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Motivation and Contribution

Background

General problem: How to elicit latent subjective beliefs?

Usual answer: Proper scoring rules.

Methodological problem (Heisenberg): Monetary incentives
(provided by the scoring rule) may affect the very same beliefs we
want to elicit.
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Motivation and Contribution

Example: Eliciting population beliefs

We are interested in distribution of beliefs in a population, e.g.,

Political campaign (population of voters)
Marketing campaign (population of consumers)

Importantly, we are not interested in the actual state.

Three steps to estimate the population beliefs:
1 draw a representative sample from the population,
2 elicit individual beliefs from each subject in the sample,
3 use frequency of elicited beliefs as an estimate for population.

Problem: If subjects in the sample respond to the incentives we
provide them, by acquiring information, then we obtain biased
estimate of population beliefs.
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Motivation and Contribution

Research question and preview of results

Can we elicit the beliefs that the subject would have had,

if the elicitation task had not taken place?

These are called prior beliefs.

Yes, under standard mild assumptions.

If we accept small mistakes, any proper scoring rules would work.
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Motivation and Contribution

Literature(s)

Intersection of two literatures:

Incentivized belief elicitation (scoring rules)

Rational inattention / Costly information acquisition
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Formal model
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Formal model

Preliminaries

Fundamentals:

Binary state space: Ω = {ω0, ω1}
Latent subjective belief (of ω0 occurring): µ ∈ [0, 1]

(Non-verifiable) self-report: r ∈ [0, 1]

Elicitation Mechanisms:

Scoring rule: S : [0, 1]× Ω→ R
Payment depends on self-report and state realization.

Payment is in monetary payoffs.
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Formal model

Purpose and timeline of our mechanism

(time)t = 0

Experimenter chooses
a scoring rule

t = 1

Nature draws
a state t = 2

Subject chooses
attention strategy

t = 3

Subject updates
latent belief

t = 4

Subject reports
a belief

t = 5

State is
revealed

t = 6

Subject
is paid

The experimenter wants to elicit prior beliefs.
So, she wants to design a scoring rule, such that the subject

1 does not acquire any information,
2 so that he does not update his beliefs, and
3 subsequently he reports truthfully.

We will call this, a robust scoring rule.
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Formal model

Proper scoring rules

(time)t = 0

Experimenter chooses
a scoring rule

t = 1

Nature draws
a state t = 2

Subject chooses
attention strategy

t = 3

Subject updates
latent belief

t = 4

Subject reports
a belief

t = 5

State is
revealed

t = 6

Subject
is paid

Begin with the second step (i.e., “report truthfully”).
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Formal model

Proper scoring rules

Definition: Strictly dominant to report truthfully for all beliefs

Eµ(Sµ) > Eµ(Sr ) for all r 6= µ and all µ ∈ [0, 1]

Characterization (Savage, 1971): Define φ(µ) := Eµ(Sµ)

S proper ⇔ φ strictly convex and subdifferentiable.

0 1 (µ)

S1/8(ω1)

S1/8(ω0)S7/8(ω1)

S7/8(ω0)
S1/4(ω1)

S1/4(ω0)S3/4(ω1)

S3/4(ω0)

1
8
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Formal model

Attention

(time)t = 0

Experimenter chooses
a scoring rule

t = 1

Nature draws
a state t = 2

Subject chooses
attention strategy

t = 3

Subject updates
latent belief

t = 4

Subject reports
a belief

t = 5

State is
revealed

t = 6

Subject
is paid

Continue with the first step (i.e., “not acquiring any information”).
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Formal model

Attention strategies

An attention strategy is modelled with a Bayesian signal,
σ : Ω→ ∆(S) chosen by the subject.

Given a prior µ ∈ [0, 1], each feasible attention strategy is
characterized by a (mean-preserving) distribution of posteriors:

π ∈ ∆([0, 1]) such that µ = Eπ(ν) .

The set of feasible attention strategies is denoted by Π(µ).

Important special cases:

No-attention strategy: µ̂ ∈ Π(µ) puts probability 1 to µ.
Perfectly informative strategy: π∗

µ ∈ Π(µ) puts probability 1 to {0, 1}.
Attention has benefits and costs.

0 1

(µ)

1
2
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Formal model

Benefit of attention

Fix a proper scoring rule φ.
For prior µ and attention π ∈ Π(µ), the expected benefit is

Bφ(π) = 〈φ, π〉 − φ(µ)

Every attention strategy yields a strictly positive expected benefit
The more convex φ is, the stronger the incentives.

0 1 (µ)

φ
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Formal model

Cost of attention

C : ∆([0, 1])→ R+

Costs are assumed to satisfy posterior separability:

There is a strictly concave function K : [0, 1]→ R such that

C (π) = K (µ)− 〈K , π〉
for every π ∈ Π(µ) and every µ ∈ [0, 1].

Supporting experimental evidence (Dean & Neligh, 2017)

Solid theoretical foundations (see Appendix)
Usual applications (entropic costs)

0 1

K(µ)

µ

〈K , π〉

µ1 µ2
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Formal model

Eliciting prior belief

(time)t = 0

Experimenter chooses
a scoring rule

t = 1

Nature draws
a state t = 2

Subject chooses
attention strategy

t = 3

Subject updates
latent belief

t = 4

Subject reports
a belief

t = 5

State is
revealed

t = 6

Subject
is paid

Put the two steps together (i.e., “not acquire any information” and
“report truthfully”).
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Formal model

Robust scoring rule

Value of attention given a scoring rule:

Vφ(π) := Bφ(π)− C (π)

Robust scoring rule: For every prior µ ∈ [0, 1], it is simultaneously
strictly dominant:

1 not to acquire any information, and
2 to report truthfully.

Vφ(µ̂) > Vφ(π) for all π ∈ Π̂(µ), with φ proper

Intuitively, the incentives should be strong enough to tell the truth,
but not too strong so that the expected benefit from acquiring
information offsets the cost.

That is, “φ must be strictly convex, but not too convex”.
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Vφ(µ̂) > Vφ(π) for all π ∈ Π̂(µ), with φ proper
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Formal model

Optimal attention strategy: Concavification

Value of π ∈ Π(µ) (for a proper φ and posterior-separable K ):

Vφ(π) = Bφ(π)− C (π)

=
(
〈φ, π〉 − φ(µ)

)
−
(
K (µ)− 〈K , π〉

)
= 〈K + φ, π〉+ (K + φ)

Optimal π given by concave closure of K +φ (Aumann & Maschler, 1995).

φ robust ⇔ K + φ strictly concave

φ

1

K
µ

Bφ(π)

C(π)

K + φ

1µ

Vφ(π)
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Formal model

Example: Robust QSR under entropic costs

Quadratic scoring rule: φ(µ) = α− βµ(1− µ)

Entropic costs: K (µ) = −κ
(
µ logµ+ (1− µ) log(1− µ)

)

φ robust ⇔ K + φ strictly concave

⇔ β ≤ 2κ.
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First result: Exact robustness

Roadmap

1 Motivation and Contribution

2 Formal model

3 First result: Exact robustness

4 Extensions: Approximate robustness
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First result: Exact robustness

Existence

Theorem

If the cost function is posterior-separable, there exists a robust scoring rule.
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First result: Exact robustness

Non-existence of robust QSR

Quadratic scoring rule: φ(µ) = α− βµ(1− µ)

Costs: K (µ) = µ− µ3

For all β > 0 and all µ ∈ (0, β/2), the subject updates his beliefs.

K + φ

K + φ

1β
2
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Extensions: Approximate robustness

Roadmap
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Extensions: Approximate robustness

Additional questions

What if the cost function is not known to the experimenter?

What can we achieve with well-known scoring rules (e.g., quadratic
scoring rule)?

We answer both at once, by considering approximate robustness.
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Extensions: Approximate robustness

Approximate robustness

The experimenter cannot calibrate exactly the cost function.

She estimates the cost function with a probability distribution.

A scoring rule is (ε, δ)-robust if it elicits a belief within ε from the
prior with probability at least 1− δ.

Theorem

Assume that costs are posterior-separable almost surely, and consider
arbitrary ε > 0 and δ > 0. Then, for every proper scoring rule φ, there is
some λ ∈ (0, 1) such that λφ is (ε, δ)-robust.
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Extensions: Approximate robustness

Approximate robustness intuitively

φ

1

K

1

K + φ

K + φ

Elias Tsakas (Maastricht University) Robust scoring rules June 2019 / BGSE Forum 27 / 29



Extensions: Approximate robustness

Approximate robustness intuitively

φ

φ
2

1

K

1

K + φ

K + φ

Elias Tsakas (Maastricht University) Robust scoring rules June 2019 / BGSE Forum 27 / 29



Extensions: Approximate robustness

Approximate robustness intuitively

φ

φ
2

1

K

1

K + φ
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Extensions: Approximate robustness

Approximately robust QSR

Quadratic scoring rule: φ(µ) = α− βµ(1− µ)

Costs: K (µ) = µ− µ3 with probability 1.

For arbitrary ε > 0, take β = 2ε and the scoring rule will elicit a belief
within ε from the prior (here we can even take δ = 0).

K + φ

K + φ

1β
2
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Extensions: Approximate robustness

Approximately robust QSR with uncertain entropic costs

Quadratic scoring rule: φ(µ) = α− βµ(1− µ)

Entropic costs: K (µ) = −κ
(
µ logµ+ (1− µ) log(1− µ)

)
with κ

uniformly distributed in [0, 1]

If δ > 0, then φ with β ≤ 2δ will elicit the prior with probability at
least 1− δ.
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Appendix A: Posterior separability

Cost of attention

Proposition

The cost function is posterior-separable if and only if:

(C1) Normalization: C (µ̂) = 0 for all µ ∈ [0, 1]

(C2) Attention is costly: C (π) > 0 for all π ∈ Π̂(µ) := Π(µ) \ {µ̂}
and all µ ∈ [0, 1]

(C3) Dynamic consistency: For all π ∈ Π(µ) and all µ ∈ [0, 1],

C (π∗µ) = C (π) + Eπ(C ◦ π∗) (1)

Interpretation: New information is always costly and the order of
information does not matter (additive separability)

0 1

(µ)

1
2
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Appendix B: Proof of main result
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Appendix B: Proof of main result

Exact robustness

Theorem

If the cost function is posterior-separable, there exists a robust scoring rule.
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Appendix B: Proof of main result

Graphical sketch of the proof

1 Start with K and then take candidate scoring rule a− K .
2 Benefits equal costs.
3 Take f := b(a− K ) for some b ∈ (0, 1).
4 Costs offset benefits (K + f strictly concave).
5 Question remaining: is f subdifferentiable?

0 1

K
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Appendix B: Proof of main result

Sketch of the proof: boundary problem

Lemma

For every strictly convex function f : [0, 1]→ R, there exists some strictly
convex φ : [0, 1]→ R such that

1 f − φ is (weakly) convex (“φ is less convex than f ”)

2 ∂φ(ν) 6= ∅ for all ν ∈ {0, 1} (“φ is subdifferentiable”)

By (1), φ yields even weaker benefits than f .

By (2), φ is a well-defined scoring rule.

Hence, φ is a robust scoring rule (QED).
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Appendix B: Proof of main result

Thanks for listening!!!
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