(σi(ω2), σ−i(ω2)), (A.5)

πi(s̃i, s−i) ≥ πi(σi(ω2), s−i), (A.6)

for all s−i ∈ S−i such that (σi(ω2), s−i) ∈ Um.
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By the induction hypothesis, for every ω ∈ B∗(ω1), (σi(ω), σ−i(ω)) ∈ Um.
Thus, since Bi(ω2) ⊆ B∗(ω2) ⊆ B∗(ω1) (the latter inclusion follows from
transitivity of B∗), we have that, for every ω ∈ Bi(ω2), (σi(ω2), σ−i(ω)) ∈ Um

(recall that, by (Σ0), if ω ∈ Bi(ω2) then σi(ω) = σi(ω2)). Since B∗(ω1) ⊆
T ⊆ Ti and ω2 ∈ B∗(ω1), ω2 ∈ Bi(ω2). Hence ‖ŝi � σi(ω2)‖ ∩ Bi(ω2) 6= ∅ so
that, by Definition 2, player i is not rational at state ω2, contradicting the
hypothesis that ω2 ∈ B∗(ω1) and ω1 ∈ CBR. Thus, we have shown that, for
every ω ∈ B∗(ω1), σ(ω) ∈

⋂∞
m=1 U

m = U∞, that is, ω1 ∈ CBU∞.

Proof of Corollary 2. Fix a strategic-form game with ordinal payoffs
and a model M ∈MD. Suppose that ω0 ∈ CBR∩CBT∩T∪. Since ω0 ∈ T∪,
there exists a player i ∈ I such that ω0 ∈ Ti, that is, ω0 ∈ Bi(ω0). Hence,
by definition of B∗, ω0 ∈ B∗(ω0). By Proposition 1, ω0 ∈ CBU∞, that is, for
every ω ∈ B∗(ω0), ω ∈ U∞. Hence ω0 ∈ U∞.
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