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Abstract

We consider agents who attach a rational probability to every Borel event. We call these Borel probability
measures rational, and introduce the notion of a rational belief hierarchy, where the first order beliefs are
described by a rational measure over the fundamental space of uncertainty, the second order beliefs are
described by a rational measure over the product of the fundamental space of uncertainty and the opponent’s
first order rational beliefs, and so on. Then, we derive the corresponding rational type space model, thus
providing a Bayesian representation of rational belief hierarchies. Our main result shows that this type-
based representation has the counterintuitive property that some rational types are associated with non-
rational beliefs over the product of the fundamental space of uncertainty and the opponent’s types, thus
implying that the agent may attach an irrational probability to some Borel event even if she has a rational
belief hierarchy.
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1. Introduction

A belief hierarchy is a description of an agent’s beliefs about some fundamental space of uncertainty,
her beliefs about everybody else’s beliefs, and so on. During the past few decades, belief hierarchies have
become an integral tool of modern economic theory, often used to analyze games with incomplete infor-
mation (Harsanyi, 1967-68), as well as in order to provide epistemic characterizations for several solution
concepts, such as rationalizability (Brandenburger and Dekel, 1987; Tan and Werlang, 1988), Nash equilib-
rium (Aumann and Brandenburger, 1995), and correlated equilibrium (Aumann, 1987), just to mention a
few.1

Belief hierarchies are in general very complex objects, consisting of infinite sequences of probability
measures. This makes them in principle very hard to handle and sometimes even to describe, especially
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when it comes to high order beliefs. Having recognized this difficulty, Harsanyi (1967-68) proposed an
indirect Bayesian representation of belief hierarchies, known as the type space model. Formally, Harsanyi’s
model consists of a set of types for each agent and a continuous mapping from each type to the correspond-
ing conditional beliefs over the product of the fundamental space of uncertainty and the opponent’s type
space. This structure induces a belief hierarchy for every type, thus reducing the infinite-dimensional re-
gression of beliefs to a single-dimensional type. Mertens and Zamir (1985) and Brandenburger and Dekel
(1993) completed the analysis by showing the existence of the universal type space, which represents all
belief hierarchies satisfying some standard coherency properties.

In this paper we restrict attention to probabilistic beliefs that can take only rational values, e.g., we
have in mind agents who do not hold beliefs of the form “tomorrow it will rain with probability

√
2/2”.

Such beliefs are modeled by Borel probability measures that attach a rational number to every Borel event.
Throughout the paper, we call these probability measures rational.

Assuming that agents form rational beliefs over some underlying space of uncertainty Θ does not nec-
essarily restrict the language they use in order to describe their beliefs, i.e., we remain within Harsanyi’s
framework which models the agents’ language with the Borel σ-algebra of events in ∆(Θ). This implies that
infinite conjunctions/disjunctions are expressible, thus inducing a richer language than the ones typically
used in logic.2 As a consequence, our agents understand what it means to assign probability

√
2/2 to a Borel

event E ⊆ Θ, as the latter corresponds to the event {µ ∈ ∆(Θ) : µ(E) =
√

2/2} which is Borel in ∆(Θ). If on
the other hand, the language used was finitely generated, similarly to the aforementioned models of logic,
our agents would not be able to even understand what “E occurs with probability

√
2/2” meant, as such

a sentence would not be expressible in the first place.3 We further discuss the case of a finitely generated
language later in the paper.

Even though our agents can express subjective beliefs that use non-rational probabilities, they refrain
from actually doing so, as these beliefs are very complex. The idea is that agents are sophisticated enough
to be able to understand every aspect of the environment, including what it means to form any kind of
complex beliefs, but the latter is costly, and therefore they prefer to reason in simpler ways.4 In fact, recent
experimental findings on the understanding of non-rational numbers by students and mathematics teachers
indicate that subjects find non-rational numbers very complex (Fischbein et al., 1995; Sirotic and Zazkis,

2The standard syntactic models of logic typically assume that the language that describes the agents’ beliefs is finitely gen-
erated by sentences of the form “E occurs with probability at least p” where p is a rational number (Fagin and Halpern, 1994;
Aumann, 1999). The latter induces an algebra of events in ∆(Θ), which is obviously coarser than the Borel σ-algebra. Within this
framework, Heifetz and Mongin (2001) provided a sound and complete axiomatization of Harsanyi’s type-based models, while
Zhou (2010) extended their analysis to the case of finitely additive type spaces.

3Restricting an agent’s language resembles the structure typically considered in models of unawareness
(Modica and Rustichini, 1999; Halpern, 2001; Heifetz et al., 2006). More specifically, in these models an agent is aware
of a sentence if and only if she can express this sentence within the bounds of her language. Therefore, assuming that the agent’s
language cannot express non-rational probabilistic assessments is informally equivalent to the agent being unaware of the notion
of non-rational numbers.

4For instance, in a different framework, Eliaz (2003), Spiegler (2004) and Maenner (2008) study repeated games with players
who prefer to form simple beliefs.
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2007a,b). For instance, it is found that even though subjects know the concept and the structure of non-
rational numbers, they still have a tendency to rely on decimal approximations which they find more in-
tuitive. Thus, we find it plausible to assume that agents may use only rational numbers to express their
subjective beliefs.

Supposing, as usual, that an agent thinks that everybody else reasons the same way as she does, it is not
only her first order beliefs that are restricted but also her beliefs about everybody else’s beliefs, and so on.
For instance, besides Alexandra’s beliefs not assigning probability

√
2/2 to E, she also does not put positive

probability to Barney believing E with probability
√

5/5. In other words, her belief hierarchy is restricted to
consist of a sequence of rational probability measures, where the first order rational beliefs are described by
a rational measure over the underlying space of uncertainty, the second order rational beliefs are described
by a rational measure over the product of the fundamental space of uncertainty and the opponent’s space
of first order rational beliefs, and so on. We call this infinite regression of probability measures a rational
belief hierarchy.

Following Mertens and Zamir (1985) and Brandenburger and Dekel (1993), we construct a Harsanyi
type space representation of rational belief hierarchies. However, as our main result (Theorem 1) shows,
this Bayesian representation has an odd property. Namely, it contains rational types which are represented
by non-rational probability measures over the product of the fundamental space of uncertainty and the
opponent’s rational type space. In other words, there is some Borel event in this product space to which this
rational type attaches a non-rational probability even though every order of her belief hierarchy involves
only rational probabilities. We find this result quite surprising, both from a technical as well as conceptual
point of view.

The technical implication is rather straightforward. Namely, it says that, contrary to our intuition,
rational belief hierarchies are not necessarily induced by types that are associated with a rational probability
measure over the product of the underlying space of uncertainty and the opponents’ types.

Regarding the conceptual contribution on the other hand, note that the only Borel events that receive
a non-rational probability by a rational type correspond to sentences that describe the opponent’s entire
belief hierarchy, i.e., these events contain elements of the form “θ ∈ Θ occurs”, and “the opponent’s first
order beliefs are π1”, and “the opponent’s second order beliefs are π2”, and so on. Thus, the previous
result is relevant only for events that are expressible when the agent’s language is modeled by the Borel
σ-algebra, as it is the case in Harsanyi’s model, but not when the agent has a finitely generated language
like for instance in logic. But then, the natural question is whether we should actually care about this type
of events. In other words, should we consider agents with a finitely generated language and finitely additive
beliefs whose reasoning is exhausted with the formulation of their belief hierarchy, or should we also let
agents have a countably generated language and countably additive beliefs who also form beliefs about
the opponents’ entire belief hierarchy? The answer to this question is far from being straightforward and
has attracted the attention of several prominent researchers. For instance, while Savage (1972) postulates
that finitely additive subjective beliefs should be used, Harsanyi (1967-68) allows for countably additivity.
The aim of this paper is not to provide a general answer to this question, but rather to point out that in the
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existence of a countably generated language agents may not be able to form subjective beliefs about every
event in their language by using only rational numbers. Later in the paper, we also discuss our main result
in the context of a finitely generated language, like the ones typically considered in logic.

The paper is structured as follows: In Section 2 we formally introduce the notion of rational probability
measures and we prove some of their properties; Section 3 extends this framework to an interactive setting
by introducing rational belief hierarchies; In Section 4 we construct a terminal rational type space model
and prove our main result; Section 5 contains a concluding discussion.

2. Rational probability measures

We begin with some definitions and the basic notation. Let X be a Polish space, together with the Borel
σ-algebra, B.5 As usual, ∆(X) denotes the space of probability measures on (X,B), endowed with the
topology of weak convergence.6 For each µ ∈ ∆(X), let supp(µ) denote the support, i.e., the smallest closed
subset of X that receives probability 1 by µ.7

Consider the Borel probability measures that assign to every Borel event a rational number.

Definition 1. We define the set of rational probability measures by

∆Q(X) :=
{
µ ∈ ∆(X) : µ(B) ∈ Q,∀B ∈ B

}
. (1)

We use rational probability measures to model an agent who does not hold beliefs of the form “E occurs
with probability

√
2/2”. Before moving forward, recall that the language that describes the agent’s beliefs

is a set of sentences each of which semantically corresponds to a subset of ∆(X), i.e., the language contains
exactly those events with the property that the agent understands their meaning. Notice that a language
is typically closed under (finitely or countably many) logical operators. In our case, the agent’s language
contains all events in the Borel σ-algebra generated by the topology of weak convergence. Hence, the agent
does understand what it means to put probability

√
2/2 to E, as the latter is countably generated by events

of the form {µ ∈ ∆(X) : µ(E) ≥ p}. Obviously, this language is richer than the one used in logic, where only
finitely generated sentences are expressible, and therefore the agent does not even understand the sentence
“E occurs with probability

√
2/2”. In either case, we assume that the agent never uses such beliefs, as they

are too complex.
Below, we provide some results on rational probability measures, which we will use later in the paper.

Throughout this section, unless stated otherwise, we assume that X is separable and metrizable.

5A topological space is called Polish whenever it is separable and completely metrizable. Examples of Polish spaces include
countable sets endowed with the discrete topology and Rn together with the usual topology. Closed subsets of Polish spaces
endowed with the relative topology are Polish. The countable product of Polish spaces, together with the product topology, is
also Polish.

6The topology of weak convergence, which is usually denoted by w∗, is the coarsest topology that makes the mapping
µ 7→

∫
f dµ continuous, for every bounded and continuous real-valued function, f . If X is Polish, then ∆(X) endowed with the

topology of weak convergence is also Polish. For further properties of w∗, we refer to Aliprantis and Border (1994, Ch. 15).
7If X is separable and metrizable, the support is unique (Parthasarathy, 1967, Thm. 2.1).
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Proposition 1. Every µ ∈ ∆Q(X) has a finite support.

The previous, quite surprising result rules out all probability measures with countably infinite support,
even if each singleton in the support receives a rational probability. The following example illustrates such
a case.

Example 1. Let X = {x1, x2, . . . } and suppose that µ ∈ ∆(X) assigns probability 2−k to each xk. It is
straightforward verifying that µ is a probability measure. Now, consider an arbitrary ξ ∈ (0, 1), and construct
the Borel subset Bξ ⊆ X so that xk ∈ Bξ if and only if ξ ∈ [ 1

2k ,
2
2k ) ∪ · · · ∪ [ 2k−1

2k , 1). Observe that µ(Bξ) = ξ,
implying that for every non-rational ξ there is a Borel event receiving the non-rational probability ξ, and
therefore µ is not a rational measure. ▹

The following result proves that rational probability measures form a Borel subset in the space of Borel
probability measures. Thus, ∆Q(X) can be expressed as an event within the language used by the agents.

Proposition 2. ∆Q(X) is a Borel subset of ∆(X).

From a technical point of view, the previous result allows us to relate the framework used in this paper
with the existing literature (see Proposition 3 in the next section).

3. Rational belief hierarchies

Let Θ be a Polish space together with the Borel σ-algebra, B0. For instance, in a game, each θ ∈
Θ corresponds to a payoff vector (Harsanyi, 1967-68), or a strategy profile (Aumann and Brandenburger,
1995; Tan and Werlang, 1988), or a combination of the two. Throughout the paper, we refer to Θ as the
underlying – else called fundamental – space of uncertainty. Let I = {a, b} be the set of agents, with typical
elements i and j.8 Each agent forms beliefs about Θ (first order beliefs), beliefs about Θ and the opponent’s
first order beliefs (second order beliefs), and so on. Such a sequence is called a belief hierarchy.

Formally, consider the following sequence of Polish spaces:

Ψ0 := Θ

Ψ1 := Ψ0 × ∆(Ψ0)
...

Ψk+1 := Ψk × ∆(Ψk)
...

A belief hierarchy is an element of

T0 :=
∞∏

k=0

∆(Ψk). (2)

8Our analysis can be directly generalized to any finite set of agents, in which case we obviously allow for correlated beliefs,
as usual.
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For some (π1, π2, . . . ) ∈ T0, the Borel probability measure πk ∈ ∆(Ψk−1) denotes the k-th order beliefs.
In this paper, we consider agents who form only rational beliefs. That is, for some θ ∈ Θ, agent i never

believes that θ occurs with probability
√

2/2. The latter implies that we restrict i’s first order beliefs to the
space of rational probability measures. Furthermore, i is certain that j’s does not put positive probability to
the event that “ j assigns probability

√
3/3 to θ”. That is, we also restrict i’s second order beliefs to rational

probability measures over the space of rational probability measures.9 Likewise, we restrict higher order
beliefs.

Formally, consider the sequence

Θ0 := Θ

Θ1 := Θ0 × ∆Q(Θ0)
...

Θk+1 := Θk × ∆Q(Θk)
...

A rational belief hierarchy is a sequence (π1, π2, . . . ), with πk ∈ ∆Q(Θk−1) denoting the k-th order beliefs.
Let

T Q
0 :=

∞∏
k=0

∆Q(Θk) (3)

denote the space of all rational belief hierarchies, endowed with the product topology.
Intuitively, rational belief hierarchies form a strict subset of all belief hierarchies. However, observe

that formally T Q
0 is not a subset of T0, because strictly speaking ∆Q(Θk) is not a subset of ∆(Ψk). Therefore,

before moving forward, we would like to make sure that the intuitive idea of one being a subset of the
other is compatible with our formal model. The following result serves this purpose, by showing that T Q

0 is
embedded as a Borel subset of T0.

Proposition 3. T Q
0 is homeomorphic to a Borel subset of T0.

Throughout the paper, we denote this embedding by

h : T Q
0 ↪→ T0. (4)

As usual, with slight abuse of terminology, whenever we talk about a rational belief hierarchy (π1, π2, . . . ) ∈
T Q

0 we actually refer to its image h(π1, π2, . . . ) ∈ T0, and therefore we will informally consider T Q
0 to be a

Borel subset of T0.

9As we have already mentioned, if we assumed instead that i’s language was finitely generated similarly to what is done in
logic, we could also informally interpret our restriction of rational beliefs as the beliefs of an agent who is unaware of the concept
of non-rational numbers. In such a case, i would not even understand the meaning of the sentence “ j assigns probability

√
3/3

to E”, and therefore i would not be able to put positive probability to it.
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4. Rational types

In general, belief hierarchies are very large and complex objects, and as such it is really hard directly
working with them. Harsanyi (1967-68) was the first one to circumvent this problem by proposing a com-
pact way of expressing belief hierarchies, known in the literature as the type space model. Formally, this
model consists of a tuple (Θ,Ta,Tb, ga, gb), where Ti is a Polish space of types with typical element ti, and
gi : Ti → ∆(Θ × T j) is a continuous function. In a type space, each ti ∈ Ti is associated with a unique belief
hierarchy derived as follows: For each type ti ∈ Ti, the first order beliefs, π1(ti) ∈ ∆(Ψ0), attach probability

π1(ti)(B0) =
∫

(θ,t j):θ∈B0

dgi(ti) (5)

to every Borel event B0 ⊆ Ψ0. The k-th order beliefs, πk(ti) ∈ ∆(Ψk−1), attach probability

πk(ti)(Bk−1) =
∫

(θ,t j):(θ,π1(t j),...,πk−1(t j))∈Bk−1

dgi(ti) (6)

for every Borel subset Bk−1 ⊆ Ψk−1. For a detailed presentation on how the entire belief hierarchy is derived
from a type space model, we refer to Siniscalchi (2007).

We say that a type space model induces a Bayesian representation of the belief hierarchies that are
associated with each type if gi is injective, i.e., each ti ∈ Ti is mapped to a different probability measure gi(ti),
and therefore can be identified by a conditional belief over Θ × T j. We say that the Bayesian representation
of Ti is terminal whenever for every belief hierarchy there exists a type inducing it. Finally, we call a
Bayesian representation complete, if gi is surjective, implying that every measure in ∆(Θ × T j) is the image
of some type in Ti. Mertens and Zamir (1985), and Brandenburger and Dekel (1993) showed that Harsanyi’s
framework is sufficiently rich to model all instances of interactive uncertainty, in that there is a type space
model (Θ, T ∗a ,T

∗
b , g

∗
a, g
∗
b), with T ∗a = T ∗b = T ∗ and g∗a = g∗b = g∗, which is both complete and terminal. This

construction is called the universal type space model.10

Brandenburger and Dekel (1993) started by imposing a standard coherency condition, which states that
the k-th and (k + 1)-th order beliefs cannot contradict each other. Formally, let Tc := {(π1, π2, . . . ) ∈ T0 :
margΨk−2

πk = πk−1,∀k > 1}. Then, they showed that there is a homeomorphism

f ∗ : Tc → ∆(Θ × T0). (7)

This homeomorphism is a natural one, in that for all (π1, π2, . . . ) ∈ Tc,

margΨk−1
f ∗(π1, π2, . . . ) = πk. (8)

Then, they further restricted attention to belief hierarchies that satisfy, not only coherency, but also common

10Heifetz (1993) generalized this representation result to cases where the underlying space of uncertainty is Hausdorff, while
Heifetz and Samet (1998) and Pinter (2005) considered a purely measurable underlying space of uncertainty.
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certainty in coherency. Formally, consider the following sequence of subsets of Tc:

T1 := Tc

T2 :=
{

t ∈ Tc : f ∗(t)(Θ × T1) = 1
}

...

Tk :=
{

t ∈ Tc : f ∗(t)(Θ × Tk−1) = 1
}

...

Observe that T1 contains the belief hierarchies satisfying coherency, T2 those satisfying certainty in every-
body’s coherency, and so on. Thus,

T ∗ :=
∞∩

k=1

Tk (9)

contains the belief hierarchies that satisfy both coherency and common certainty in coherency. Finally,
Brandenburger and Dekel (1993, Prop. 2) showed that there is a homeomorphism

g∗ : T ∗ → ∆(Θ × T ∗), (10)

implying that there is a universal Bayesian representation of T ∗.
The first natural question arising at this point is whether we can extend their result to the case of rational

belief hierarchies. In other words, is there a universal type space representation of rational belief hierarchies
in the same line as the standard results by Mertens and Zamir (1985) and Brandenburger and Dekel (1993)?

We retain the standard coherency restriction. Formally, let

T Q
c :=

{
(π1, π2, . . . ) ∈ T Q

0 : margΘk−2
πk = πk−1, ∀k > 1

}
(11)

= T Q
0 ∩ Tc

denote the set of coherent belief hierarchies.
Similarly to Brandenburger and Dekel (1993, Prop. 1), the following result associates each coherent

rational belief hierarchy to a probability measure over the product of the underlying space of uncertainty
and the space of the opponent’s rational hierarchies. This induces an injective mapping, implying that there
is no pair of coherent types associated with the same distribution over Θ × T Q

0 .

Proposition 4. There is an injection f : T Q
c → ∆(Θ × T Q

0 ).

It is rather easy to see that the function f is in fact the same as f ∗ from Brandenburger and Dekel (1993,
Prop. 1), but restricted to rational belief hierarchies, i.e., for every t ∈ T Q

c and each Borel subset B ⊆ Θ×T Q
0 ,

f (t)(B) = f ∗(h(t))
({(θ, t) ∈ Θ × T0 : (θ, h−1(t)) ∈ B}). (12)

Throughout the paper, we treat f and f ∗ as the same function. Note that f inherits from f ∗ the property
of being a natural mapping, in that every coherent hierarchy is associated with a probability measure over
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Θ ×∏∞k=0 ∆
Q(Θk) that has the property that its marginal distribution over Θk−1 coincides with the k-th order

beliefs induced by this hierarchy, i.e., for every (π1, π2, . . . ) ∈ T Q
c

margΘk−1
f (π1, π2, . . . ) = πk. (13)

As usual, we further restrict belief hierarchies so that they satisfy, not only coherency, but also common
certainty in coherency. Formally, consider the following sequence of subsets of T Q

c :

T Q
1 := T Q

c

T Q
2 :=

{
t ∈ T Q

c : f (t)(Θ × T Q
1 ) = 1

}
...

T Q
k :=

{
t ∈ T Q

c : f (t)(Θ × T Q
k−1) = 1

}
...

Note that T Q
1 contains the belief hierarchies that satisfy coherency, T Q

2 contains the belief hierarchies that
satisfy certainty in everybody coherency, and so on. Thus, the types in

T Q :=
∞∩

k=1

T Q
k (14)

satisfy coherency and common certainty in coherency. Henceforth, whenever we write “rational belief
hierarchies” or “rational types”, we implicitly refer to elements of T Q, thus omitting to explicitly say that
they satisfy coherency and common certainty in coherency. The following result proves the existence of a
terminal Bayesian representation of rational belief hierarchies, implying that every rational belief hierarchy
is identified by a Borel probability measure on Θ × T Q.

Proposition 5. There is an injection g : T Q → ∆(Θ × T Q).

Once again, g coincides with the corresponding mapping g∗ used by Brandenburger and Dekel (1993,
Prop. 2) when restricted on the domain h(T Q). That is, for every t ∈ T Q and each Borel subset B ⊆ Θ × T Q,

g(t)(B) = g∗(h(t))
({(θ, t) ∈ Θ × T Q : (θ, h−1(t)) ∈ B}). (15)

Obviously, the representation induced by g is not complete, in that there are measures in ∆(Θ × T Q)
which are not the image of any rational type. The latter is not surprising, as one can easily see that there
exist probability measures π ∈ ∆(Θ× T Q) with margΘ π < ∆

Q(Θ), e.g., a measure with π({θ} × T Q) =
√

2/2.
What is really interesting, as well as far from obvious, is the conclusion of the following theorem.

Accordingly, it is shown that there exist rational belief hierarchies that are mapped via g to non-rational
probability measures over Θ × T Q.

Theorem 1. There is some t ∈ T Q such that g(t) < ∆Q(Θ × T Q).
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The technical implication of this result is straightforward. Namely, unlike what one would expect, we
show that in order to represent some rational belief hierarchies we need to construct a Harsanyi type space
model that associates these hierarchies with a non-rational probability measure over the product of the
fundamental space of uncertainty and the opponent’s types.

The conceptual contribution, on the other hand, relies on the observation that there exists a rational type
t ∈ T Q associated with an infinite-support probability measure over Θ × T Q (see the proof of Theorem
1 in Appendix C). Then, it follows from Proposition 1 that there exists some Borel event in Θ × T Q

that receives a non-rational probability by g(t). That is, such an event describes the underlying space of
uncertainty and the opponent’s entire belief hierarchy, as it contains elements of the form (θ, π1, π2, . . . ) ∈
Θ×∆Q(Θ0)×∆Q(Θ1)× · · · . The natural question that arises at this point is whether we should be interested
in an agent’s beliefs about the opponent’s entire belief hierarchy or just in the agent’s own belief hierarchy.
In other words, does the agent reason about the opponent’s type, or is her reasoning exhausted by merely
forming her own belief hierarchy like in the models of logic where events in Θ × T Q are not expressible in
the first place? The answer to this question is not straightforward at all, and goes deep inside philosophical
discussions on the nature of subjective beliefs, and whether these should be finitely or countably additive.11

Though the aim of this paper is not to provide a general answer to this question, our result contributes to
this debate by showing that if the language is modeled by the Borel σ-algebra in Θ×T Q – like in Harsanyi’s
framework – agents may not be able to express all their subjective beliefs by using only rational numbers. In
the next section, we discuss whether, in the light of our previous conclusion, it would be more appropriate
to study rational beliefs in the context of a finitely generated language.

5. Discussion

5.1. Finitely additive rational beliefs

As we have already mentioned in the previous section, we model rational beliefs by Borel probability
measures, implying that we consider agents with a countably generated language described by the Borel
σ-algebra. In other words, ∆(Θ) is endowed with the σ-algebra that is (countably) generated by events of
the form {µ ∈ ∆(Θ) : µ(E) ≥ p} where E ⊆ Θ is Borel and p ∈ [0, 1] is rational. This assumption is rather
standard within game theory, (explicitly or implicitly) imposed by several authors (e.g., Harsanyi, 1967-68;
Brandenburger and Dekel, 1993).

On the other hand, the standard syntactic models of logic typically consider a finitely generated language
(Fagin and Halpern, 1994; Aumann, 1999). That is, agents can only express sentences that are finitely
generated by events of the form {µ ∈ ∆(Θ) : µ(E) ≥ p}, thus implicitly postulating that beliefs are finitely
additive, in accordance with Savage’s idea that subjective beliefs should be modeled by finitely additive
probability measures. In this framework, Heifetz and Mongin (2001) provided an axiomatic foundation
for Harsanyi’s type spaces. Their setting also allows for types that assign a non-rational probability to a

11In fact, while Savage (1972) postulates that subjective beliefs should be finitely additive, Harsanyi (1967-68) considers
countable additive beliefs.
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measurable event in the opponent’s type space (though they do not explicitly mention this). In this respect,
the technical implication of their result is similar to ours, but in their case such measurable events are not
expressible in the first place, and therefore there is no conceptual controversy. More recently, Meier (2006)
constructed a universal type space for finitely additive belief hierarchies, and Zhou (2010) extended the
Heifetz-Mongin axiomatization to finitely additive type spaces.

One natural question at this point is whether we could also restrict focus to finitely additive rational
beliefs, thus embedding our construction to the universal type space of Meier (2006) instead of viewing
it as a subspace of the Brandenburger-Dekel universal type space. At first, this might seem straightfor-
ward. However, as it turns out, there are several differences between our model and such an alternative
construction. For instance, if we focused on finitely additive beliefs, Proposition 1 would not hold any
more, implying that we would allow for rational probability measures with an infinite support. To see this,
consider a countable fundamental space of uncertainty Θ = {θ1, θ2, . . . } together with the algebra generated
by all finite subsets, and the probability measure introduced in Example 1 which assigns to each singleton
θk probability 2−k. Now, observe that this probability measure would still be rational, as it would assign a
rational number to every event in the algebra that describes the agent’s language. In this respect, our result
also differs from the implication of the main result in Heifetz and Mongin (2001) that we mentioned above,
in that they allow for a richer set of beliefs than we do, even though their language is coarser than ours.

5.2. Other related literature

The notion of uncertainty which is modeled by rational probability measures is not new in the literature.
For instance, several authors have studied the rational correlated equilibrium12 and the conditions under
which it can be generated though a mediator (e.g., Lehrer, 1996; Krishna, 2007). Other authors have studied
utility theory with lotteries that put a rational probability to every outcome (Shepherdson, 1980; Hu, 2009).

The obvious conceptual difference between our work and the aforementioned papers obviously lies on
the fact that in our model we consider subjective beliefs, contrary to the objective beliefs that are (only
implicitly) present in these papers. Such a difference becomes very significant when we study higher order
beliefs, as it would be very difficult to motivate the restriction to rational probabilities in such a case. This
is due to the fact that agents cannot observe another agent’s state of mind, and consequently they cannot
construct an objective lottery representing the agent’s uncertainty about the opponent’s first order beliefs.

Appendix A. Proofs of Section 2

Proof of Proposition 1. Consider an arbitrary µ ∈ ∆Q(X), and consider the set of singletons with positive
measure,

Γ := {x ∈ X : µ({x}) > 0}. (A.1)

First, we show that Γ is non-empty. Suppose that µ is a non-atomic measure. Then, it follows from
Fremlin (2003, p. 46) that for every ξ ∈ (0, 1) there is some B ∈ B such that µ(B) = ξ, which contradicts

12A rational correlated equilibrium in a normal form game is one that assigns a rational probability to every strategy profile
(Lehrer, 1996).
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µ ∈ ∆Q(X) if we consider some ξ ∈ R \ Q. Hence, there is at least one atom A ∈ B. Now, it follows from
Aliprantis and Border (1994, Lem. 12.18) that A contains a singleton of positive measure, implying that Γ
is non-empty.

Second, we show that Γ is countable. Let {Γn ; n ≥ 1} be the countable partition of Γ, defined by

Γn :=
{

x ∈ Γ :
1

n + 1
< µ({x}) ≤ 1

n

}
.

If Γ is uncountable, there is some n ≥ 1 such that Γn is uncountable, implying that there is a countably
infinite {x1, x2, . . . } ⊆ Γn. Finally, observe that

µ(X) ≥ µ(Γn)

≥
∞∑

k=1

µ({xk})

>

∞∑
k=1

1
n + 1

= ∞,

which is a contradiction.
Third, we show that µ(Γ) = 1. Assume otherwise, implying that µ(X \ Γ) > 0. Since Γ is countable,

it is Borel, implying that X \ Γ is also Borel. Moreover, recall from the first step of the proof that µ is an
atomic measure. Hence, it follows from Aliprantis and Border (1994, Lem. 12.18) that there is x ∈ X \ Γ
with µ({x}) > 0, implying, by Eq. (A.1), that x ∈ Γ, which is a contradiction.

Now, suppose that Γ = {x1, x2, . . . } is infinite. Observe that the sequence of rational numbers {µ({xk})}k>0

satisfies
∑∞

k=1 µ({xk}) = 1. Then, it follows from Badea (1987, Prop., p. 225) that there is a subsequence
{yk}k>0 of {xk}k>0 such that

∑∞
k=1 µ({yk}) is an irrational number, thus contradicting the hypothesis that µ ∈

∆Q(X).
Therefore, Γ is necessarily finite. Moreover, it is closed, as it is the finite union of singletons, implying

that supp(µ) = Γ, which completes the proof.

Proof of Proposition 2. For some finite N ⊆ N, consider the subset of the rational numbers QN := {m/n :
m = 0, . . . , n ; n ∈ N} that can be written as a fraction with the denominator belonging to N. Then, define
the set of N-rational probability measures by

∆N(X) :=
{
µ ∈ ∆(X) : µ(B) ∈ QN ,∀B ∈ B

}
. (A.2)

Tsakas (2012) showed that ∆N(X) is closed in ∆(X). However, for the sake of completeness, we repeat the
proof here. It suffices to show that an arbitrary convergent sequence {µk} of elements of ∆N(X) has its limit

in ∆N(X), i.e., if µk
w∗→ µ, then µ ∈ ∆N(X). Let n̄ := maxn∈N n. Let also d : X×X → R be a metric compatible

with the topology on X, and for every x ∈ X and δ > 0, define an open neighborhood of x as B(x, δ) := {x′ ∈
X : d(x, x′) < δ}. Consider an arbitrary x ∈ X, and suppose there is some δ > 0 such that there are finitely
many k > 0 with µk

(
B(x, δ)

)
> 0. Then, obviously, there are infinitely many k > 0 such that µk

(
B(x, δ)

)
= 0,
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implying that lim inf µk
(
B(x, δ)

)
= 0. Hence, it follows from µk

w∗→ µ that µ
(
B(x, δ)

) ≤ lim inf µk
(
B(x, δ)

)
= 0

(Aliprantis and Border, 1994, Thm. 15.3), implying that x < supp(µ). If, on the other hand, for every δ > 0
there are infinitely many k > 0 such that µk

(
B(x, δ)

)
> 0, it follows from µk ∈ ∆N(X) that there are infinitely

many k > 0 such that µk
(
B(x, δ)

) ≥ 1/n̄, where B(x, δ) := {x′ ∈ X : d(x, x′) ≤ δ} is the closure of B(x, δ).
Therefore, µ

(
B(x, δ)

) ≥ lim sup µk
(
B(x, δ)

) ≥ 1/n̄ (Aliprantis and Border, 1994, Thm. 15.3). Now, consider
a sequence of positive reals {δn} with δn ↓ 0, which induces a sequence of Borel events {B(x, δn)} such
that lim supn>0 B(x, δn) = {x}. Then, it follows from µ

(
lim supn>0 B(x, δn)

) ≥ lim supn>0 µ
(
B(x, δn)

) ≥ 1/n̄
(Billingsley, 1995, Thm. 4.1) that µ({x}) ≥ 1/n̄. Hence, x ∈ supp(µ) if and only if µ({x}) ≥ 1/n̄, implying
that supp(µ) is finite. Let x ∈ supp(µ). It follows from Aliprantis and Border (1994, Thm. 15.3) that for
every δ > 0,

µ
(
B(x, δ)

) ≥ lim sup µk
(
B(x, δ)

)
≥ lim sup µk

(
B(x, δ)

)
≥ lim inf µk

(
B(x, δ)

)
≥ µ(B(x, δ)

)
. (A.3)

Since supp(µ) is finite, there is some ρ > 0 such that x′ < B(x, ρ) for any x′ ∈ supp(µ) \ {x}, imply-
ing that µ

(
B(x, δ)

)
= µ
(
B(x, δ)

)
= µ({x}) for every δ < ρ. Hence, it follows from (A.3) that µ({x}) =

lim µk
(
B(x, δ)

)
. Finally, since the sequence {µk

(
B(x, δ)

)} contains only elements of the finite set QN , it
follows that lim µk

(
B(x, δ)

) ∈ QN .
Now, observe that ∆Q(X) =

∪
n∈N ∆

{1,...,n}(X). It follows from the previous step that ∆{1,...,n}(X) is closed,
and therefore Borel in ∆(X) for every n ∈ N, which completes the proof.

Appendix B. Proofs of Section 3

Proof of Proposition 3. We proceed inductively to show that for every k ≥ 0

• Θk is embedded as a Borel subset of Ψk, and

• ∆Q(Θk) is embedded as a Borel subset of ∆(Ψk).

First, observe that Θ0 = Ψ0 = Θ, implying that Θ0 is embedded as a Borel subset of Ψ0 via the identity
function. It follows from Proposition 2 that ∆Q(Θ0) is a Borel subset of ∆(Ψ0). Hence, ∆Q(Θ0) is embedded
as a Borel subset of ∆(Ψ0) via the identity function.

Now, suppose that Θk is embedded as a Borel subset of Ψk via ϑk : Θk → Ψk, and ∆Q(Θk) is embedded
as a Borel subset of ∆(Ψk) via δk : ∆Q(Θk) → ∆(Ψk). Define the function ϑk+1 : Θk+1 → Ψk+1 such that
for each (θk, µk) ∈ Θk × ∆Q(Θk), ϑk+1(θk, µk) :=

(
ϑk(θk), δk(µk)

)
. Obviously, it follows from above that Θk+1

is embedded as a Borel subset of Ψk+1 via ϑk+1, and therefore Θk+1 is homeomorphic to ϑk+1(Θk+1). Hence,
∆(Θk+1) is homeomorphic to ∆

(
ϑk+1(Θk+1)

)
. Since ϑk+1(Θk+1) is Borel in Ψk+1, there is a homeomorphism

∆
(
ϑk+1(Θk+1)

) 7→ {µ ∈ ∆(Ψk+1) : µ
(
ϑk+1(Θk+1)

)
= 1}, where {µ ∈ ∆(Ψk+1) : µ

(
ϑk+1(Θk+1)

)
= 1} is a Borel
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subset of ∆(Ψk+1). The latter implies that there is a homeomorphism νk+1 : ∆(Θk+1) → {µ ∈ ∆(Ψk+1) :
µ
(
ϑk+1(Θk+1)

)
= 1}. By Proposition 2, ∆Q(Θk+1) is Borel in ∆(Θk+1). Let δk+1 : ∆Q(Θk+1) → {µ ∈ ∆(Ψk+1) :

µ
(
ϑk+1(Θk+1)

)
= 1} be the same mapping as νk+1 but restricted in the domain ∆Q(Θk+1). Then, it follows

directly that δk+1 embeds ∆Q(Θk+1) as a Borel subset on {µ ∈ ∆(Ψk+1) : µ
(
ϑk+1(Θk+1)

)
= 1} and therefore on

∆(Ψk+1), which completes the proof by induction.

Appendix C. Proofs of Section 4

Proof of Proposition 4. Since Θ0 = Θ is Polish, it is by definition separable and metrizable. Supposing that
Θk is separable and metrizable, ∆Q(Θk) is separable and metrizable too, as it is a subspace of ∆(Θk), which is
also separable and metrizable (Aliprantis and Border, 1994, Thm 15.12). Thus, Θk+1 = Θk × ∆Q(Θk) is also
separable and metrizable, and therefore it follows by induction that every Θk is separable and metrizable.
Since πk+1 ∈ ∆Q(Θk) has a finite support (by Proposition 1), it follows that it is tight, and therefore, by
applying a version of Kolmogorov extension theorem (Aliprantis and Border, 1994, Cor. 15.28), we prove
the existence of a unique measure π ∈ ∆(Θ × T Q

0 ) that extends every πk.

Proof of Proposition 5. The proof follows directly from T Q = {t ∈ T Q
c : f (t)(Θ × T Q) = 1}.

Proof of Theorem 1. Take two arbitrary θ1, θ2 ∈ Θ, and consider the following sequence:

P1 :=
{

p1 ∈ ∆Q(Θ0) : p1(θ) = 1, for some θ ∈ {θ1, θ2}
}

P2 :=
{

p2 ∈ ∆Q(Θ1) : p2(θ, p1) = 1, for some (θ, p1) ∈ {θ1, θ2} × P1
}

...

Pk :=
{

pk ∈ ∆Q(Θk−1) : pk(θ, p1, . . . , pk−1) = 1, for some (θ, p1, . . . , pk−1) ∈ {θ1, θ2} × P1 × · · · × Pk−1
}

...

Let Tp be the set of types (p1, p2, . . . ) ∈
∏

k>0 Pk that satisfy coherency and common certainty in coherency.
Observe that for every p1 ∈ P1 there are exactly two measures in P2 such that (p1, p2) does not contradict
coherency. Likewise, for every (p1, p2) ∈ P1 × P2 that does not contradict coherency, there are exactly two
measures p3 ∈ P3 such that (p1, p2, p3) does not contradict coherency and 1-fold certainty in coherency.
Inductively, for each k > 1, for every (p1, . . . , pk−1) ∈ P1 × · · · × Pk−1 that does not contradict coherency,
1-fold, . . . , and (k − 3)-fold certainty in coherency, there are exactly two measures pk ∈ Pk such that
(p1, . . . , pk) does not contradict coherency, 1-fold, . . . , and (k − 2)-fold certainty in coherency. Therefore,
Tp has the same cardinality as {0, 1}N, implying that it is uncountable. Now, consider a belief hierarchy
(π1, π2, . . . ) such that

π1 is uniformly distributed over Θ,

π2 is uniformly distributed over Θ × projP1
Tp,

...
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πk is uniformly distributed over Θ × projP1×···×Pk−1
Tp

...

First observe that (π1, π2, . . . ) satisfies coherency and common certainty in coherency. Moreover, by con-
struction (π1, π2, . . . ) ∈ T Q, and therefore g(π1, π2, . . . ) ∈ ∆(Θ × T Q). However, observe that g(π1, π2, . . . )
has an infinite support, and therefore by Proposition 1, g(π1, π2, . . . ) < ∆Q(Θ × T Q), which completes the
proof.
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