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Abstract

Is it possible to guarantee that the mere exposure of a subject to a belief elicitation task
will not affect the very same beliefs that we are trying to elicit? In this paper, we introduce
mechanisms that make it simultaneously strictly dominant for the subject (a) not to acquire
any information that could potentially lead to belief updating as a response to the incentives
provided by the mechanism itself, and (b) to report his beliefs truthfully. Such mechanisms
are called robust scoring rules. We prove that robust scoring rules always exist under mild
assumptions on the subject’s costs for acquiring information. Moreover, every scoring rule can
become approximately robust, in the sense that if we scale down the incentives sufficiently, we
will approximate with arbitrary precision the beliefs that the subject would have held if he had
not been confronted with the belief-elicitation task.

Keywords: Non-invasive belief elicitation, prior beliefs, rational inattention, posterior-separability,
Shannon entropy, population beliefs.
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1. Introduction

Subjective beliefs constitute one of the most common latent variables of interest in economics (Man-
ski, 2004). Having recognized this, statisticians and economists have developed mechanisms, called
proper scoring rules, that incentivize the economic agent to reveal his true latent belief by – roughly
speaking – rewarding reports that are close to the realized state and punishing reports that are fur-
ther away from it (Brier, 1950; Good, 1952). Due to their solid theoretical foundations (i.e., the fact
that they are incentive-compatible) together with the overwhelming experimental evidence which
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Marcus Pivato, Arno Riedl, Marciano Siniscalchi, Jakub Steiner, Mathias Staudigl, Stefan Terstiege, Nikolas Tsakas,
Mark Voorneveld and the audiences in LOFT (Bocconi), BGSE Summer Forum (Pompeu Fabra), Bayesian Crowds
(Tinbergen Institute), EEA-ESEM (Cologne), RWTH Aachen University, University of Athens and University of
Bielefeld for helpful comments and fruitful discussions. I am also grateful to Lars Wittrock for his research assistance.
Finally I would like to thank the Economics Department at UC Davis for its hospitality while working on this project.
†Department of Economics (AE1), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands;

Homepage: www.elias-tsakas.com; E-mail: e.tsakas@maastrichtuniversity.nl

1

www.elias-tsakas.com
mailto:e.tsakas@maastrichtuniversity.nl


suggests that incentives matter (Harrison and Rütstrom, 2008; Harrison, 2014), proper scoring rules
have been extensively used both in applications and in (lab and field) experiments.

One of the main concerns with proper scoring rules is that, by rewarding accurate reports, they
provide the agent not only with direct incentives to report truthfully, but also with indirect incentives
to acquire information before stating their report. Such information acquisition will typically lead to
belief updating. Thus, even if the direct effect is strong enough to induce truthful reporting in the
end, the reported beliefs might not be the ones that the agent would have held in the absence of the
elicitation task. In other words, as Schotter and Trevino (2014, p.109) eloquently put it,

“the very act of belief elicitation may change the beliefs of subjects from their true latent
beliefs or the beliefs they would hold (respond to) if those beliefs were not elicited (we
might have a type of Heisenberg problem)”.

Hence, our aim is to find mechanisms that provide strong enough incentives to induce truth-telling,
but at the same time not so strong to lead to information acquisition.

But why would one care about the beliefs the agent would have held before the elicitation task,
rather than the (perhaps more accurate) ones that are typically formed after information has been
acquired as a response to the incentives provided by the elicitation task? Take the example of an
investigator whose aim is to elicit the distribution of beliefs in a population. For instance, consider a
marketing campaign interested in eliciting the average subjective belief in a population of consumers
(e.g., about a new product being superior to the existing ones), or a political campaign interested in
the median belief in a population of voters (e.g., about a proposed project being successful or about
the outcome of the election). Such statistics of the population beliefs can be used as explanatory
variables for population behavior, and therefore they are often crucial for pending strategic decisions
by the respective campaign. The bottom line is that the investigator is not interested in learning the
true state of nature per se, but rather in finding out what the population believes about the state of
nature. Thus, she draws a representative sample from the respective population, she elicits individual
beliefs from the sample, and then she uses the empirical frequency to estimate the distribution of the
population beliefs. Crucially, the investigator wants the individuals in the sample to report the beliefs
they would have held, had the survey not taken place. Otherwise, her estimate of the population
beliefs will be biased.

As an alternative example, consider a lab experiment where both beliefs and choices are observed.
One of the main assumptions that we – implicitly or explicitly – impose is stationarity of beliefs across
the different tasks. For instance, if we want to use the beliefs as an explanatory variable for choice,
we would ideally want to make sure that the elicited beliefs are the ones the subject would be holding
at the time of his decision, or at least they do not deviate much from those benchmark beliefs.

Thus, the general question addressed in this paper is whether we can construct non-invasive
scoring rules that elicit the beliefs the agent would have held in the absence of our elicitation task. In
other words, we want to guarantee that the agent will not find it beneficial to acquire any information
that could potentially distort his beliefs before stating his report. Let us stress that we are not aiming
at discussing the practical implementation of such mechanisms, nor do we have something significant
to say in relation to role of individual characteristics (e.g., risk-preferences) or biases (e.g., failure to
do Bayesian updating) that empirically affect the elicited beliefs. Instead, our contributions are (i) to
provide a theoretical benchmark for formally modelling and studying invasiveness of belief-elicitation
tasks, and (ii) to establish conditions under which non-invasive scoring rules can be constructed.

Formally, we consider scoring rules in a model with hidden information costs, which typically
emerge as an expression of rationally inattentive preferences (for an overview, see Caplin, 2016). In
our formal model, there is a (male) agent – henceforth called the subject – who has a latent (prior)
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probabilistic belief for some fixed event.1 A (female) agent – henceforth called the experimenter –
wants to elicit this belief, and to this end she asks the subject to report it. In order to incentivize
him to report truthfully, she designs a scoring rule that rewards the subject on the basis of his report
and the realization of the event. Before stating his report, the agent can acquire information through
a costly attention strategy and then reports his belief after having perhaps updated his prior (see
Figure 1 for the timeline).

(time)t = 0

Experimenter chooses
a scoring rule

t = 1

Nature draws
a state t = 2

Subject chooses
attention strategy

t = 3

Subject updates
latent belief

t = 4

Subject reports

a belief

t = 5

State is
revealed

t = 6

Subject
is paid

Figure 1: Boxes above the line are observed symmetrically by the subject and the experimenter. Boxes
below the line are only observed by the subject. The shaded box is observed with a delay, i.e., it is realized
at t = 1 and observed at t = 5.

In order to guarantee that the subject’s prior belief is elicited, the scoring rule must make it
simultaneously (a) strictly dominant to not acquire any information (i.e., to choose the degenerate
zero-attention strategy), and (b) strictly dominant to report truthfully (i.e., the scoring rule must
be proper). Such a mechanism is called robust scoring rule. Two natural questions arise then. Does
a robust scoring rule exist? And if yes, how does it look like? Note that, in expectation, every
attention strategy yields a benefit (due to the fact that reporting is postponed till after information
has been acquired and the beliefs have been updated) and a cost (due to the fact that information
acquisition is costly). Thus, the experimenter’s problem boils down to finding a scoring rule that
provides sufficiently strong incentives for the agent to report truthfully, but not so strong to offset
the costs of acquiring information. In this sense our work can be seen as part of a larger literature
that studies the tradeoff between material payoffs and cognitive costs (Alaoui and Penta, 2016, 2018;
Alaoui et al., 2019). The novelty of our work is that we try to exploit – rather than to overcome –
the presence of such costs.

Before moving on with our results, let us make some important remarks on our basic model. First,
our entire analysis can be directly extended from a rational inattention framework (where costs are
cognitive) to any costly information acquisition framework (where costs may even be material) (e.g.,
Cabrales et al., 2013, 2017). For instance, in a marketing survey like the one in our motivating
example, an attention strategy may correspond to a costly (Bayesian) experiment that the subject
can undertake before reporting a belief, e.g., he may elect to buy a sample product and try it. Second,
it is not necessarily the case that the subject has at his disposal all possible attention strategies.
In fact, depending on the specific environment/application, there may exist hard restrictions on the
attention strategies that he can use. Nevertheless, since the aim of this paper is to provide conditions
under which no attention strategy is beneficial, we focus on the unrestricted case.

Our first main theorem shows that robust scoring rules exist under a mild condition on the
functional form of the attention costs (Theorem 1). In particular, it suffices that the attention costs
satisfy posterior-separability, a property that generalizes Sims’s (2003) usual (Shannon) entropic
specification of the cost function. Posterior-separability has recently attracted interest within the
rational inattention literature, primarily due to its solid theoretical foundations (Caplin et al., 2017;
Zhong, 2017; Denti, 2018) and the presence of supporting experimental evidence (Dean and Neligh,
2017). Later in the paper, we show that posterior-separability is a rather tight condition, in the

1Throughout the paper – being aligned with the rational inattention literature – the term “prior belief” refers to
the belief held by the subject in the absence of elicitation.
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sense that minor relaxations lead to non-existence of robust scoring rules (Section 6). The proof of
our theorem is constructive. Notably, not only do we show existence, but we also explicitly identify
an entire class of robust scoring rules for each posterior-separable cost function. In this respect, our
theory has strong empirical content.

We subsequently weaken our notion of robustness, in order to (simultaneously) address two issues
that frequently appear in practice. First, suppose that the experimenter restricts herself to a specific
family of scoring rules (e.g., she wants to use a quadratic scoring rule), but unfortunately there
is no robust scoring rule within this family. Second, suppose that the experimenter is uncertain
about the subject’s cost function (e.g., she knows that the subject’s attention costs are entropic but
does not know the multiplier parameter). This is often the case when the experimenter does not
have enough data to calibrate each individual subject’s actual cost structure, and instead she has
formed a probabilistic estimate over the set of possible cost specifications based on past (individual
or population) data. The latter is particularly common in surveys that aim at eliciting prior beliefs
in a sample of individuals with heterogeneous cost functions. Then, we ask the following question:
when one (or both) of the previous issues arises, how closely can the experimenter approximate the
subject’s prior beliefs?

A scoring rule scoring rule is called (ε, δ)-robust if, it elicits a belief sufficiently close to the
subject’s prior (viz., not further than ε-away) with sufficiently high probability (viz., with probability
at least 1− δ). In other words, the experimenter is sufficiently certain that the subject will not find
it optimal to acquire a lot of information which could potentially lead to a posterior far away from
his prior. For practical purposes, an approximation of the prior belief is good if the scoring rule is
(ε, δ)-robust for small ε and δ.

Our second main result proves that, if we take an arbitrary proper scoring rule, any ε > 0 and any
δ > 0 bounded by the probability of the cost function being non-posterior-separable, we can weaken
the incentives by proportionately reducing the rewards of the scoring rule until it becomes (ε, δ)-
robust (Theorem 2).2 The first implication of this result is that essentially every scoring rule can be
used to arbitrarily approximate the subject’s prior, thus suggesting that we do not need to resort to
exotic mechanisms in order for our theory to have a bite, e.g., simply put, the quadratic scoring rule
always does the job sufficiently well. This addresses our first issue. The second implication is that
we can always construct scoring rules that approximate the prior even if we are uncertain about the
subject’s cost function. This addresses our second issue.

This paper should be placed at the intersection of two different streams of literature, viz., be-
lief elicitation via scoring rules and rational inattention. Scoring rules were originally introduced
by meteorologists (Brier, 1950), before being further developed by statisticians (Good, 1952; Mc-
Carthy, 1956; Savage, 1971), and eventually being adopted by several disciplines, such as economics,
accounting, business, management, psychology, political science and computer science (Offerman et
al., 2009). For two recent literature reviews, we refer to Schotter and Trevino (2014) and Schlag et
al. (2015). On the other hand, rational inattention models first appeared in macroeconomics (Sims,
2003, 2006), before attracting interest of microtheorists. The latter have mostly focused on provid-
ing axiomatic foundations (De Oliveira et al., 2017; Ellis, 2018) and on designing revealed-preference
tests for identifying the attention costs from choice data (Caplin and Dean, 2015; Chambers et al.,
2018; Caplin et al., 2017). For recent literature reviews, see Caplin (2016) and Maćkowiak et al.
(2018).

Of particular interest is the relationship between our paper and the one of Chambers and Lambert
(2017) in that they are among the handful of papers that study dynamic belief elicitation. To the

2In fact, in our formal treatment we prove a stronger result that allows the scoring rule to be even weakly proper.
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best of our knowledge, the only other paper is the one by Karni (2017).3 In their paper, Chambers
and Lambert (2017) consider an agent who has a latent prior belief and receives new information
over time based on an exogenously given dynamic process. Then, they construct a mechanism
which makes it incentive-compatible for the agent to simultaneously reveal his prior, his anticipated
information flow and his realized posteriors. The conceptual difference to our paper is that the agent
does not strategically choose the process of his information flow (viz., the attention strategy in our
terminology). Moreover, the two papers differ in the formal approaches that they employ, viz., as
opposed to our paper, their mechanism does not rely on the usual subgradient characterization, but
rather on a randomization technique originally introduced by Allais (1953). On the other hand, a
major similarity is that both our paper and the one of Chambers and Lambert (2017) truthfully
elicit the agent’s prior beliefs.

Another paper that is closely related to our work is the one by Clemen (2002), who also studies
the possible effect of scoring rules in information acquisition. However, unlike our paper, his aim
is not to preclude information acquisition, as he considers scoring rules that are primarily used as
incentive schemes for experts. This approach can be further explored in future research by studying
the converse problem to the one we study in our paper, viz., how to encourage the subject to acquire
as much information as possible in order to provide more accurate predictions.

Overall, ours is one of the few paper on mechanism design with rational inattention, with the
distinctive feature that inattention is desired by the designer. In a different framework, Yang (2019)
studies a security design problem, where the seller wants to design the security in a way such that
the optimal strategy of the rationally inattentive buyer is not to acquire any or to acquire limited
limited information, in order to avoid adverse selection effects. One major difference is that our
experimenter wants the subject to remain uninformed because she is inherently interested in her
prior beliefs per se, whereas in the type of problems that Yang (2019) studies, the seller’s interest
in the buyer remaining uninformed is simply a byproduct of the designer’s preference to maximize
expected monetary payoff.

In Section 2 we introduce our basic framework. In Section 3 we study exact robustness and we
present our first main result. In Section 4 we introduce approximate robustness, and we present our
second main result. In Section 5 we study standard special cases of scoring rules. In Section 6 we
revisit our posterior-separability condition. Section 7 contains a discussion. All proofs are relegated
to the Appendix.

2. Preliminaries

2.1. Scoring rules

Consider a binary state space Ω = {ω0, ω1}. A risk-neutral (male) experimental subject has a latent
subjective belief µ0 ∈ [0, 1] of ω0 occurring, which is not observed by the (female) experimenter. The
subject is asked to state µ0 and reports some r ∈ [0, 1], which is not necessarily equal to µ0. A
scoring rule is a function

S : [0, 1]× Ω→ R, (1)

chosen by the experimenter, which takes the subject’s report (r) and the realized state (ω) as an
input and returns a monetary payoff (Sr(ω)) as an output. In economics we sometimes consider
binarized scoring rules where the subject is paid in probabilities of winning a fixed prize. Binarized
scoring rules are used to elicit the subject’s belief for arbitrary risk attitudes. Our entire analysis

3I am indebted to Chris Chambers for pointing out these connections.
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is directly extended to binarized scoring rules, implying that our assumption of the subject being
risk-neutral is without loss of generality and can therefore be dispensed with (Section 5.2).

The subject is assumed to maximize his Subjective Expected Utility (SEU), i.e., given the scoring
rule (S) and a belief (µ), he chooses the report (r) that maximizes

Eµ(Sr) := µSr(ω0) + (1− µ)Sr(ω1).

A scoring rule is called proper whenever, for every belief, it is strictly dominant to report truthfully
(Brier, 1950; Good, 1952). Hence, whenever the subject says r, the experimenter directly infers that
µ0 = r. Formally properness is defined as follows:

Definition 1. (Proper Scoring Rule). The scoring rule S is called proper, whenever

Eµ(Sµ) > Eµ(Sr) (2)

for every r 6= µ and every µ ∈ [0, 1]. /

It is well known in the literature that each proper scoring rule is characterized by a strictly convex
function (McCarthy, 1956; Savage, 1971). Let us illustrate the idea behind this characterization. For
a graphical illustration, see Figure 2(a). First define the subject’s subjective expected utility from
reporting truthfully as a function of his beliefs, viz., for each µ ∈ [0, 1], let

φ(µ) := Eµ(Sµ).

It is not difficult to verify that if S is proper then φ is strictly convex. This is because properness
implies φ(µ) = max{Eµ(Sr)|r ∈ [0, 1]}, i.e., φ can be written as the pointwise maximum of a family
of linear functions. Interestingly, the converse is also true. Namely, every strictly convex and subd-
ifferentiable function φ : [0, 1] → R induces a unique class of (essentially equivalent) proper scoring
rules. Let us elaborate. We first consider a subtangent tr(µ) := ar+brµ of the function φ at r ∈ [0, 1].
Then, we define a scoring rule S induced by φ, by letting Sr(ω0) := tr(1) and Sr(ω1) := tr(0), i.e., if
the subject reports r, we take the tangent tr and evaluate it at 1 and 0 to obtain the two rewards
that correspond to ω0 and ω1 respectively. Of course by strict convexity of φ, the tangent at µ0 when
evaluated at µ0 will lie higher than any other tangent evaluated at the same point µ0. Hence, we
obtain Eµ0(Sµ0) > Eµ0(Sr), implying that φ is proper.

Let us make two important remarks. First, by convexity of φ, a subtangent always exists at every
interior r ∈ (0, 1). By requiring that φ is subdifferentiable, we guarantee that it also exists at the
boundaries, i.e., φ does not becomes infinitely steep either at 0 or at 1. This is needed in order to
guarantee that S0(ω0) and S1(ω1) remain finite. This last condition can be dispensed with, if we
allow S to take values in R instead of R, as often done in statistics. Second, when the subtangent
is not unique (e.g., when φ is not differentiable, like at µ0 in Figure 2(a)) we arbitrarily select one
of the infinitely many subtangents, implying that there is an entire class of scoring rules induced by
φ. Nevertheless, irrespective of which of those scoring rules we pick, the subject’s optimal expected
utility will remain the same (equal to φ(µ0) in this case), which is why we have earlier said that all
scoring rules derived from φ are essentially equivalent.

Example 1. (Quadratic Scoring Rule). The most commonly used proper scoring rule is the
quadratic scoring rule (QSR), which is defined by Sr(ω0) := α − β(1 − r)2 and Sr(ω1) := α − βr2,
where α ∈ R and β > 0. Accordingly, the subject is paid a fixed amount α minus a penalty which
is proportional to the squared distance from the realized state. The strictly convex function that
characterizes the quadratic scoring rule is

φβ(µ) := α− βµ(1− µ). (3)
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φ(µ0)
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Eµ0 (S0)
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(a) Proper scoring rule: The strictly con-
vex function φ(µ) := Eµ(Sµ) generates a proper
scoring rule by taking an arbitrary tangent for
each r and evaluating it at 0 and 1 respectively.
Properness follows from the fact that the tan-
gent at µ0 when evaluated at µ0 lies higher than
the tangent at any other r when evaluated at
µ0, i.e., Eµ0(Sµ0) > Eµ0(Sr).

0 1
[ω1] [ω0]

φ

Sr0 (ω1) = Sµ0 (ω1)

Sµ0 (ω0) = Sr0 (ω0)

Sr1 (ω1)

Sr1 (ω0)

µ0

Eµ0 (Sr0 ) = φ(µ0)

r0

Eµ0 (Sr1 )

r1

(b) Weakly proper scoring rule: The weakly convex func-
tion φ(µ) := Eµ(Sµ) generates a weakly proper scoring rule by
taking an arbitrary tangent for each r and evaluating it at 0 and
1 respectively. Weak properness follows from the fact that the
tangent at µ0 when evaluated at µ0 lies at least as high as the
tangent at any other r when evaluated at µ0. The subject is in-
different among all reports in the shaded subinterval Iφ(µ0), i.e.,
Eµ0(Sµ0) > Eµ0(Sr1) while Eµ0(Sµ0) = Eµ0(Sr0).

Figure 2: Subgradient characterization of properness and weak properness.

Notice that we explicitly index the characteristic function of the quadratic scoring rule with the
parameter β that determines the strength of the incentives provided by the scoring rule. /

For a review of other standard proper scoring rules we refer to Schlag et al. (2015, Section 2),
while for an overview of the subgradient characterization that we presented above we recommend
Gneiting and Raftery (2007).

A scoring rule is weakly proper if reporting truthfully is one of the optimal reports, but not
necessarily the only one. Formally, weak properness is defined as follows:

Definition 2. (Weakly Proper Scoring Rule). The scoring rule S is called weakly proper,
whenever

Eµ(Sµ) ≥ Eµ(Sr) (4)

for every r ∈ [0, 1] and every µ ∈ [0, 1]. /

Geometrically, the function φ that characterizes S is (only) weakly convex (Figure 2(b)). The set
of optimal reports (at some belief µ) is denoted by

Iφ(µ) := arg max
r∈[0,1]

Eµ(Sr). (5)

Geometrically, Iφ(µ) := [r−φ (µ), r+
φ (µ)] is the largest interval of µ where φ is linear, e.g., Iφ(µ0)

is the shaded subinterval in Figure 2(b). It is straightforward to verify that Sr = Sr′ for every
r, r′ ∈ int(Iφ(µ)), as all points in the interior of Iφ(µ) share the same subtangent. The rewards of
reports that lie on the boundary of Iφ(µ) may or may not be the same too, as φ may have multiple
subtangents at such a boundary point. This is the case when φ is not differentiable, like for instance
at the kinks of the graph in Figure 2(b).

Definition 3. (ε-Proper Scoring Rule). A weakly proper scoring rule φ is called ε-proper, for
some ε ≥ 0, whenever

|Iφ(µ)| ≤ ε (6)
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for every µ ∈ [0, 1], where |Iφ(µ)| := r+
φ (µ)− r−φ (µ) is the length of the interval Iφ(µ). /

Intuitively, ε puts a uniform bound on the errors that the (weakly proper) scoring rule can yield,
i.e., ε-properness guarantees that the subject will never report further than ε-away from his true
belief. Obviously, the scoring rule is proper if and only if Iφ(µ) = {µ} for every µ ∈ [0, 1], i.e.,
whenever φ is 0-proper.

2.2. Costly attention

We now enrich the agent’s preferences to allow for information acquisition by means of costly at-
tention. An attention strategy is an experiment (viz., a Bayesian signal), designed by the subject
in an attempt to acquire information about the state space, and it typically leads him to update
his subjective beliefs. Given his prior µ0, each attention strategy is identified by a (Bayes-plausible)

distribution over posteriors, chosen from the set Π(µ0) := {π ∈ ∆([0, 1]) :
∫ 1

0
µdπ = µ0}. We define

the degenerate zero-attention strategy µ̂0 ∈ Π(µ0), as the one that does not carry any information
and therefore yields the prior µ0 with probability 1. On the other hand, by π∗µ0 ∈ Π(µ0) we denote
the most informative attention strategy given the prior µ0, implying that π∗µ0 attaches probability
µ0 to the posterior that puts probability 1 to ω0 and probability 1 − µ0 to the posterior that puts
probability 1 to ω1. For notation simplicity, we henceforth denote by Π̂(µ0) := Π(µ0) \ {µ̂0} the set
of all non-degenerate attention strategies, observing that Π̂(µ0) = ∅ whenever µ0 ∈ {0, 1}.

As usual, attention is assumed to be costly. In particular, there is a continuous cost function,

C : ∆([0, 1])→ R+

assigning a non-negative cost to every attention strategy π ∈ Π(µ) for every prior µ ∈ [0, 1]. In
Section 7.3 we clarify why our continuity assumption is without loss of generality. Attention costs
can be identified from state-dependent stochastic-choice data (Caplin and Dean, 2015; Chambers et
al., 2018) or from menu-choice data (De Oliveira et al., 2017; Ellis, 2018). Throughout the literature,
some structure on the cost function is either postulated or derived from primitive axioms of choice.
In this paper, we consider cost functions that satisfy a property that has recently attracted interest
in the rational inattention literature (Caplin et al., 2017):

Definition 4. (Posterior-separability). A cost function C is said to be posterior-separable, if
there is a strictly concave function K : [0, 1]→ R such that

C(π) = K(µ)− 〈K, π〉 (7)

for every π ∈ Π(µ) and every µ ∈ [0, 1], where 〈·, ·〉 denotes the inner product as usual. /

Notice that for every posterior-separable cost function there is in fact an entire class of strictly
concave functions that satisfy Equation (7), viz., for any linear function L : [0, 1]→ R, the function
K + L satisfies (7) if and only if K satisfies it too. Throughout the paper, we uniquely identify the
posterior-separable C by the function K from the aforementioned class such that K(0) = K(1) = 0,
and with slight abuse of terminology we often refer to K as the subject’s cost function. In this case,
K(µ) is naturally interpreted as the cost of the most informative attention strategy for each prior µ,
i.e., formally, K(µ) := C(π∗µ). Finally note that by continuity of C, the function K is also continuous.

Posterior-separability is supported by recent experimental findings (Dean and Neligh, 2017) and
has solid theoretical foundations (Caplin et al., 2017; Zhong, 2017; Denti, 2018). Later in the paper
we further elaborate regarding how restrictive our posterior-separability assumption is, both in a
general axiomatic sense, as well as in the context of our results (Section 6).
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Example 2. (Entropic attention costs). The most common functional form of attention costs
in the literature is the entropic specification (Sims, 2003, 2006; Caplin et al., 2017), which among
other nice properties, allows us to provide microeconomic foundations to the multinomial logit model
(Matĕjka and McKay, 2015; Steiner et al., 2017) and is moreover assumed in various applications
(Matĕjka, 2016; Martin, 2017; Yang, 2019). Accordingly, the cost of π ∈ Π(µ0) is equal to

Cκ(π) := κ
(
H(µ0)− 〈H, π〉

)
, (8)

where H(µ) := −µ log µ− (1− µ) log(1− µ) is the Shannon entropy (Shannon, 1948), and κ > 0 is
a multiplier parameter. It is straightforward to verify that Cκ is posterior separable with K = κH
being the corresponding function whose expected decrease gives the cost of attention. /

2.3. Cost-benefit analysis

Given a prior µ0 and a weakly proper scoring rule φ, the (expected) benefit of an attention strategy
π ∈ Π(µ0) is equal to

Bφ(π) := 〈φ, π〉 − φ(µ0). (9)

By convexity of φ, we obtain Bφ(π) ≥ 0, with equality holding if and only if supp(π) ⊆ Iφ(µ0).
Clearly, whenever φ is proper, by strict convexity, every non-degenerate attention strategy yields a
strictly positive expected benefit.

Taking into account simultaneously the expected benefits and the costs, the subject will choose
an attention strategy in Π(µ0) that maximizes the value

Vφ(π) := Bφ(π)− C(π). (10)

The idea is that, after (optimally) choosing some π ∈ Π(µ0), the subject will first update his beliefs
to some (also latent) posterior µ ∈ supp(π), and then – as φ is weakly proper – he will report some
posterior belief that yields expected utility equal to φ(µ), i.e., he will report some posterior belief in
Iφ(µ). The fact that Vφ obtains a maximum in Π(µ0) follows from C being continuous. Now, take
the function

ψ := K + φ, (11)

and, by (7) and (9), rewrite the subject’s value as follows:

Vφ(π) = 〈ψ, π〉 − ψ(µ0). (12)

The latter implies, that the subject’s optimal value is equal to ψ(µ0) − ψ(µ0), where ψ(µ) :=
max{〈ψ, π〉|π ∈ Π(µ)} is the concave closure of ψ.

The optimal attention strategies can be easily computed, using the (concavification) method which
was first introduced in the repeated games literature by Aumann and Maschler (1995), and was later
extensively used in the Bayesian persuasion literature starting with Kamenica and Gentzkow (2011).
Accordingly, we first define the interval

Jψ(µ) := [aψ(µ), bψ(µ)], (13)

which is the longest interval of µ where ψ is linear (see shaded subinterval in Figure 3(b)). Obviously,
if ψ is not linear in any interval of µ, then Jψ(µ) := {µ}. Then, an attention strategy π ∈ Π(µ)
is optimal if and only if π({ν ∈ Jψ(µ) : ψ(ν) = ψ(ν)}) = 1. Clearly, the strategy π that satisfies
π({aψ(µ), bψ(µ)}) = 1 is the most informative among all optimal attention strategies.
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aψ(µ)

φ

1

K

bψ(µ)µ

Bφ(π)

C(π)

(a) Cost-benefit analysis: The expected cost
of the attention strategy π ∈ Π(µ) is given by the
expected increase of φ, whereas the corresponding
cost is given by the expected decrease of K. The
value of π is the length difference of the respective
shaded areas in the vertical axis.

ψ

ψ

aψ(µ) 1µ bψ(µ)

Vφ(π)

(b) Concavification of the value func-
tion: Take the concave closure ψ of the func-
tion ψ := K +φ, and find the longest subinterval
Jψ(µ) of µ where ψ is linear (shaded area). The
optimal attention strategies are those that put
positive probability only to posteriors in Jψ(µ)
such that ψ coincides with ψ.

Figure 3: Optimal attention strategy.

3. Exact robustness

Recall that the experimenter wants to elicit the subject’s prior. In order to guarantee that the subject
will not acquire any information (thus making sure that he will not update his prior belief), she must
design a scoring rule that makes µ̂ a strictly dominant attention strategy for every µ ∈ [0, 1]. If
moreover the scoring rule is proper, then it will also be strictly dominant to report the prior. A
scoring rule that satisfies these two conditions is called robust.

Definition 5. (Robust Scoring Rules). A scoring rule φ is robust, if it is proper and satisfies

Vφ(µ̂) > Vφ(π) (14)

for every π ∈ Π̂(µ) and every µ ∈ [0, 1]. /

The overall idea is that the scoring rule provides strong enough incentives to induce truth-telling
(viz., φ must be strictly convex), but not so strong to lead the subject to acquire information (viz.,
φ should not be “too convex”). The following intermediate result uses the concavification method
that we presented in the previous section to characterize those proper scoring rules that satisfy our
robustness criterion, under the assumption that the cost function is posterior-separable.

Lemma 1. Fix a posterior-separable cost function K and a proper scoring rule φ. Then, φ is robust,
if and only if, K + φ is strictly concave.

The intuition is quite obvious: K + φ is is strictly concave if and only if K is strictly “more
concave” than −φ, which is in turn equivalent to the costs of attention always offsetting the benefits,
as required by robustness.

Example 3. (Robust QSR when the costs are entropic). Let the attention costs be entropic
(as in Example 2) and take a quadratic scoring rule (as in Example 1). Is there a specification (i.e.,
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parameters α and β) such that the quadratic scoring rule is robust (given the cost parameter κ)?
First, we take the function ψβ(µ) := κH(µ) + α − βµ(1 − µ). By Lemma 1, the scoring rule φβ
is robust if and only if ψ′′β ≤ 0 with equality holding at finitely many points in [0, 1]. Solving the
previous inequality yields β ≤ 2κ, implying that we must bound the incentives provided by the
scoring rule from above, in order to guarantee robustness. Finally, observe that only the parameter
β is relevant for robustness. This is not surprising, given that the incentives of a scoring rule are
measured in terms of its convexity, and the constant α does not affect the degree of convexity of φβ,
but rather it simply rescales the payments by adding a constant. /

Our following first main result shows that robust scoring rules exist, not only when costs are
entropic, but rather for all posterior-separable specifications.

Theorem 1. If the cost function is posterior-separable, there is a robust scoring rule.

The proof is constructive, thus allowing us not only to prove that a robust scoring rule exists,
but also to identify its functional form. Let us sketch the main steps here, while the full proof is
relegated to Appendix A.

Sketch of the proof. We begin by considering the function

f := a− bK (15)

where a ∈ R and b ∈ (0, 1). If a function φ : [0, 1] → R is such that f − φ is convex, then K + φ is
strictly concave. Therefore, if φ is strictly convex and subdifferentiable, we can use it as our robust
scoring rule (by Lemma 1). The next intermediate result shows that such a φ exists, thus completing
our proof.

Lemma 2. Consider a strictly convex function f : [0, 1] → R. Then, there exists a strictly convex
and subdifferentiable function φ : [0, 1]→ R such that f − φ is convex.

The proof of Lemma 2 is constructive, implying that not only do we prove existence, but we also
identify an entire family of robust scoring rules. Let us illustrate the proof of the previous lemma
for a function f which is continuously differentiable in (0, 1) and becomes infinitely steep at 0 and 1.
Define F : [0, 1]→ R as the slope of f , i.e., F (x) := f ′(x) for every x ∈ (0, 1), while F (0) = −∞ and
F (1) =∞. Then, define the composition Φ(x) := tan−1(F (x)), and let φ be a primitive of Φ. Since
both tan−1 and F are strictly increasing, so is Φ, implying that φ is strictly convex. Moreover, since
tan−1 is Lipschitz with constant less than 1, F −Φ is increasing, and therefore f − φ is convex. The
proof is easily extended to the non-differentiable case.

Note that the proof of our previous theorem describes the construction of only one class of robust
scoring rules. In fact there are many more scoring rules that serve the same purpose of eliciting
the subject’s prior beliefs, e.g., when the costs are entropic, the robust scoring rule that we obtain
following the steps of our proof is one possibility, while the robust QSR from Example 3 is another.
Hence, we naturally ask whether everything goes, viz., does every scoring rule become robust if we
shrink the incentives via multiplication with a sufficiently small constant? The following example
illustrates that this is not the case, implying that (exact) robustness may rule out widely-used families
of scoring rules, such as for instance the quadratic scoring rule. This observation is further discussed
in the next section.

Example 4. Consider the posterior-separable cost function K(µ) = µ − µ3. Note that the second
derivative of K is not bounded away from 0, i.e., the cost function becomes arbitrarily flat (close to
0). Now consider a quadratic scoring rule φβ, and observe that its second derivative is bounded away
from 0, irrespective of how small β is. Thus, we obtain ψ′′β(µ) = 2β− 6µ, implying that ψβ = K+φβ
is convex in [0, β/3]. Hence, by Lemma 1, it follows that φβ is not robust for any β > 0. /
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4. Approximate robustness

Two natural questions are posed at this point. First, if we fix some scoring rule, how close can we
get to the subject’s prior by weakening the incentives? Second, if we relax the assumption that the
experimenter knows the subject’s cost function, can we still approximate the subject’s prior beliefs?4

In this section, we will answer both questions simultaneously through a single result.
Let us begin by observing that often times the experimenter accepts small errors in the elicitation

of the subject’s beliefs, either because she understands that there are restrictions in the experimental
technology or because she does not care about minor mistakes. In our context, for a given small
ε ≥ 0, assume that the experimenter is satisfied if she can elicit a belief not further than ε away from
the subject’s prior. A scoring rule that achieves this goal will be called ε-robust.

Definition 6. (ε-robust Scoring Rule). A weakly proper scoring rule φ is ε-robust, if for all
µ ∈ [0, 1], for all π ∈ arg maxρ∈Π(µ) Vφ(ρ) and for all ν ∈ supp(π), it is the case that

Iφ(ν) ⊆ Bε(µ), (16)

where Bε(µ) := {ν ∈ [0, 1] : |µ− ν| ≤ ε} is the closed ε-neighborhood of µ. /

Intuitively, there are two forces that may bring the optimal report away from the prior. On the
one hand, φ can be locally linear, due to the fact that the scoring rule is just weakly convex. On the
other hand, K + φ can be locally non-concave, due to the incentives to acquire information. So the
idea behind ε-robustness is that even when combined, these two forces will not lead to a posterior
further than ε away from the prior belief. Clearly, a proper scoring rule is ε-robust, if every optimal
attention strategy yields posteriors at most ε away from the prior, i.e., in this case, only the second
force (viz., the incentives to acquire information) may lead the subject to misreport.

Now turning to our second question, sometimes the experimenter cannot pin down the subject’s
cost function with certainty. This is typically due to the experimenter not having enough data to
calibrate the subject’s (actual) cost function. In such cases, she instead resorts to an estimated
probability distribution over cost functions. Can the experimenter then be sufficiently certain that
she will approximate the subject’s prior beliefs with sufficient precision? Formally speaking, can the
experimenter find a scoring rule which is ε-robust with sufficiently high probability?

Let C denote the space of continuous (weakly) concave functions K : [0, 1] → R, together with
the topology induced by the sup norm ‖ · ‖∞. Let K ⊂ C be the space of strictly concave functions
such that K(0) = K(1) = 0. As we have already mentioned, each posterior-separable cost function
is identified by a unique K ∈ K. Non-posterior-separable costs that correspond to functions K ∈
C \ K are studied in Section 6. Uncertainty about the subject’s costs is described by a distribution
P ∈ ∆(C). Whenever P (K) = 1, the experimenter is certain that the subject’s cost function is
posterior-separable.

For each scoring rule φ, define the function εφ : C → R+ by

εKφ := inf{ε ≥ 0 : φ is ε-robust given K}, (17)

which provides a uniform bound on the approximation of the prior that the experimenter can achieve
with φ for someK ∈ C. Note that εφ is upper semi-continuous (Lemma B1). Hence, {K ∈ C : εKφ ≤ ε}
is Borel measurable. That is, the event that “the scoring rule φ is ε-robust” is expressible in the
experimenter’s language, and therefore the experimenter assigns some probability to it.

4I am indebted to Burkhard Schipper for suggesting this approach.
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Definition 7. ((ε, δ)-robust Scoring Rule). A weakly proper scoring rule φ is (ε, δ)-robust, if

P
(
{K ∈ C : εKφ ≤ ε}

)
≥ 1− δ, (18)

given some fixed ε ≥ 0 and δ ≥ 0. /

In other words, approximate robustness guarantees that the probability of eliciting a belief further
than ε away from the prior is smaller than δ. Although both ε and δ place bounds in the precision
of the scoring rule, the two bounds operate in different probability spaces, viz., ε is a bound in the
space of (the subject’s) probabilities over Ω, whereas δ is a bound in the space of (the experimenter’s)
probabilities over C. Obviously, the concept has a bite when both ε and δ become sufficiently small.
When they both collapse to 0, we are essentially back to exact robustness.

Theorem 2. Let P (K) = p, and fix an arbitrary ε̃-proper scoring rule φ. Then, for every ε > ε̃ and
every δ > 1− p, there exists some λ > 0 such that λφ is (ε, δ)-robust.

The intuition of the previous result is that we can begin with any weakly proper scoring rule, and
by shrinking its incentives enough we can arbitrarily approximate the subject’s prior beliefs. Below
we present the main ideas underlying our proof, and the full proof is relegated to Appendix B.

Sketch of the proof. Fix some ε̃-proper scoring rule φ and some posterior-separable cost func-
tion K. For starters, we trivially observe that λφ is also ε̃-proper for every λ > 0. Indeed, for every
belief in [0, 1], the optimal reports under φ and coincide with the optimal reports under λφ. Then,
for each prior belief µ ∈ [0, 1], the most informative among all optimal attention strategies (given
the scoring rule λφ and the cost function K) distributes all probability mass between the posteriors
aλ(µ) ≤ µ and bλ(µ) ≥ µ, i.e., all posteriors that the subject can rationally form belong to the
interval [aλ(µ), bλ(µ)]. Hence, by ε̃-properness of the scoring rule, the subject will eventually report
a belief in [aλ(µ) − ε̃, bλ(µ) + ε̃]. The crucial step is then to prove that aλ(µ) ↑ µ and bλ(µ) ↓ µ as
λ ↓ 0 (Lemma B2). Therefore, for every ε > ε̃ there exists a sufficiently small λ > 0 such that

[aλ(µ)− ε̃, bλ(µ) + ε̃] ⊆ [µ− ε, µ+ ε].

Finally, notice that while λ approaches 0, the set of cost functions that satisfy the previous inclusion
becomes larger approaching the entire set K. Hence, the probability of the actual cost function
satisfying this inclusion approaches the probability of K from above, thus completing the proof.

Let us now present two examples which illustrate that the previous result simultaneously answers
the two questions we posed at the beginning of this section.

Example 4 (continued). Recall from the previous section that there is no (exactly) robust QSR
φβ(µ) = α−βµ(1−µ) when the posterior-separable cost function is K(µ) = µ−µ3. So, how far can
we get using only a QSR? We begin by noticing that the concave closure of the function ψβ = K+φβ
is strictly concave in the interval [β/2, 1] and linear in the interval [0, β/2]. The latter implies that the
subject will choose the zero-attention strategy when his prior is larger than β/2. On the other hand
if his prior is smaller than β/2, he will optimally choose an attention strategy that will yield posterior
beliefs either equal to 0 or equal to β/2. In both cases, since the QSR is proper, he will truthfully
report his posterior. Hence, the prior will be misreported only in the interval (0, β/2), in which case
the subject will say either 0 or β/2. Therefore, for any fixed ε > 0, by making β sufficiently small
(and in particular, by taking β < 2ε), we guarantee that the scoring rule is ε-robust. We generalize
our analysis of ε-robust QSR in Section 5.1. /
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Example 5. (Approximate Robustness under unknown entropic costs). Let P be uni-
formly distributed over the set of entropic cost functions in E := {Cκ|κ ∈ [0, 1]} ⊂ K. Obviously,
if we knew the exact value of κ, we would be able to find an exactly robust QSR (Example 2). Is
it still possible to approximately elicit the subject’s beliefs with a QSR even without knowing κ?
Observe that the smaller β becomes the more likely it is for QSR to be robust. In particular, for
every β ∈ (0, 1), the QSR φβ is robust for all cost functions with κ ≥ β/2. Hence, if we fix some
δ > 0, then for every β ≤ 2δ the probability of the scoring rule being robust is at least 1− δ. /

So far our approach has been to fix a pair (ε, δ) and then shrink φ until it becomes (ε, δ)-robust.
Let us now briefly discuss a dual approach. Namely, if we begin with a fixed φ, what is the best we
can achieve in terms of approximating the subject’s prior?

Let us first observe that since (ε, δ)-robustness specifies two upper bounds, typically we cannot
obtain a unique “best approximation” of the prior beliefs. This is because there is often a tradeoff
between our two bounds, i.e., the more permissive we are in terms of how far from the prior we are
willing to allow the elicited beliefs, the higher the probability of the subject’s cost function being
such that the elicited beliefs are within the margin of error that we allow. Formally, for each ε ≥ 0,
the lowest δ ≥ 0 such that φ is (ε, δ)-robust is defined by

δφ(ε) := inf
{
δ ≥ 0 : P ({K ∈ C : εKφ ≤ ε}) ≥ 1− δ

}
. (19)

It is not difficult to verify that the function δφ is (weakly) decreasing, indicating that there is indeed
a tradeoff between ε and δ. Finally, observe that weakening the incentives of φ shifts the entire graph
of δφ downwards. Indeed, for every ε ≥ 0, it is the case that δλφ(ε) is decreasing in λ. If we then fix
some ε̃ > 0 and δ > 1 − p, there is some small enough λ ∈ (0, 1) such that δλφ(ε) ≤ δ for all ε > ε̃,
which is another way of stating Theorem 2.

5. Usual scoring rules

5.1. Quadratic scoring rules

As we have already illustrated, an approximately robust QSR exists, even in cases where an exactly
robust QSR does not (Example 4). In fact, it follows as a direct consequence of our Theorem 2 that
this is always the case, i.e., an approximately robust QSR always exists.

Corollary 1. Let P (K) = p. Then, for every ε > 0 and every δ > 1 − p, there exists some β > 0
such that the quadratic scoring rule φβ is (ε, δ)-robust.

Clearly, if the (posterior-separable) cost function is known to the experimenter, the previous result
can be further refined along the lines of Example 4, viz., for a given K ∈ K and for an arbitrary
ε > 0, there exists some β > 0 such that the φβ is ε-robust.

5.2. Binarized scoring rules

A binarized scoring rule is one that pays in probability units of winning a fixed prize (Hossain and
Okui, 2013; Schlag and van der Weele, 2013). Formally, a binarized scoring rule S takes values in
[0, 1], with the interpretation that Sr(ω) ∈ [0, 1] is the objective probability of the subject winning
the prize when he reports r and the realized state is ω. In this case the subject’s expected utility
is linear in the probability of winning the prize irrespective of his risk preferences, and our analysis
follows verbatim except for one small detail, viz., in order for a function φ to characterize a proper
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(resp., weakly proper) binarized scoring rule, not only should it be subdifferentiable, but it should
also have at every point a subtangent that takes values in [0, 1] both when evaluated at 0 and at 1. It
is not difficult to see that for every (weakly) convex and subdifferentiable function f there exists some
λ > 0 and some c ∈ R such that φ := c + λf satisfies ∂φ(µ) ∩ [0, 1] 6= ∅ for every µ ∈ [0, 1], i.e., if a
function is subdifferentiable, we can multiply it with a sufficiently small λ so that the subdifferential
become sufficiently small to take values in [0, 1]. Then, the following result shows that our two main
theorems hold for binarized scoring rules too.

Corollary 2. The following two conditions hold:

(i) If the cost function is posterior-separable there exists a robust binarized scoring rule.

(ii) Let P (K) = p, and fix an ε̃-proper binarized scoring rule φ. Then, for every ε > ε̃ and every
δ > 1− p, there exists some λ > 0 such that λφ is an ε-robust binarized scoring rule.

It is important to mention that binarized scoring rules have been criticized based on experimental
evidence (Selten et al., 1999), although such criticism is not unanimous (Harrison et al., 2013, 2014,
2015).

5.3. Discrete scoring rules

A scoring rule is called discrete whenever the subject can only give a report from a finite set R ⊆ [0, 1].
In this case, the scoring rule becomes a function S : R × Ω → R. We henceforth focus on the most
common discrete scoring rule, viz., one where R = { 0

n
, 1
n
, . . . , n

n
} for an arbitrary n ∈ N. We call such

a scoring rule n-discrete. For instance, a 100-discrete scoring rule is one where the subject is asked
to report a percentage.

The practical advantage is that discrete scoring rules are easier to implement, as they can be
presented to the subject in the form of a list. On the negative side, the fact that there are only
finitely many reports implies that there is no proper, and a fortiori there is no robust scoring rule.
So we need to settle for the second best, i.e., to approximate the subject’s prior beliefs. The best
approximation that we can theoretically achieve with an n-discrete scoring would be to elicit a belief
within 1/2n from his true prior. That is, whenever the subject reports k/n, we can guarantee that
his prior belongs to the interval [ k

n
− 1

2n
, k
n

+ 1
2n

].

Corollary 3. Fix an arbitrary n ∈ N \ {0}. Then, the following hold:

(i) If the cost function is posterior-separable there exists a 1
2n

-robust n-discrete scoring rule.

(ii) Let P (K) = p, and fix a weakly proper n-discrete scoring rule φ. Then, for every ε > 1
2n

and
every δ > 1− p, there exists some λ > 0 such that λφ is a (ε, δ)-robust n-discrete scoring rule.

The trick to obtain the previous result is to view an n-discrete scoring rule as an 1
2n

-proper
scoring rule, characterized by a convex piecewise linear function φ with kinks at every point in
{ 1

2n
, 3

2n
, . . . , 2n−1

2n
}. In particular, whenever the subject reports k/n, he will be paid the act that φ

would yield if a report in the interval [ k
n
− 1

2n
, k
n

+ 1
2n

] was given.

6. Posterior-separability revisited

6.1. Axiomatic characterization

Throughout the paper we have focused on cost functions that satisfy posterior-separability. As
we have already mentioned, this specification is supported by recent experimental evidence and is
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general enough to accommodate usual functions, such as costs that are proportional to the expected
decrease in Shannon entropy. As the following result illustrates, posterior-separability also has solid
theoretical foundations. In particular, it can be characterized by means of three mild axioms. A
similar result has been proven by Zhong (2017) in a somewhat different context, relying on standard
properties of mutual information (e.g., Cover and Thomas, 2006).

Proposition 1. The cost function C is posterior-separable if and only if it satisfies:

(C1) Normalization: C(µ̂) = 0 for all µ ∈ [0, 1].

(C2) Attention is Costly: C(π) > 0 for all π ∈ Π̂(µ) and all µ ∈ [0, 1].

(C3) Dynamic Consistency for Full Information: C(π∗µ) = C(π) + Eπ(C ◦ π∗) for all π ∈
Π(µ) and all µ ∈ [0, 1].

The first two axioms are quite standard in the literature, postulating that an attention strategy
is costly if and only if it carries some information. The third axiom on the other hand is relatively
new, postulating that the cost of learning the true state does not depend on the order of collecting
information, i.e., only the “acquired information” matters, and not the “process of acquiring it”.5

Intuitively, suppose that the subject (with prior µ) chooses a sequential attention strategy, according
to which he first picks some arbitrary π ∈ Π(µ) (first-period attention strategy) and then conditional
on observing each posterior ν ∈ supp(π) he picks the most informative attention strategy π∗ν (second-
period attention strategy), implying that the subject learns the state in two steps. Then, the total
cost that he incurs is equal to the cost of his first-period strategy (viz., C(π)) plus the expected cost

of his second-period strategies (viz., Eπ(C ◦π∗) =
∫ 1

0
C(π∗ν)dπ). Dynamic consistency postulates that

the cost C(π∗µ) of directly choosing the most informative attention strategy π∗µ is equal to the total
cost of the aforementioned sequential attention strategy.6

It is not difficult to see that posterior-separability is a special case of the class of cost functions
that satisfy the basic regularity conditions, viz., Blackwell monotonicity and convexity (Caplin and
Dean, 2015; De Oliveira et al., 2017). Formally, for two attention strategies π, ρ ∈ Π(µ), we say
that π is Blackwell more informative than ρ, and we write π D ρ, whenever 〈f, π〉 ≥ 〈f, ρ〉 for every
convex function f : [0, 1] → R (Blackwell, 1953). Then, C is called regular, whenever the following
two properties are satisfied:

(C4) Blackwell Monotonicity: C(π) ≥ C(ρ) for all π, ρ ∈ Π(µ) with π D ρ.

(C5) Convexity: C(λπ + (1− λ)ρ) ≤ λC(π) + (1− λ)C(ρ) for all π, ρ ∈ Π(µ) and all λ ∈ (0, 1).

Proposition 2. Every posterior-separable cost function is regular.

Of course the converse is not necessarily true, i.e., regularity does not imply posterior-separability.
Intuitively, this is because (C3) imposes some basic coherency on the costs across different priors,
similarly to recent work on dynamic information acquisition (Hébert and Woodford, 2016; Zhong,

5In a previous version of the paper, we used a stronger dynamic consistency axiom, viz., we postulated that the
cost of any attention strategy (not only the one that reveals the state) depends only on the distribution of posteriors,
and not on the underlying process that yields this distribution (Tsakas, 2018). However, it turns out that the two
systems of axioms are equivalent, which is why we present the weaker form of dynamic consistency here.

6Our notion of dynamic consistency is similar in spirit to the one in the standard characterization of dynamic
variational preferences (Maccheroni et al., 2006). Of course in their paper the interpretation is different in that costs
are incurred by nature, rather than by the decision maker. Nevertheless their condition – similarly to ours – guarantees
that that costs are time-consistent. I am indebted to Fabio Maccheroni and Massimo Marinacci for pointing out this
connection to me.
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2017), as opposed to (C4) − (C5) that put structure on the attention costs given a fixed prior but
remain silent on the relationship of the costs across the different priors (Caplin and Dean, 2015; De
Oliveira et al., 2017). Consider for instance the weaker version of posterior-separability which allows
the strictly convex function K to be prior-dependent, i.e., formally, for each µ ∈ [0, 1] there exists a
strictly convex Kµ : [0, 1] → R such that C(π) = Kµ(µ) − 〈Kµ, π〉 for all π ∈ Π(µ). Clearly, such a
cost function satisfies (C4) and (C5) without being posterior-separable. We further elaborate on this
point below.

6.2. Weakenings

We are going to consider two variations of posterior-separability, corresponding to different weaken-
ings of our axioms (C1)−(C3). Throughout this section, for simplicity purposes, we will maintain the
assumption that the experimenter knows the subject’s cost function. Nevertheless, our analysis can
be fully generalized to the case where the experimenter holds probabilistic beliefs over the subject’s
cost functions.

6.2.1. Weak posterior-separability

Let us begin by removing (C2) from our axiomatic system, i.e., we allow some attention strategies to
be cost-free. In this case, costs are characterized by a property that weakens posterior-separability.
In particular, we say that a cost function C is weakly posterior-separable if there exists a (weakly)
convex function K : [0, 1]→ R satisfying (7) for all π ∈ Π(µ) and all µ ∈ [0, 1]. In other words, every
weakly posterior-separable cost function is identified by some K ∈ C.

Proposition 3. A cost function is weakly posterior-separable if and only if it satisfies (C1) and (C3).

The proof is a straightforward adjustment of the one of Proposition 1. Moreover, it is not difficult
to verify that weak posterior-separability also implies regularity, thus extending Proposition 2, i.e.,
(C1) and (C3) suffice for (C4) and (C5). Nevertheless, again the converse does not hold, i.e., regularity
does not suffice for weak posterior-separability either, for the same reasons why regularity does not
imply the strong version of posterior-separability.

Intuitively, defining [aK(µ), bK(µ)] as the largest interval of µ where K is linear, implies that
every attention strategy π ∈ Π(µ) with supp(π) ⊆ [aK(µ), bK(µ)] is necessarily costless. In fact,
the attention strategy that distributes all probability to aK(µ) and bK(µ) is the most informative
attention strategy that the subject can use for free. Obviously, if aK(µ) = bK(µ) for all µ ∈ [0, 1], the
function K becomes strictly concave, and consequently the cost function becomes posterior-separable
in the strong sense. Then, we define we define ε̂K := sup{bK(µ) − aK(µ)|µ ∈ [0, 1]} as the largest
deviation from the prior without the subject incurring any cost.

Now, the fact that K is weakly convex does not alter the logic of our analysis. In particular,
Lemma 1 still holds verbatim, i.e., a proper scoring rule φ is robust if and only if K + φ is strictly
concave. Obviously, if K is not strictly concave, K+φ will not be either, implying that we will not be
able to find a robust scoring rule. Intuitively, this is because the subject will always prefer to choose
an attention strategy that induces updating to aK(µ) or bK(µ) over the zero attention strategy µ̂.
So we resort to our second best solution, i.e., to approximate the subject’s prior beliefs.

Proposition 4. Consider a weakly posterior-separable K, and take an arbitrary proper scoring rule
φ. Then, for every ε > ε̂K, there exists some λ > 0 such that λφ is ε-robust.

The intuition is straightforward. Given that, for any proper φ, the subject will always want to
use an attention strategy that induces updating from µ to either aK(µ) or bK(µ), we will choose some
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λφ > 0 that provides weak enough incentives to at least guarantee that the updated beliefs will not
be outside [aK(µ)− ε, bK(µ) + ε].

6.2.2. Prior-dependent posterior-separability

Let us now attempt to weaken (C3). In fact, we will depart from (C3) minimally, by considering for
each µ ∈ (0, 1) some (possibly different) strictly concave Kµ : [0, 1]→ R such that C(π) = Kµ(µ)−
〈Kµ, π〉 for every π ∈ Π(µ). Let us call a cost function that satisfies the previous condition, prior-
dependent posterior-separable. Such cost functions have also appeared in the literature (Caplin et al.,
2017), and obviously satisfy regularity (i.e., Blackwell monotonicity and convexity). Nevertheless,
the relationship across costs for different priors can be quite arbitrary, as we do not impose any
restrictions on the relationship between Kµ and Kν for two different µ, ν ∈ [0, 1]. This is exactly
why we cannot always elicit the subject’s prior beliefs. In fact, often we cannot even approximate
the prior beliefs, as illustrated below.

Example 6. Fix some strictly concave K, and let Kµ(ν) := µK(ν), implying that Kµ becomes
arbitrarily flat for priors close to 0. Hence, for any proper scoring rule φ, there exists some µ̃ ∈ (0, 1)
such that the optimal attention strategy at every µ < µ̃ is the most informative one, implying that
there is not even an ε-robust scoring rule, for any ε < 1. /

The previous example also illustrates that regularity alone does not put enough structure to guar-
antee that we can elicit the subject’s prior, even when it is augmented with additional assumptions
(e.g., prior-dependent posterior-separability and continuity). Hence, in some sense the most essential
part of posterior-separability (viz., our dynamic consistency axiom, (C3)) seems to be rather tight.

7. Discussion

7.1. Alternative methodologies

As we have already discussed, our theory is useful for eliciting population beliefs. Of course this is
not the only methodology that can be used for this purpose. So, let us provide a comparison between
robust scoring rules and such alternative methods.

For starters, note that traditional surveys are typically not incentivized, mainly due to practical
reasons, e.g., providing monetary incentives can sometimes be very costly (for an exception to this
rule, see Grisley and Kellogg, 1983). Nevertheless, as we have already mentioned, there is strong
evidence that supports the use of monetary incentives (Harrison and Rütstrom, 2008; Harrison,
2014). Within the class of incentivized mechanisms, one can find widely-used methods such as
prediction markets (Hanson, 2003). While a prediction market is an incentive compatible mechanism,
it suffers from two specific shortcomings that lead to biased estimates of population beliefs. First,
the incentives are formed endogenously as the prices of the traded asset fluctuate over time, implying
that the experimenter cannot intervene to weaken them in order to guarantee that information will
not be acquired. Second, traders in prediction markets do not typically form a representative sample
of the population. Of course, we should recognize that the whole aim of prediction markets is to
obtain good forecasts, rather than unbiased estimates of population beliefs.

Let us also present two alternative approaches, inspired by the rational inattention literature,
which can be used to estimate population beliefs.7 First, following either the revealed-preference
approach (Caplin and Dean, 2015; Chambers et al., 2018) or the axiomatic approach (De Oliveira

7I would like to thank one of the referees for suggesting these two alternatives.
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et al., 2017; Ellis, 2018), instead of trying to supress information acquisition, the experimenter can
just let it occur and identify the prior beliefs from choice data. A major drawback of this approach
is that it requires a large number of choice observations for each individual, while our method works
with a single observation. Of course, this is due to the fact that our method requires some ex ante
knowledge of the cost function, as opposed to this alternative which identifies the costs simultaneously
with the prior beliefs. A second drawback of this approach is that it relies on a common stationarity
assumption, namely that the subject does not carry his updated beliefs from one decision problem
to the next, thus maintaining the same prior across observations.

A second alternative method for estimating population beliefs is based on eliciting individual
beliefs with a proper (but not necessarily robust) scoring rule from a large sample of homogeneous
individuals (i.e., individuals with the same prior, the same vNM preferences and the same cost
functions) and then average across individuals.8 While this approach theoretically works smoothly,
it crucially relies on two assumptions that make it relatively less appealing than robust scoring rules:
first, it requires a large sample of homogeneous subjects which is difficult to recruit, and second it
implicitly assumes that the realizations of the respective attention strategies are independent across
subjects.

7.2. Eliciting multinomial prior beliefs

Throughout the paper we have focused on binary state spaces, thus eliciting the probability of a
single event. Now suppose that the subject has a (multinomial) prior belief µ0 ∈ ∆(Ω) that the
experimenter would like to elicit, where Ω is an arbitrary finite state space. The technical difficulty
with directly extending Theorem 1 to this richer environment lies on the extension of Lemma 2 to
higher-dimension euclidean spaces not being straightforward. In particular, it is not clear whether for
every strictly convex function f : ∆(Ω)→ R there exists a convex and subdifferentiable φ : ∆(Ω)→ R
such that f−φ is convex. Intuitively this is because all the directional derivatives of φ must decrease
slower than those of f , and it is not clear how this could be achieved as the directional derivatives are
not independent. In the unidimensional case on the other hand, there is a single derivative, which we
compose with a Lipschitz function with constant less than 1 thus obtaining a φ with slower rate of
change (see proof of Lemma 2), which constitutes the main step for constructing our robust scoring
rule.

Nevertheless, for practical purposes, this problem is of minor concern. Indeed, on the one hand,
whenever the strictly concave function K : ∆(Ω)→ R is subdifferentiable at the boundary of ∆(Ω),
this lemma is not needed and our Theorem 1 holds verbatim for any finite Ω. Furthermore, Theorem
2 also holds verbatim for an arbitrary finite state space Ω. Hence, our assumption on Ω being binary
is essentially without loss of generality.

7.3. Continuity of the cost function

Throughout the paper, we have considered exclusively continuous cost functions C, having pointed
out that this is without loss of generality. Let us elaborate on why this is the case. First, since we
focus on (weakly) posterior-separable cost functions, K is (weakly) concave. Hence, it is continuous
in the interior (0, 1), and possible discontinuities could only be encountered at the boundaries. Take
some concave function K̃ : (0, 1) → R, and consider its continuous extension K̂ : [0, 1] → R and
any other concave extension K : [0, 1] → R. Then, it is straightforward to verify that for every
π ∈ ∆([0, 1]) we obtain K(µ) − 〈K, π〉 ≥ K̂(µ) − 〈K̂, π〉. Hence, any scoring rule which is robust
(resp., ε-robust) given the continuous cost K̂ will also be robust (resp., ε-robust) given K.

8This approach was independently suggested by Jakub Steiner who I would also like to thank.
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A. Proofs of Section 3

Proof of Lemma 1. For arbitrary π ∈ Π̂(µ) and µ ∈ (0, 1), it is the case that

Vφ(π) = Bφ(π)− C(π)

=
(
〈φ, π〉 − φ(µ)

)
−
(
K(µ)− 〈K,π〉

)
= 〈K + φ, π〉 − (K + φ)(µ).

Then, obviously Vφ(π) < 0 for all π ∈ Π̂(µ) and all µ ∈ (0, 1), if and only if, K+φ is strictly concave, which
completes the proof.

Proof of Lemma 2. If f is subdifferentiable in [0, 1] then the result follows trivially by setting φ := f .
Therefore, we assume that there exists x ∈ {0, 1} such that the subderivative

∂f(x) := {t ∈ R : f(y) ≥ f(x) + t(y − x) for all y ∈ [0, 1]}

is empty.

Step 1: For each x ∈ [0, 1] define the left ax := f ′−(x) and right bx := f ′+(x) derivative respectively. We
adopt the notational convention that a0 = −∞ and b1 := ∞. It follows from (strict) convexity of f that
∂f(x) = [ax, bx], with ax = bx whenever f is differentiable at x. Moreover, ∂f is strictly increasing, i.e.,
x < y if and only if ax ≤ bx < ay ≤ by. Obviously, f is subdifferentiable if and only if −∞ < b0 < a1 <∞,
in which case we simply set φ := f , as we have already mentioned above. Hence, we henceforth focus on the
case where ∂f(x) = ∅ for some x ∈ {0, 1}, i.e., b0 = −∞ or a1 =∞. Let x0 ∈ [0, 1] be the unique minimizer
of f , and define the strictly increasing function F : [0, 1]→ R as follows: F (x) := ax > 0 for all x ∈ (x0, 1],
F (x) := bx < 0 for all x ∈ [0, x0), and F (x0) = 0.

Step 2: Since f is continuous in a closed interval, it is also absolutely continuous, and therefore by the
Fundamental Theorem of Calculus, F is Lebesgue integrable and

f(x) = f(0) +

∫ x

0
F (t)dt. (A.1)

Take a strictly increasing Lipschitz function h : R → [−1, 1] (with Lipschitz constant c ≤ 1), and let
Φ := h ◦ F . Since F is Lebesgue integrable, so is Φ. Thus, we can define φ : [0, 1]→ R by

φ(x) := f(0) +

∫ x

0
Φ(t)dt. (A.2)

Since Φ is strictly increasing, φ is strictly convex, and therefore subdifferentiable in (0, 1). Moreover, since
Φ takes values in [−1, 1], it is the case that

∫ x
0 Φ(t)dt ≥ −2x, implying that φ(x) ≥ φ(0) − 2x for every

x ∈ [0, 1], i.e., φ is subdifferentiable at 0. We prove identically that φ subdifferentiable also at 1, implying
that it is subdifferentiable in [0, 1].

Step 3: Let us finally prove that f − φ is convex. Consider arbitrary 0 ≤ x1 < x2 ≤ 1. Since h is Lipschitz
with constant c ≤ 1, it is the case that F (x2)− F (x1) ≥ Φ(x2)− Φ(x1), implying that F − Φ is increasing.
Moreover, by (A.1) and (A.2), we obtain (f − φ)(x) =

∫ x
0 (F (t) − Φ(t))dt, implying that f − φ is convex,

which completes the proof.

Proof of Theorem 1. For arbitrary a ∈ R and b ∈ (0, 1), define the strictly convex function f := a− bK.
Then, by Lemma 2, there exists some strictly convex and subdifferentiable function φ, such that f − φ is
convex. By strict convexity and subdifferentiability of φ, it follows that φ is a proper scoring rule. Finally,
notice that K + φ is strictly concave, as it is the sum of a strictly concave function (viz., K + f) and a
concave function (viz., φ− f). Therefore, by Lemma 1, the scoring rule φ is robust.
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B. Proofs of Section 4

Lemma B1. For every weakly proper scoring rule φ, the function εφ is upper semi-continuous.

Proof. Fix an arbitrary scoring rule φ, and take an arbitrary sequence (Kt)
∞
t=1 in K converging to some

K0 ∈ K in the topology induced by the sup norm.

Step 1: By Kt −K0 = ψt − ψ0, we obtain ψt → ψ0, where as usual ψt := Kt + φ. That is, for every δ > 0
there exists some tδ ∈ N such that ‖ψt − ψ0‖∞ := supµ∈[0,1] |ψt(µ) − ψ0(µ)| < δ for every t > tδ. Now, for

every t ∈ N, take the concave closure ψt(µ) := supπ∈Π(µ)〈ψt, π〉, and observe that

|ψt(µ)− ψ0(µ)| =
∣∣∣ sup
π∈Π(µ)

〈ψt, π〉 − sup
π∈Π(µ)

〈ψ0, π〉
∣∣∣

≤
∣∣∣ sup
π∈Π(µ)

〈ψt − ψ0, π〉
∣∣∣

≤ sup
π∈Π(µ)

|〈ψt − ψ0, π〉|

≤ sup
π∈Π(µ)

〈|ψt − ψ0|, π〉.

Then, by the definition of the sup norm, we obtain

‖ψt − ψ0‖∞ ≤ sup
µ∈[0,1]

sup
π∈Π(µ)

〈|ψt − ψ0|, π〉

≤ sup
µ∈[0,1]

|ψt − ψ0|

= ‖ψt − ψ0‖∞,

implying that ψt → ψ0.

Step 2: Fix an arbitrary µ ∈ (0, 1). For each t ∈ N, define [at(µ), bt(µ)] := Jψt(µ) like in (13). Then,
we define a∗t (µ) := r−φ (at(µ)) and b∗t (µ) := r+

φ (bt(µ)), i.e., the interval [a∗t (µ), b∗t (µ)] is the smallest closed
interval that contains all the posteriors that can be optimally reported by the subject when his prior is µ.
In other words, a∗t (µ) and b∗t (µ) are the worst-case scenarios, in terms of distance from µ. Throughout Step
2, for notation simplicity, we omit writing the prior µ.

We will now show that
a∗0 ≤ lim inf a∗t ≤ lim sup b∗t ≤ b∗0. (B.1)

For every t ∈ N, the (most dispersed) optimal attention strategy at µ is denoted by πt ∈ Π(µ) and is
distributed over {at, bt}. Hence, by continuity of ψt which follows from continuity of Kt, we obtain ψt(µ) =
〈ψt, πt〉, and therefore, by Step 1,

〈ψt, πt〉 → 〈ψ0, π0〉. (B.2)

Now suppose – contrary to what we want to show – that lim inf a∗t < a∗0 or lim sup b∗t > b∗0. Since infk≥t a
∗
k is

increasing and supk≥t b
∗
k is decreasing in k, there exists a subsequence of (a∗t , b

∗
t ), identified by a countable

subset T ⊆ N, such that for each t ∈ T it is the case that a∗t < a∗0− δ∗ or b∗t > b∗0 + δ∗, for some δ∗ > 0. The
latter implies that Iφ(at) ∩ Iφ(a0) = ∅ or Iφ(bt) ∩ Iφ(b0) = ∅ for all t ∈ T . Let us now consider two cases:

(i) a0 > a∗0, i.e., a0 is in the interior or at the upper bound of Iφ(a0): Then, there is some δa > 0 such
that at < a0 − δa. Likewise, if b0 < b∗0, there exists δb > 0 such that bt > b0 + δb.

(ii) a0 = a∗0, i.e., a0 is at the lower bound of Iφ(a0): Then, there exists a neighborhood Bδa(a0) such that
φ is strictly convex in the left part of the neighborhood, viz., in {ν ∈ Bδa(a0) : ν ≤ a0}; otherwise,
a∗0 < a0 and we are back to the previous case. Hence, at < a0 − δa. Likewise, if b0 = b∗0, there is some
δb > 0 such that bt > b0 + δb.
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In either case, there exists some strictly positive δ < min{δa, δb} such that at < a0 − δ or bt > b0 + δ. Now,
define the attention strategy π ∈ Π(µ) with supp(π) = {a0 − δ, b0 + δ}, and observe that 〈ψ0, π〉 < 〈ψ0, π0〉,
while 〈ψt, π〉 = 〈ψt, πt〉 for all t ∈ T . Since, 〈ψt, π〉 → 〈ψ0, π〉, the latter obviously contradicts (B.2), thus
proving (B.1).

Step 3: Define first d∗t (µ) := b∗t (µ)− a∗t (µ), and subsequently εt := supµ∈[0,1] d
∗
t (µ). Then, it is straightfor-

ward to verify that εt = εKtφ . Then, by Step 2,

d∗0(µ) = b∗0(µ)− a∗0(µ)

≥ lim sup b∗t (µ)− lim inf a∗t (µ)

≥ lim sup(b∗t (µ)− a∗t (µ))

= lim sup d∗t (µ).

Therefore, it follows directly that lim sup εt ≤ ε0, which completes the proof.

Lemma B2. Fix a sequence of continuous functions (ψk)
∞
k=1 in [0, 1] such that (a) ψk+1 − ψk is concave,

and (b) there exists some strictly concave ψ0 such that ψk → ψ0 in the topology induced by the sup norm.
For any belief µ ∈ [0, 1], it is the case that aψk(µ) ↑ µ and bψk(µ) ↓ µ.

Proof. First we introduce the simpler notation, ak := aψk(µ) and bk := bψk(µ). For every k ∈ N \ {0}, by
definition, there exists some linear function Lk : [0, 1]→ R, such that

(Λ1) Lk(ak) = ψk(ak) and Lk(bk) = ψk(bk), and

(Λ2) Lk(ν) ≥ ψk(ν) for all ν ∈ [0, 1], with strict inequality for all ν /∈ [ak, bk].

Step 1: We will first prove that ak is increasing and bk is decreasing in k. Obviously, if ak+1 = bk+1 = µ,
then it is trivially the case that ak ≤ µ ≤ bk. So, let ak+1 < µ < bk+1, and assume – contrary to what
we want to prove – that ak+1 < µ ≤ bk < bk+1, implying that there exists some θ ∈ (0, 1) such that
bk = θak+1 + (1− θ)bk+1.

By (Λ1)− (Λ2) applied for k + 1, we obtain

ψk+1(bk)−
(
θψk+1(ak+1) + (1− θ)ψk+1(bk+1)

)
≤ 0. (B.3)

By concavity of ψk+1 − ψk, we obtain

(ψk+1 − ψk)(bk)−
(
θ(ψk+1 − ψk)(ak+1) + (1− θ)(ψk+1 − ψk)(bk+1)

)
≥ 0. (B.4)

Combining (B.3) and (B.4) yields

ψk(bk)−
(
θψk(ak+1) + (1− θ)ψk(bk+1)

)
≤ 0. (B.5)

But then, by (Λ1)− (Λ2) applied for k, we obtain

ψk(bk)−
(
θψk(ak+1) + (1− θ)ψk(bk+1)

)
> 0, (B.6)

which contradicts (B.5). Hence, bk is decreasing, and likewise we show that ak is increasing.

Step 2: For each k ∈ N \ {0}, define

Ψk := ψk(µ)−
(
θkψk(ak) + (1− θk)ψk(bk)

)
, (B.7)
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where µ = θkak + (1− θk)bk, also noticing that Ψk ≤ 0 for every k ∈ N \ {0} (by (Ψ1)− (Ψ2)). Observe that
Ψk is increasing in k:

Ψk ≤ ψk(µ)−
(
θk+1ψk(ak+1) + (1− θk+1)ψk(bk+1)

)
(B.8)

≤ ψk+1(µ)−
(
θk+1ψk+1(ak+1) + (1− θk+1)ψk+1(bk+1)

)
(B.9)

= Ψk+1,

where (B.8) follows from [ak+1, bk+1] ⊆ [ak, bk] (Step 1) combined with (Λ1)− (Λ2), while (B.9) follows from
ψk+1 − ψk being concave.

Step 3: Since both sequences (ak)
∞
k=1 and (bk)

∞
k=1 are monotonic in [0, 1], they converge to the respective

limits ak ↑ a∗0 and bk ↓ b∗0. Assume – contrary to what we want to prove – that a∗0 < b∗0. Without loss of
generality let µ ∈ (a∗0, b

∗
0). Then, by ak ≤ a∗0 < b∗0 ≤ bk (Step 1), we obtain

Ψk ≥ ψk(µ)−
(
θ∗0ψk(a

∗
0) + (1− θ∗0)ψk(b

∗
0)
)
, (B.10)

where µ = θ∗0a
∗
0 + (1− θ∗0)b∗0. Then it is the case that

0 ≥ lim
k→∞

Ψk (B.11)

≥ ψ0(µ)−
(
θ∗0ψ0(a∗0) + (1− θ∗0)ψ0(b∗0)

)
(B.12)

> 0 (B.13)

with (B.11) following from Ψk ≤ 0 combined with the fact that the limit exists (Step 2), (B.12) follows from
(B.10) combined with ψk → ψ0, while (B.13) follows from strict concavity of ψ0. This obviously contradicts
ψ0 being strictly concave, thus completing the proof.

Proof of Theorem 2. Step 1: Fix a strictly decreasing sequence (λt)t∈N in (0, 1) such that λt ↓ 0, and
for each t ∈ N define the scoring rule φt := λtφ. Notice that since φ is ε̃-proper, φt is also ε̃-proper for every
t ∈ N. Fix arbitrary ε > ε̃ and K ∈ K, and define

TK := min{t ∈ N : φt is ε-robust given K}. (B.14)

Let us first prove that TK is well-defined. In particular, we will show that there exists some T ∈ N such
that φt is ε-robust given K for all t > T .

For each t ∈ N and each µ ∈ [0, 1], define [at(µ), bt(µ)] := Jψt(µ) as in (13). Take ε∗ := ε− ε̃, and consider
some N ∈ N such that 1/N < ε∗. Then, by Lemma B2, for every n ∈ {0, . . . , N − 1}, there exists some
tn ∈ N such that

bt

( n
N

)
< at

(n+ 1

N

)
for all t > tn. Then, define T ∗ := max{tn|n ∈ {0, . . . , N − 1}}, and observe that

bt(µ)− at(µ) <
1

N

for all t > T ∗ and all µ ∈ [0, 1]. The latter implies that

µ− ε∗ < at(µ) ≤ bt(µ) < µ+ ε∗. (B.15)

By definition, if π ∈ arg maxρ∈Π(µ) Vφt(ρ) and ν ∈ supp(π), then

bt(µ) ≤ ν ≤ at(µ).
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Moreover, since φt is ε̃-proper, it is the case that

bt(µ)− ε̃ ≤ ν − ε̃ ≤ ν + ε̃ ≤ at(µ) + ε̃. (B.16)

Hence, by combining (B.15) with (B.16), we obtain Iφt(ν) ⊆ Bε(µ), implying that φt is ε-robust for every
t > T ∗ given K, as required.

Step 2: For each t ∈ N define
Kt := {K ∈ K : TK ≤ t}, (B.17)

trivially noticing that Kt ⊆ Kt+1. Moreover, since TK exists for every K ∈ K (by Step 1), it is obviously the
case that Kt ↑ K. Therefore, by Billingsley (1995, Thm 2.1), we obtain P (Kt) ↑ p, implying that for every
δ > 1− p there is some Tδ ∈ N such that P (Kt) ≥ 1− δ for all t ≥ Tδ, thus completing the proof.

C. Proofs of Section 6

Proof of Proposition 1. Sufficiency. Let C be posterior separable. Then, it is obvious that C(µ̂) = 0
for every µ ∈ [0, 1], thus proving (C1). By strict concavity of K it follows that C(π) = K(µ) − 〈K,π〉 > 0
for every π ∈ Π̂(µ) and every µ ∈ [0, 1], thus proving (C2). For an arbitrary π ∈ Π(µ),

C(π) + Eπ(C ◦ π∗) = K(µ)− 〈K,π〉+ Eπ(K − 〈K,π∗〉)
= K(µ)− 〈K,π〉+ 〈K,π〉 − 〈K,π∗µ〉
= C(π∗µ),

with the first and the third equation following from posterior-separability, and the second one following from
the linearity of the expectation (Eπ) and the inner product (〈K, ·〉). Hence, (C3) is also proven.

Necessity. Assume that C satisfies (C1) − (C3), and let K : [0, 1] → R be the cost of learning the state
with certainty, i.e., K(µ) := C(π∗µ) for each µ ∈ [0, 1]. Now, for an arbitrary π ∈ Π(µ),

C(π) = C(π∗µ)− Eπ(C ◦ π∗)
= K(µ)− 〈K,π〉, (C.1)

with the first equation following directly from rearranging (C3), and the second one following from the
definition of K. Hence, it suffices to prove that K is strictly concave. Take arbitrary 0 ≤ µ1 < µ2 ≤ 1 and
θ ∈ (0, 1), and let π0 ∈ Π̂(θµ1 + (1 − θ)µ2) be the attention strategy that assigns probability θ to µ1 and
probability 1− θ to µ2. Then,

K(θµ1 + (1− θ)µ2) = C(π0) + θK(µ1) + (1− θ)K(µ2)

> θK(µ1) + (1− θ)K(µ2),

with the equation above following from (C.1), and the inequality following from (C2). Hence, K is strictly
concave, thus completing the proof.

Proof of Proposition 2. (C4) Take π, ρ ∈ Π(µ) such that π D ρ. Then, by definition since −K is convex,
we obtain −〈K,π〉 ≥ −〈K, ρ〉. The latter implies K(µ)−〈K,π〉 ≥ K(µ)−〈K, ρ〉, and therefore by posterior-
separability, C(π) ≥ C(ρ), which completes the proof.

(C5) Take π, ρ ∈ Π(µ) and λ ∈ (0, 1). Then, we obtain

C(λπ + (1− λ)ρ) = K(µ)− 〈K,λπ + (1− λ)ρ〉
= K(µ)− λ〈K,π〉 − (1− λ)〈K, ρ〉
= λC(π) + (1− λ)C(ρ),

implying an even stronger result, i.e., C is linear in Π(µ).
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Proof of Proposition 4. Define [aK(µ), bK(µ)] as the largest interval of µ where K is linear. Then, fix
an arbitrary ε > ε̂K and a strictly decreasing sequence (λt)t∈N in (0, 1) such that λt ↓ 0, and for each t ∈ N
define the scoring rule φt := λtφ. Notice that since φ is proper, φt is also proper for every t ∈ N. Define
[at(µ), bt(µ)] := Jψt(µ) like in (13), and observe that φt is ε-robust if

[at(µ), bt(µ)] ⊆ [aK(µ)− ε, bK(µ) + ε] (C.2)

for all µ ∈ (0, 1).

Note that the sequence of continuous functions (φt)
∞
t=1 satisfies (a) ψt+1−ψt is concave, and (b) there exists

some weakly concave ψ0 such that ψt → ψ0 in the topology induced by the sup norm. Then, for any belief
µ ∈ [0, 1] it is the case that at(µ) ↑ aK(µ) and bt(µ) ↓ bK(µ). The proof follows proceeds exactly the same
as the one of Lemma B2. Finally, similarly to the proof of Theorem 2, we obtain that there exists some
t ∈ N satisfying (C.2) for every µ ∈ (0, 1), thus completing the proof.
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Matĕjka, F. (2016). Rationally inattentive seller: sales and discrete pricing. Review of Economic Studies
83, 1156–1188.
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