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Abstract

We study elicitation of latent prior beliefs when the agent can acquire information via a costly
attention strategy. We introduce a mechanism that simultaneously makes it strictly dominant
to (a) not acquire any information, and (b) report truthfully. We call such a mechanism a
robust scoring rule. Robust scoring rules are crucial for lab experiments, e.g., they are notably
needed for testing Bayesian rationality. We prove that a robust scoring rule exists under mild
axioms. These axioms are shown to characterize the class of posterior-separable cost functions.
Our existence proof is constructive, thus identifying an entire class of robust scoring rules for
each posterior-separable cost function. For the most common special case (viz., with entropic
attention costs), we characterize the class of robust quadratic scoring rules by means of a simple
inequality. Finally, we discuss potential experimental designs for testing Bayesian rationality.
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1. Introduction

Background and motivation. Subjective beliefs constitute one of the most common latent
variables of interest in economics (e.g., Manski, 2004). Having recognized this, statisticians and
economists have developed mechanisms, called (proper) scoring rules, that incentivize the economic
agent to reveal his true latent belief, irrespective of which this belief is. Due to their solid theoret-
ical foundations (i.e., the fact that they are incentive-compatible), proper scoring rules have been
extensively used in laboratory experiments and in various applications.

One of the main concerns with scoring rules is that the mechanism itself may affect the very same
beliefs it tries to elicit. As Schotter and Trevino (2014, p.109) eloquently put it,

“the very act of belief elicitation may change the beliefs of subjects from their true latent
beliefs or the beliefs they would hold (respond to) if those beliefs were not elicited (we
might have a type of Heisenberg problem)”.
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Kübler, Andy McKenzie, Marcus Pivato, Mathias Staudigl, Stefan Terstiege, Nikolas Tsakas, Mark Voorneveld and
the seminar audience in the Mathematics Department at the University of Athens for fruitful discussions. Finally I
would like to thank the Economics Department at UC Davis for its hospitality while working on this project.
†Department of Economics (AE1), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands;

Homepage: www.elias-tsakas.com; E-mail: e.tsakas@maastrichtuniversity.nl

1

www.elias-tsakas.com
mailto:e.tsakas@maastrichtuniversity.nl


This problem is particularly relevant in the lab, especially in experiments that test Bayesian ratio-
nality (see Section 5). The order typically followed in such experiments is to first let the subjects
make their choices and subsequently elicit their beliefs about payoff-relevant events. In this case it
is crucial to elicit the subjects’ prior beliefs (viz., the ones they held when they made their choice),
rather than some updated beliefs that they may form after paying extra attention to the problem
in an attempt to exploit the incentives provided by the scoring rule. Hence our aim is to identify
proper scoring rules that elicit the subjects’ prior beliefs, so that we can test whether their choices
are rational given the beliefs they held at the moment of their decisions.

Model and results. We consider scoring rules in a model with hidden information costs, which
typically emerge as an expression of rationally inattentive preferences (for an overview, see Caplin,
2016). In our formal model, there is a (male) agent – henceforth called the subject – who has a latent
(prior) probabilistic belief for some fixed event. A (female) experimenter wants to elicit this belief,
and to this end she asks the agent to report it. In order to incentivize him to report truthfully, she
designs a scoring rule that rewards the subject on the basis of his report and the realization of the
event. Before stating his report, the agent can acquire information through a costly attention strategy
and then reports his belief after having perhaps updated his prior (see Figure 1 for the timeline).

(time)t = 0

Experimenter chooses
a scoring rule

t = 1

Nature draws
a state t = 2

Subject chooses
attention strategy

t = 3

Subject updates
latent belief

t = 4

Subject reports

a belief

t = 5

State is
revealed

t = 6

Subject
is paid

Figure 1: Boxes above the line are observed symmetrically by the subject and the experimenter. Boxes
below the line are only observed by the subject. The shaded box is observed with a delay, i.e., it is realized
at t = 1 and observed at t = 5.

In order to elicit the subject’s prior belief, the scoring rule must make it simultaneously (a)
strictly dominant not to acquire any information (i.e., to choose the zero-attention strategy), and (b)
strictly dominant to report truthfully (i.e., the scoring rule is proper). Such a mechanism is called
robust scoring rule. Two natural questions arise then. Is there a robust scoring rule? And if yes,
how does it look like? Note that, in expectation, every attention strategy yields a benefit (due to the
fact that reporting is postponed till after the beliefs have been updated) and a cost (due to the fact
that information acquisition is costly). Thus, the experimenter’s problem boils down to finding a
scoring rule that provides enough incentives for the agent to report truthfully, but not strong enough
to offset the costs of acquiring information.

Our main theorem shows that robust scoring rules exist under some mild axioms on the attention
costs (Theorem 1). First, as always assumed in the literature, the only costless attention strategy is
the one that carries no information. Second, we impose a dynamic consistency axiom, which states
that the cost of attention depends only on the distribution of the posteriors and not on the process
that yields this distribution. It turns out that our axioms characterize a well-known class of cost
functions that has recently attracted attention in the literature, viz., the class of posterior-separable
attention costs. Posterior-separability has solid theoretical foundations (Caplin et al., 2017; Zhong,
2017) and is supported by recent experimental evidence (Dean and Neligh, 2017). The proof of our
theorem is constructive. Notably, not only do we show existence, but we also explicitly identify an
entire class of robust scoring rules for each posterior-separable cost function. In this sense, our theory
has strong empirical content.

Then we focus on entropic attention costs (Sims, 2003; Caplin et al., 2017), which are very
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common in applications and suitable for parametric tests of experimental data. Entropic costs are
posterior-separable, thus guaranteeing, by our previous theorem, that a robust scoring rule exists.
Then going a step further, we ask whether a quadratic scoring rule exists under the entropic cost
specification. Quadratic scoring rules are widely-used in lab experiments, primarily because they
are easily understood by the experimental subjects. Our second theorem then fully characterizes
the class of robust quadratic scoring rules when the attention costs are entropic (Theorem 2). This
result too has strong empirical content, as our characterization is by means of a simple inequality
that contains the (multiplier) parameter of the cost function and the (curvature) parameter of the
scoring rule.

Applications. As we have already mentioned, robust scoring rules are particularly important for
testing Bayesian rationality in the lab. However, this is not the only application of our theory. In
fact, beliefs are often used as an explanatory variable for behavior in a wide range of experiments,
such as public good games (Fischbacher and Gächter, 2010), trust games (Costa-Gomes et al., 2014),
voting experiments (Duffy and Tavits, 2008) and asset market experiments (Haruvy et al., 2007),
just to mention a few. Overall, our theory primarily applies to cases where we are interested in
learning the subjects’ beliefs, rather than the actual state of the world. This is why we mostly focus
on scoring rules being used as an experimental tool, rather than as an incentive scheme.

Related literature. This paper contributes to two different streams of literature, viz., belief elic-
itation via scoring rules and rational inattention. The following quick overview is by no means
exhaustive, but merely provides a taxonomy of the main directions that have been explored so far in
the literature.

Scoring rules were originally introduced by meteorologists (Brier, 1950), before being further de-
veloped by statisticians (Good, 1952; McCarthy, 1956; Savage, 1971), and eventually being adopted
by several disciplines, such as economics, accounting, business, management, psychology, political
science and computer science (see Offerman et al., 2009, p. 1462). Within economics, the theory of
scoring rules has mostly focused on introducing new mechanisms (Hossain and Okui, 2013; Karni,
2009), on relaxing the underlying assumptions of the standard mechanisms, such as for instance
risk-neutrality (Savage, 1971; Offerman et al., 2009; Schlag and van der Weele, 2013) or the expected
utility hypothesis (Karni, 1999; Chambers, 2008; Offerman et al., 2009), and on understanding the
technical relationships to other economics models (Chambers, Healy and Lambert, 2017). Scoring
rules are also used in various economic applications, focusing for instance on incentive schemes in
organizations (Thomson, 1979), information markets (Hanson, 2003; Ostrovsky, 2012) and strategic
indistinguishability (Bergemann et al., 2017). Finally, there is large experimental literature, focusing
primarily on the role of risk-aversion (Offerman et al., 2009; Armantier and Treich, 2013), the com-
parison of deterministic and stochastic scoring rules (Selten et al., 1999; Harrison et al., 2013, 2014)
and the elicitation of beliefs in games (Nyarko and Schotter, 2002; Costa-Gomes and Weizsäcker,
2008; Palfrey and Wang, 2009). For two recent literature reviews, we refer to Schotter and Trevino
(2014) and Schlag et al. (2015).

Rational inattention models first appeared in macroeconomics (Sims, 2003, 2006; Maćkowiak and
Wiederholt, 2009), before attracting interest of microtheorists. The latter have mostly focused on
providing axiomatic foundations (De Oliveira et al., 2017; Ellis, 2018) and on designing revealed-
preference tests for identifying the attention costs from choice data (Caplin and Dean, 2015; Cham-
bers, Liu and Rehbeck, 2017; Caplin et al., 2017). Recently, there is interest in dynamic models of
rational inattention (Hébert and Woodford, 2016; Morris and Strack, 2017; Zhong, 2017). There are
also various economic applications of rational inattention – usually with entropic costs – on topics
like discrimination (Bartos̆ et al., 2016), pricing (Matejka, 2016) and electoral competition (Mate-
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jka and Tabellini, 2016). Finally, there is recent work on experimentally testing models of rational
inattention (Dean and Neligh, 2017). For an overview of this literature, see Caplin (2016).

Of particular interest is the relationship between our paper and the one of Chambers and Lambert
(2017) in that they are among the handful of papers that study dynamic belief elicitation. The only
other paper is the one by Karni (2017).1 In their paper, Chambers and Lambert (2017) consider an
agent who has a latent prior belief and receives new information over time based on an exogenously
given dynamic process. Then, they construct a mechanism which makes it incentive-compatible
for the agent to simultaneously reveal his prior, his anticipated information flow and his realized
posteriors. The conceptual difference to our paper is that the agent does not strategically choose
the process of his information flow (viz., the attention strategy in our terminology). Moreover, the
two papers differ in the formal approaches that they employ, viz., as opposed to our paper, their
mechanism does not rely on the usual subgradient characterization, but rather on a randomization
technique originally introduced by Allais (1953). On the other hand, a major similarity is that both
our paper and the one of Chambers and Lambert (2017) truthfully elicit the agent’s prior beliefs.

Structure of the paper. In Section 2 we introduce our model. In Section 3 we introduce our
axioms, and we state and prove our main result. In Section 4 we study the special case with entropic
attention costs. In Section 5 we discuss potential experimental designs to test Bayesian rationality
in the lab. Section 6 contains a discussion. All proofs are relegated to the Appendix.

2. Robust scoring rules

Proper scoring rules. Consider a binary state space Ω = {ω0, ω1}. A risk-neutral (male) exper-
imental subject has a latent subjective belief µ0 ∈ [0, 1] of ω0 occurring, which is not observed by
the (female) experimenter. The subject is asked to state µ0 and reports some r ∈ [0, 1], which is not
necessarily equal to µ0. A scoring rule is a function

S : [0, 1]× Ω→ R,

chosen by the experimenter, which takes the subject’s report (r) and the realized state (ω) as an input
and returns a monetary payoff (Sr(ω)) as an output. In economics we sometimes consider stochastic
scoring rules where the subject is paid in probabilities of winning a fixed prize. Stochastic scoring
rules are used to elicit the subject’s belief for arbitrary risk attitudes. In statistics on the other hand
the image of S is often allowed to take values in R = [−∞,∞], in order to deal with a common
subdifferentiability issue that often appears with ordinary scoring rules like the ones described above.
For a discussion on such scoring rules, see Section 6.

The subject is assumed to maximize Subjective Expected Utility (SEU), i.e., given the scoring
rule (S) and his actual belief (µ0), he chooses the report (r) that maximizes

Eµ0(Sr) := µ0Sr(ω0) + (1− µ0)Sr(ω1).

A scoring rule is called proper whenever it is strictly dominant for the subject to report his true
latent belief, irrespective of what this belief is. Formally, S is a proper scoring rule, whenever

Eµ(Sµ) > Eµ(Sr) (1)

for every r 6= µ and every µ ∈ [0, 1] (Brier, 1950; Good, 1952). The most commonly used proper
scoring rule is the quadratic (QSR), which is defined by Sr(ω0) := α−β(1−r)2 and Sr(ω1) := α−βr2,

1I am indebted to Chris Chambers for pointing out these connections.
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where α ∈ R and β > 0. For a review of the standard proper scoring rules, we refer to Schlag et al.
(2015, Section 2).

It is well-known that a proper scoring rule is characterized by a class of strictly convex functions
(McCarthy, 1956; Savage, 1971). In particular, the scoring rule S is proper if and only if there exists
a strictly convex and subdifferentiable function φ : [0, 1]→ R such that Sr is a subtangent line at r
evaluated 1 and 0 respectively. Formally, let φ be such that, for each r ∈ [0, 1] there are ar, br ∈ R
such that φ(s) ≥ ar + brs for all s ∈ [0, 1], with equality holding if and only if s = r. In this case,
Sr(ω0) := ar + br and Sr(ω1) := ar is a proper scoring rule. Strict convexity of φ guarantees that (1)
holds, while subdifferentiability at the boundary guarantees that the subtangent of φ is not vertical
and therefore S is well-defined. This last condition can be dispensed with if we allow S to take values
in R instead of R as often done in statistics. Whenever S is characterized by φ, it is the case that

φ(µ) = Eµ(Sµ),

i.e., φ(µ) is the subject’s expected utility when he reports his true belief. As an example, the
QSR is characterized by the function φβ(µ) = α − βµ(1 − µ). For an overview of the subgradient
characterization of proper scoring rules, see Gneiting and Raftery (2007).

Costly attention. We now enrich the agent’s preferences to allow for information acquisition by
means of costly attention (Sims, 2003). An attention strategy is a signal, designed by the subject in an
attempt to form updated “more precise” subjective beliefs. Given his prior µ0, each attention strategy
is identified by a (Bayes-plausible) distribution over posteriors, chosen from the set Π(µ0) := {π ∈
∆([0, 1]) :

∫ 1

0
µdπ = µ0}. We define the degenerate zero-attention strategy, µ̂0 ∈ Π(µ0), that puts

probability 1 to the prior µ0. For notation simplicity, we henceforth denote by Π̂(µ0) := Π(µ0)\{µ̂0}
the set of non-degenerate attention strategies. If µ ∈ {0, 1} then Π̂(µ) = ∅. Given the prior µ0 and
a scoring rule φ, the (expected) benefit of an attention strategy π ∈ Π(µ0) is equal to

Bφ(π) := 〈φ, π〉 − φ(µ0),

where 〈φ, π〉 := Eπ(φ) denotes the usual inner product duality. Since φ is strictly convex, we obtain
Bφ(π) ≥ 0, with equality holding if and only if π = µ̂0. That is, attention always has strictly positive
benefits when the scoring rule is proper. However, attention is also costly. In particular, there is a
non-negative-valued cost function,

C : ∆([0, 1])→ R+

assigning a cost to each attention strategy. Obviously the cost does not depend on the scoring
rule, but only on the attention strategy. Attention costs can be identified from choice data (Caplin
and Dean, 2015; Chambers, Liu and Rehbeck, 2017). They are part of the standard axiomatizatic
characterizations of rationally inattentive preferences (De Oliveira et al., 2017; Ellis, 2018). The
common entropic cost function is discussed in Section 4.

Cost-benefit analysis. Given a prior µ0 and a proper scoring rule φ, the subject will choose an
attention strategy in Π(µ0) that maximizes the value

Vφ(π) := Bφ(π)− C(π).

After (optimally) choosing some π, the subject will first update his beliefs to some – also latent –
posterior µ ∈ supp(π), and then – as φ is proper – he will truthfully report his posterior belief µ.
Therefore, in order to guarantee that the agent will report his prior belief µ0, it must be the case that

5



µ̂0 is a strictly dominant attention strategy. Whenever this is the case for every prior, we say that
the scoring rule is robust. Formally, φ is a robust scoring rule, whenever it is proper and satisfies

Vφ(µ̂) > Vφ(π) (2)

for every π ∈ Π̂(µ) and every µ ∈ [0, 1]. Then, we naturally ask: is there a robust scoring rule? And
if yes, how does it look like?

3. Existence of robust scoring rules

As turns out, a robust scoring rule exists under some mild regularity conditions, imposed on the cost
function. In what follows in this section, we prove existence constructively, thus identifying an entire
family of robust scoring rules.

3.1. Axioms

We begin with two standard conditions, postulating that the zero-attention strategy is costless,
whereas every other attention strategy is costly. Formally:

(C1) Normalization: C(µ̂) = 0 for all µ ∈ [0, 1].

(C2) Attention is Costly: C(π) > 0 for all π ∈ Π̂(µ) and all µ ∈ [0, 1].

The crucial restriction imposed by (C1) is that every zero-attention strategy induces the same cost
irrespective of the prior µ. The fact that this cost is set equal to 0 is merely a normalization. Then,
(C2) postulates that new information is always costly, in the sense that the cost of paying attention
is higher than the normalized cost of the zero-attention strategy. This last condition is necessary for
the existence of a robust scoring rule: indeed, if there is some π ∈ Π̂(µ) with C(π) ≤ C(µ̂), then
for every strictly convex φ we obtain Vφ(µ̂) < Vφ(π), implying that (2) is violated, and therefore the
subject will update his prior belief.

Our next axiom is relatively new to the literature, postulating that the cost of an attention
strategy is only a function of the distribution of posteriors, and not of the underlying process that
yields this distribution. Formally:

(C3) Dynamic Consistency: If σ : [0, 1]→ ∆([0, 1]) satisfies σ(µ) ∈ Π(µ) for all µ ∈ [0, 1], then

C(Eπ(σ)) = C(π) + Eπ(C ◦ σ) (3)

for all π ∈ ∆([0, 1]).

Intuitively, if the subject chooses a sequential attention strategy, according to which he first picks
π (first-period attention strategy) and then conditional on observing some posterior µ ∈ supp(π)
he picks a new attention strategy σ(µ) (second-period attention strategy), the total cost that he
incurs is equal to the cost of his first-period strategy (C(π)) plus the expected cost of his second-
period strategies (Eπ(C ◦ σ)). The distribution of posteriors at the end of the second period is then
Eπ(σ). Dynamic consistency postulates that the cost of an attention strategy that directly yields this
distribution of posteriors (viz., C(Eπ(σ)) is equal to the total cost of the aforementioned sequential
attention strategy (viz., C(π) + Eπ(C ◦ σ)).

Our two axioms, (C1) and (C3), impose some basic coherency on the costs across different priors,
similarly to recent work on dynamic information acquisition (Hébert and Woodford, 2016; Morris and
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Strack, 2017; Zhong, 2017). This is in contrast to the standard decision-theoretic models of rational
inattention, which specify a cost function C : Π(µ)→ R+ for each prior µ ∈ [0, 1] but remain silent
on the relationship of the costs across the different priors (De Oliveira et al., 2017). Finally, as we
show later in the paper, cost functions that satisfy (C1) − (C3) are canonical in De Oliveira et al.’s
(2017) sense, i.e., they also satisfy Blackwell monotonicity and convexity (see Section 6).

3.2. Main result

The following result answers our first question affirmatively, for the rather large class of cost functions
that satisfy our axioms.

Theorem 1. If the cost function satisfies (C1)− (C3), there exists a robust scoring rule.

The overall idea behind the previous result is to find a scoring rule that provides strong enough
incentives to induce truth-telling (viz., φ must be strictly convex), but not so strong that lead the
subject to update his beliefs (viz., φ should not be “too convex”). The proof is constructive, thus
allowing us not only to prove that a robust scoring rule exists, but also to identify its functional
form. Let us sketch the main steps here, while the full proof is relegated to Appendix A.

We begin with the following intermediate result, which provides a characterization of the cost
functions that satisfy our axioms by means of a property that has recently attracted interest in the
rational inattention literature (Caplin et al., 2017). A similar result has been proven by Zhong (2017)
in a somewhat different context, relying on standard properties of mutual information (e.g., Cover
and Thomas, 2006).

Lemma 1. The cost function satisfies (C1)− (C3) if and only if it satisfies:

Posterior-Separability: There is a strictly concave function K : [0, 1]→ R such that

C(π) = K(µ)− 〈K, π〉 (4)

for every π ∈ Π(µ) and every µ ∈ [0, 1].

One can interpret K(µ) as the cost of the most informative attention strategy when the prior belief
is µ, i.e., it is the cost that the subject must incur in order to learn the true state with certainty. The
curvature of K puts a bound on the incentives that the scoring rule can give. Loosely speaking, “φ
must be less convex than −K”, i.e., formally, a proper scoring rule φ is robust if and only if φ + K
is strictly concave. Therefore, we must focus entirely on proper scoring rules that satisfy this last
property. The most obvious such candidate is

f := γ − λK (5)

which is obviously strictly convex for every γ ∈ R and every λ ∈ (0, 1). In fact, if K is subdifferen-
tiable at the boundary of [0, 1], so is f , and therefore we can simply set φ := f .

So let us focus on the case where K is not subdifferentiable, and a fortiori f is not either. One
such example is the entropic cost function that we study in detail in the next section.

Lemma 2. Consider a strictly convex function f : [0, 1] → R. Then, there exists a strictly convex
and subdifferentiable function g : [0, 1]→ R such that f − g is convex.

The previous result, takes f as a benchmark and introduces the strictly convex function g which
provides weaker incentives than f , i.e., formally, Bg(π) ≤ Bf (π) for every π ∈ ∆([0, 1]). Therefore,
since Bf (π) < C(π), it will also be the case that Bg(π) < C(π), thus guaranteeing that (2) will be
satisfied by g. Finally, since g is subdifferentiable, we can set φ := g, thus completing the proof of
our theorem. Notice that our proof of Lemma 2 is constructive, implying that not only do we prove
existence, but we also identify an entire family of robust scoring rules.
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4. Entropic attention cost

The most common functional form of attention costs within the rational inattention literature is the
entropic cost specification (Sims, 2003, 2006; Caplin et al., 2017), which among other nice properties,
allows us to provide microeconomic foundations to the multinomial logit model (Matejka and McKay,
2015). Accordingly, the cost of an arbitrary π ∈ Π(µ0) is equal to

Cκ(π) = κ
(
H(µ0)− 〈H, π〉

)
, (6)

where H(µ) = −µ log µ − (1 − µ) log(1 − µ) is the Shannon entropy (Shannon, 1948), and κ > 0 is
a multiplier parameter. It is straightforward to verify that Cκ is posterior-separable with K := κH.
Therefore, Cκ satisfies (C1)−(C3), and by Theorem 1, there exists a robust scoring rule. Since entropic
attention costs are widely-used in applications and empirical studies, we naturally ask whether there
is a common robust scoring rule. In particular, we ask: is there a robust quadratic scoring rule when
the attention costs are entropic? The following result answers the previous question affirmatively.

Theorem 2. For an entropic cost function with multiplier parameter κ > 0, the quadratic scoring
rule φβ is robust if and only if β ≤ 2κ.

Note that only the parameter β is relevant for robustness. This is not surprising, given that the
incentives of a scoring rule are measured in terms of its convexity, and the constant α does not affect
the degree of convexity of φβ, but rather it simply rescales the payments by adding a constant.

The proof of the previous result exploits the fact that H is twice differentiable. Indeed, the
condition β ≤ 2κ is equivalent to φ′′β(µ) + κH ′′(µ) ≤ 0 for every µ ∈ [0, 1] with equality holding in
at most countably many points. This last condition corresponds to φβ + K being strictly concave,
which as we have already discussed in the previous section is equivalent to (2).

5. Testing Bayesian rationality

Suppose that our main aim is to test Bayesian rationality in the lab. We consider a subject that
makes choices under uncertainty about a payoff-relevant event. The subject is said to be rational if
his choice maximizes his subjective expected utility given his (prior) beliefs. Hence, in order to test
Bayesian rationality we need to have data about both his choices and his prior beliefs.

Let us first define what exactly we mean by “prior beliefs”. In our theoretical model, the prior
beliefs are those derived from the agent’s Anscombe-Aumann preferences over acts, viz., over singleton
menus in De Oliveira et al. (2017). That is, “prior beliefs” do not refer to the subject’s beliefs before
entering the lab, but rather to his beliefs at the moment that he makes his choice. In fact, it is
plausible that before encountering the decision problem that he faces in the lab, he may not even
have beliefs about the payoff-relevant event of interest. Hence, all we care about is the beliefs that
are relevant for his choice.

The most obvious experimental test for Bayesian rationality would rely on comparing direct with
indirect measurements of beliefs, i.e., comparing the subject’s reported belief with the ones that
rationalize his actual choice. For the extensive experimental literature on this topic, see Schotter and
Trevino (2014, Section 3.2). A discrepancy between the two measurements could theoretically be
attributed to two different factors, viz., belief updating due to the experimental procedure (experi-
mental effect) or failure of Bayesian rationality. Hence, in order to test the subject’s rationality, an
experimental effect must be ruled out. For starters, it is necessary to elicit the subject’s beliefs after
the choice has been made, to avoid possible belief updating between elicitation and choice. Then,
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assuming that first we observe choices and then we elicit beliefs, we must necessarily use a robust
scoring rule, to make sure that no updating takes place between choice and elicitation.

Recall that a scoring rule φ is robust if and only if K + φ is strictly concave. Therefore, to
guarantee that the subject reports his prior beliefs, we must first know the cost function. There are
two ways to practically deal with this problem. One solution is to calibrate the attention costs using a
revealed-preference test (Caplin and Dean, 2015; Chambers, Liu and Rehbeck, 2017). Alternatively,
we may rely on distributional assumptions, e.g., we may use past data to estimate the distribution
of the multiplier parameter of the entropic cost in the population of our subjects. In this case, we
can define a scoring rule which is robust with sufficiently high probability.

Concluding, while there are many open questions regarding the experimental design that we
should use, the aforementioned discussion provides a roadmap for testing Bayesian rationality. In
particular, we illustrate that robustness of the scoring rule is necessary, but not always sufficient for
testing Bayesian rationality.

6. Discussion

Other experimental currencies. Throughout the paper we have focused exclusively on scoring
rules that pay in monetary payoffs, i.e., formally, S takes values in R. However, as we have already
mentioned, there are large literatures dealing with scoring rules that pay either in probabilities over
a fixed prize or allowing for infinite rewards/losses, i.e., formally, S takes values in [0, 1] in the former
and in R in the latter case, respectively. Let us first briefly present the motivation and then discuss
our results for each of these alternative mechanisms.

Scoring rules that pay in probability currencies are called stochastic and have been introduced in
economics in order to deal with subjects who are not risk-neutral (Savage, 1971; Schlag and van der
Weele, 2013). Formally, Sr(ω) ∈ [0, 1] is the objective probability of the subject winning the prize,
when he reports r and the realized state is ω. In this case the subject’s expected utility is linear in the
probability of winning the prize irrespective of his risk preferences, and our analysis follows verbatim
except for one small detail, viz., in order for a function φ to characterize a stochastic scoring rule,
not only should it be subdifferentiable, but it should also have at every point a subtangent that takes
values in [0, 1] both when evaluated at 0 and at 1. The latter holds whenever φ satisfies the following
two conditions: 0 ≤ φ(0) + φ′(0) ≤ 1 and 0 ≤ φ(1) − φ′(1) ≤ 1, for some φ′(µ) ∈ ∂φ(µ), for each
µ ∈ {0, 1}. Hence, for a robust φ there exists some β ∈ R and a sufficiently small γ ∈ (0, 1) such that
ψ(µ) := γ(φ(µ)+βµ) satisfies the previous two inequalities, thus implying that ψ is a robust stochastic
scoring rule. It is important to mention that stochastic scoring rules have been criticized based on
experimental evidence (Selten et al., 1999), although such criticism is not unanimous (Harrison et
al., 2013, 2014). For an in-depth discussion on the role of risk preferences, we refer to Offerman et
al. (2009).

Scoring rules that allow for infinite rewards/losses are common in statistics (Gneiting and Raftery,
2007). The main reason behind such generalization is in order to be able to dispense with the subd-
ifferentiability of φ. More specifically, when S is allowed to take infinite values, every strictly convex
function φ characterizes a proper scoring rule, even if it is not subdifferentiable at the boundary. In
this last case, the respective subtangents are infinitely sloped, which is why S needs to be unbounded.
In fact, under such generalized scoring rules, the proof of our main result becomes straightforward,
viz., the function f = γ − λK (see (5)) is always robust. However, it would still be very difficult to
practically implement such a scoring rule.

Canonical attention costs. In the rational inattention literature, there are two natural regularity
properties that we typically require the cost function to satisfy, viz., Blackwell monotonicity and
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convexity (De Oliveira et al., 2017). First, let us define the (partial) Blackwell order in Π(µ). For
two attention strategies, π, ρ ∈ Π(µ), we say that π is Blackwell more informative than ρ, and we
write π D ρ, whenever 〈f, π〉 ≥ 〈f, ρ〉 for every convex function f : [0, 1]→ R (Blackwell, 1953). The
two axioms postulate that, for every µ ∈ [0, 1], the following hold respectively:

(C4) Blackwell monotonicity: C(π) ≥ C(ρ) for all π, ρ ∈ Π(µ) with π D ρ.

(C5) Convexity: C(λπ + (1− λ)ρ) ≤ λC(π) + (1− λ)C(ρ) for all π, ρ ∈ Π(µ) and all λ ∈ (0, 1).

The obvious question is whether our axioms (C1)−(C3) imply (C4)−(C5), i.e., are the cost functions
that we consider canonical?

Starting with Blackwell monotonicity, take π, ρ ∈ Π(µ) such that π D ρ. Then, by setting
f := −K, we obtain

−〈K, π〉 ≥ −〈K, ρ〉 ⇒ K(µ)− 〈K, π〉 ≥ K(µ)− 〈K, ρ〉
⇒ C(π) ≥ C(ρ),

with the second implication following from posterior separability. Hence, (C4) holds as desired.
Switching now to convexity, take π, ρ ∈ Π(µ) and λ ∈ (0, 1). Then, we obtain

C(λπ + (1− λ)ρ) = K(µ)− 〈K,λπ + (1− λ)ρ〉
= λK(µ)− λ〈K, π〉+ (1− λ)K(µ)− (1− λ)〈K, ρ〉
= λC(π) + (1− λ)C(ρ),

with the first and third equations following from posterior separability, and the second one following
from the linearity of the inner product. Hence, our axioms imply an even stronger axiom than (C5),
viz., C is linear in Π(µ).

Quadratic scoring rules. As we have shown above, for every entropic cost function there is a
robust quadratic scoring rule. Does this result extend to every posterior-separable cost functions? It
is not difficult to see that this is not the case. For instance, if K(µ) = 1− µ3, the second derivative
is not bounded away from 0, implying that the cost function becomes arbitrarily flat close to 0. On
the other hand, the second derivative of an arbitrary φβ is bounded away from 0. That is, formally
φ′′β(µ) +K ′′(µ) = 2β−6µ, implying that φβ +K is (strictly) convex in [0, β

3
). Hence, φβ is not robust

for any β.

Multinomial beliefs. Throughout the paper we have focused on binary state spaces, thus eliciting
the probability of a single event. The difficulty to directly extend our main result to the multinomial
case lies on the extension of Lemma 2 to higher-dimension euclidean spaces not being straightforward.
Nevertheless, for practical purposes, it can be shown that approximately robust scoring rules exist.
That is formally, for every ε > 0 there is a scoring rules that elicits a belief within ε distance from
the subject’s actual prior belief. Interestingly, our Theorem 2 extends verbatim to the multinomial
case, i.e., a quadratic scoring rule is robust if and only if β ≤ 2κ.

A. Proofs

A.1. Intermediate results

Proof of Lemma 1. Sufficiency. Let C be posterior separable. Then, it is obvious that C(µ̂) =
0 for every µ ∈ [0, 1], thus proving (C1). By strict concavity of K it follows that C(π) = K(µ) −
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〈K, π〉 > 0 for every π ∈ Π̂(µ) and every µ ∈ [0, 1], thus proving (C2). Finally, for an arbitrary
σ : [0, 1]→ ∆([0, 1]) satisfying σ(µ) ∈ Π(µ) for every µ ∈ [0, 1], and an arbitrary π ∈ Π(µ0),

C(π) + Eπ(C ◦ σ) = K(µ0)− 〈K, π〉+ Eπ(K − 〈K, σ〉)
= K(µ0)− 〈K, π〉+ 〈K, π〉 − 〈K,Eπ(σ)〉
= C(Eπ(σ)),

with the first and the third equation following from posterior-separability, and the second one fol-
lowing from the linearity of the expectation (Eπ) and the inner product (〈K, ·〉). Hence, (C3) is also
proven.

Necessity. Assume that C satisfies (C1) − (C3), and let K : [0, 1] → R+ be the cost of learning
the state with certainty, i.e., K(µ) := C(σ(µ)) for each µ ∈ [0, 1], where σ(µ) ∈ Π(µ) induces with
probability µ the posterior that puts probability 1 to ω0 and with probability 1 − µ the posterior
that puts probability 1 to ω1. Now, for an arbitrary π ∈ Π(µ0),

C(π) = C(Eπ(σ))− Eπ(C ◦ σ)

= K(µ0)− 〈K, π〉,

with the first equation following directly from rearranging (C3), and the second one following from the
definition of K. Hence, it suffices to prove that K is strictly concave. Take arbitrary 0 ≤ µ1 < µ2 ≤ 1
and θ ∈ (0, 1), and let π0 ∈ Π̂(θµ1 + (1 − θ)µ2) be the attention strategy that assigns probability θ
to µ1 and probability 1− θ to µ2. Then,

K(θµ1 + (1− θ)µ2) = C(π0) + θK(µ1) + (1− θ)K(µ2)

> θK(µ1) + (1− θ)K(µ2),

with the equation above following from (C3), and the inequality following from (C2). Hence, K is
strictly concave, thus completing the proof.

Proof of Lemma 2. If f is subdifferentiable in [0, 1] then the result follows trivially by setting
g := f . Therefore, we assume that there exists x ∈ {0, 1} such that the subderivative

∂f(x) := {t ∈ R : f(y) ≥ f(x) + t(y − x) for all y ∈ [0, 1]}

is empty.

Step 1: By convexity, f is continuous in (0, 1). Let f̂ : [0, 1] → R be the continuous extension of
f : (0, 1) → R to [0, 1]. It is straightforward that f̂ exists and is strictly convex. Let us now prove
that f − f̂ is convex. Take arbitrary 0 ≤ x1 < x2 ≤ 1 and θ ∈ (0, 1). Since (θx1 + (1 − θ)x2) ∈
(0, 1), we trivially obtain (f − f̂)(θx1 + (1 − θ)x2) = 0. Moreover, by f(x) ≥ f̂(x), we obtain
θ(f − f̂)(x1) + (1− θ)(f − f̂)(x2) ≥ 0. Hence, f − f̂ is convex, as claimed. Therefore, it suffices to
prove that there is a strictly convex and subdifferentiable g such that f̂ − g is convex.

Step 2: For each x ∈ [0, 1] define the left ax := f̂ ′−(x) and right bx := f̂ ′+(x) derivative respectively.
We adopt the notational convention that a0 = −∞ and b1 := ∞. It follows from (strict) convexity
of f̂ that ∂f̂(x) = [ax, bx], with ax = bx whenever f̂ is differentiable at x. Moreover, ∂f̂ is strictly
increasing, i.e., x < y if and only if ax ≤ bx < ay ≤ by. Obviously, f̂ is subdifferentiable if and only

if −∞ < b0 < a1 < ∞, in which case we simply set g := f̂ . Hence, we henceforth focus on the
case where ∂f̂(x) = ∅ for some x ∈ {0, 1}, i.e., b0 = −∞ or a1 = ∞. Let x0 ∈ [0, 1] be the unique
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minimizer of f̂ , and define the strictly increasing function F : [0, 1]→ R as follows: F (x) := ax > 0
for all x ∈ (x0, 1], F (x) := bx < 0 for all x ∈ [0, x0), and F (x0) = 0.

Step 3: Since f̂ is continuous in a closed interval, it is also absolutely continuous, and therefore by
the Fundamental Theorem of Calculus, F is Lebesgue integrable and

f̂(x) = f̂(0) +

∫ x

0

F (t)dt. (A.1)

Take a strictly increasing Lipschitz function h : R→ [−1, 1] (with Lipschitz constant c ≤ 1), and let
G := h ◦ F . Since F is Lebesgue integrable, so is G. Thus, we can define g : [0, 1]→ R by

g(x) := f̂(0) +

∫ x

0

G(t)dt. (A.2)

Since G is strictly increasing, g is strictly convex, and therefore subdifferentiable in (0, 1). Moreover,
since G takes values in [−1, 1], it is the case that

∫ x
0
G(t)dt ≥ −2x, implying that g(x) ≥ g(0)− 2x

for every x ∈ [0, 1], i.e., g is subdifferentiable at 0. We prove identically that g subdifferentiable also
at 1, implying that it is subdifferentiable in [0, 1].

Step 4: Let us finally prove that f̂ − g is convex. Consider arbitrary 0 ≤ x1 < x2 ≤ 1. Since
h is Lipschitz with constant c ≤ 1, it is the case that F (x2) − F (x1) ≥ G(x2) − G(x1), implying
that F −G is increasing. Moreover, by (A.1) and (A.2), we obtain (f̂ − g)(x) =

∫ x
0

(F (t)−G(t))dt,

implying that f̂ − g is convex, which completes the proof.

A.2. Proof of Theorem 1

First, observe that a proper scoring rule φ is robust if and only if φ+K is strictly concave. Indeed,
for arbitrary π ∈ Π̂(µ) and µ ∈ [0, 1],

Vφ(π) = 〈φ, π〉 − φ(µ)−K(µ) + 〈K, π〉
= 〈φ+K, π〉 − (φ+K)(µ),

with the first equation following from Lemma 1 and the definition of Vφ. Now for arbitrary γ ∈ R
and λ ∈ (0, 1), define the strictly convex function f := γ− λK (see Equation (5)). Then, by Lemma
2, there exists some strictly convex and subdifferentiable function g, such that f − g is convex. Set
φ := g. By strict convexity and subdifferentiability of g, it follows that φ is a proper scoring rule.
Finally, notice that g + K is strictly concave, as it is the sum of a strictly concave function (viz.,
K + f) and a concave function (viz., g − f). Therefore, by our first argument, φ is robust.

A.3. Proof of Theorem 2

Recall from the proof of Theorem 1 that φβ is robust if and only if v := φβ + κH is strictly concave.
Observe that v′′(µ) = 2β − κ

µ(1−µ)
, implying that v′′(µ) ≤ 0 if and only if 2βµ2 − 2βµ+ κ ≥ 0. Take

∆ := 4β2 − 8βκ and observe that there are three possible cases. If ∆ < 0 then v′′(µ) < 0 for all
µ ∈ [0, 1]. If ∆ = 0 then v′′(µ) ≤ 0 for all µ ∈ [0, 1] with equality holding only for µ = 1/2. Finally,

if ∆ > 0 then v′′(µ) > 0 for all µ ∈ [0, 1] ∩ (1
2
−
√

∆
4β
, 1

2
+
√

∆
4β

). Hence, v is strictly concave in [0, 1] if
and only if ∆ ≤ 0, which is the case if and only if β ≤ 2κ.
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