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Abstract

In a recent paper, Tsakas (2012) introduced the notion of rational beliefs. These are Borel probability
measures that assign a rational probability to every Borel event. Then, he constructed the corresponding
Harsanyi type space model that represents the rational belief hierarchies. As he showed, there are rational
types that are associated with a non-rational probability measure over the product of the underlying space of
uncertainty and the opponent’s types. In this paper, we define the universally rational belief hierarchies, as
those that do not exhibit this property. Then, we characterize them in terms of a natural restriction imposed
directly on the belief hierarchies.
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1. Introduction

A belief hierarchy is a description of an agent’s beliefs about some fundamental space of uncertainty,
her beliefs about everybody else’s beliefs, and so on. During the past few decades, belief hierarchies
have been often used to analyze games with incomplete information (Harsanyi, 1967-68), as well as in
order to provide epistemic characterizations for several standard solution concepts, such as rationalizability
(Brandenburger and Dekel, 1987; Tan and Werlang, 1988), Nash equilibrium (Aumann and Brandenburger,
1995), and correlated equilibrium (Aumann, 1987).1

Belief hierarchies are in general complex objects, consisting of an infinite regression of probability
measures. This makes them hard to handle and sometimes even to describe, especially when it comes
to high order beliefs. Having recognized this difficulty, Harsanyi (1967-68) proposed an indirect way for
representing belief hierarchies, known as the type space model. Formally, Harsanyi’s model consists of
a set of types for each agent and a continuous mapping from each type to the corresponding beliefs over
the product of the fundamental space of uncertainty and the opponent’s type space. This structure induces
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Willemien Kets, Friederike Mengel, Ronald Peeters, Andrés Perea, Miklos Pintér, Arkadi Predtchednitski, Dries Vermeulen,
Akira Yokotani, three anonymous referees and the audiences in GAMES (Istanbul), LOFT (Sevilla), Nottingham (Economics)
and Maastricht (EpiCenter) for useful comments and fruitful discussions on this paper. Financial support from the Marie Curie
Fellowship (PIEF-GA-2009-237614) is gratefully acknowledged.
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a belief hierarchy for every type, thus reducing the infinite-dimensional regression of beliefs to a single-
dimensional type. Mertens and Zamir (1985), Brandenburger and Dekel (1993) and Mertens et al. (1994)
completed the analysis by showing the existence of the universal type space, which represents all belief
hierarchies satisfying some standard coherency properties.

In a recent paper Tsakas (2012) restricted attention to probabilistic beliefs that can take only rational
values, e.g., he ruled out beliefs of the form “E occurs with probability

√
2/2”. Such beliefs are modeled

by Borel probability measures that attach a rational number to every Borel event. These Borel probability
measures are called rational.

Considering agents who form rational beliefs over some underlying space of uncertainty Θ, like Tsakas
(2012) did, does not necessarily restrict the language they use to describe their beliefs, i.e., rational beliefs
are still within Harsanyi’s framework which models the agents’ language with the Borel σ-algebra of events
in ∆(Θ).2 As a consequence, agents understand what it means to assign probability

√
2/2 to a Borel event

E ⊆ Θ, as the latter corresponds to the event {µ ∈ ∆(Θ) : µ(E) =
√

2/2} which is Borel in ∆(Θ). That is, in
this framework, despite the fact that agents can express subjective beliefs that use non-rational probabilities,
they refrain from actually doing so. In fact, recent studies indicate that human subjects find non-rational
numbers very complex, often showing a tendency to rely on decimal approximations which they find more
intuitive (Sirotic and Zazkis, 2007a,b).

Subsequently, Tsakas (2012) constructed a Harsanyi type space representation of rational belief hier-
archies. However, as his main result shows, there exist some rational types which are associated with
non-rational probability measures over the product of the fundamental space of uncertainty and the oppo-
nent’s rational type space. In other words, there is some Borel event in this product space to which this
rational type attaches a non-rational probability even though every order of her belief hierarchy involves
only rational probabilities. The aim of this paper is to identify and characterize the rational types that do not
exhibit this property, i.e., to provide conditions on the belief hierarchies so that the associated probability
measure over the product of the underlying space of uncertainty and the opponent’s rational types to assign
rational probabilities to all Borel events. We call these types universally rational.

In order to do so, we first introduce the notion of N-rational probability measures. Accordingly, for a
fixed finite subset N of the natural numbers, a rational probability measure is N-rational whenever it attaches
to every Borel event a probability that can be written as fraction with the denominator belonging to N. For
instance, if N = {100}, an N-rational measure would describe the beliefs of an agent whose subjective
uncertainty is expressed in terms of percentages. Then, we say that a rational belief hierarchy is N-rational
if all orders of beliefs are described by an N-rational probability measure. Notice, that we do not require the
agent to believe that the opponent’s beliefs are also N-rational, e.g., she may reason in terms of percentages,

2The standard syntactic models of logic typically assume that the language that describes the agents’ beliefs is finitely gen-
erated by sentences of the form “E occurs with probability at least p” where p is a rational number (Fagin and Halpern, 1994;
Aumann, 1999; Heifetz and Mongin, 2001; Zhou, 2010). The latter induces an algebra of events in ∆(Θ), which is obviously
coarser than the Borel σ-algebra that we consider here. To see this note that the Borel σ-algebra is the one generated by the topol-
ogy of weak convergence, and is countably – rather than finitely – generated by events of the form “E occurs with probability at
least p”.
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and still attach positive probability to her opponent believing some event E with probability 1/3. As it turns
out universally rational types are characterized by means of N-rational beliefs. More specifically, as our
main result shows (Theorem 1) a belief hierarchy is universally rational if and only if it is N-rational for
some finite N ⊆ N.

The paper is structured as follows: Section 2 recalls the framework of rational belief hierarchies; Section
3 introduces the concept of N-rational beliefs; Section 4 contains the results of the paper; All proofs are
relegated to the Appendix.

2. Rational beliefs hierarchies

In this section, we recall the framework for modeling rational beliefs, introduced by Tsakas (2012).

2.1. Rational probability measures

Let X be a Polish space3, together with the Borel σ-algebra, B. As usual, ∆(X) denotes the space of
probability measures on (X,B), endowed with the topology of weak convergence.4 For each µ ∈ ∆(X), let
supp(µ) denote the support, i.e., those x ∈ X with the property that every open set containing x receives
positive probability by µ.5

Consider the Borel probability measures that assign to every Borel event a rational number.

Definition 1. We define the set of rational probability measures by

∆Q(X) :=
{
µ ∈ ∆(X) : µ(B) ∈ Q,∀B ∈ B

}
. (1)

We use rational probability measures to model an agent who does not hold beliefs of the form “E
occurs with probability

√
2/2”. Observe that the agent’s language contains all events in the Borel σ-

algebra generated by the topology of weak convergence, implying that she understands what it means to
put probability

√
2/2 to E, as the latter is countably generated by events of the form {µ ∈ ∆(X) : µ(E) ≥ p},

where p is rational in [0, 1]. Obviously, this language is richer than the one used in logic, where only
finitely generated sentences are expressible, and therefore the agent does not even understand the meaning
of the sentence “E occurs with probability

√
2/2”. In either case, we assume that the agent never uses

such complex beliefs. The following result provides a useful, yet surprising property of rational probability
measures.

Proposition 1 (Tsakas, 2012). Every µ ∈ ∆Q(X) has a finite support.

3A topological space is called Polish whenever it is separable and completely metrizable. Examples of Polish spaces include
countable sets endowed with the discrete topology and Rn together with the usual topology. Closed subsets of Polish spaces
endowed with the relative topology are Polish. The countable product of Polish spaces, together with the product topology, is
also Polish.

4The topology of weak convergence, which is usually denoted by w∗, is the coarsest topology that makes the mapping
µ 7→

∫
f dµ continuous, for every bounded and continuous real-valued function, f . If X is Polish, then ∆(X) endowed with the

topology of weak convergence is also Polish. For further properties of w∗, we refer to Aliprantis and Border (1994, Ch. 15).
5If X is separable and metrizable, the support is unique (Parthasarathy, 1967, Thm. 2.1).
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2.2. Rational belief hierarchies and rational types

Let Θ be a Polish space together with the Borel σ-algebra, B0. For instance, in a game, each θ ∈
Θ corresponds to a payoff vector (Harsanyi, 1967-68), or a strategy profile (Aumann and Brandenburger,
1995; Tan and Werlang, 1988), or a combination of the two. Throughout the paper, we refer to Θ as the
underlying – or fundamental – space of uncertainty. Let I = {a, b} be the set of agents, with typical elements
i and j.6

Each agent forms rational beliefs about Θ (first order rational beliefs), rational beliefs about the oppo-
nent’s first order rational beliefs (second order rational beliefs), and so on. Such a sequence is called a
rational belief hierarchy. Formally, consider the sequence

Θ0 := Θ

Θ1 := Θ0 × ∆Q(Θ0)
...

Θk+1 := Θk × ∆Q(Θk)
...

A rational belief hierarchy is a sequence (π1, π2, . . . ), with πk ∈ ∆Q(Θk−1) denoting the k-th order rational
beliefs. Let

T Q
0 :=

∞∏
k=0

∆Q(Θk) (2)

denote the space of all rational belief hierarchies, endowed with the product topology.
In general, belief hierarchies are large and complex objects, and as such it is hard directly working

with them. Harsanyi (1967-68) was the first one to circumvent this problem by proposing a compact way
of expressing belief hierarchies, known in the literature as the type space model. Formally, this model
consists of a tuple (Θ,Ta,Tb, ga, gb), where Ti is a Polish space of types with typical element ti, and gi :
Ti → ∆(Θ × T j) is a continuous function. In a type space, each ti ∈ Ti is associated with a unique belief
hierarchy.7

We say that a type space model is terminal whenever for every belief hierarchy there exists a type in Ti

inducing it. Moreover, we call a type space model complete, if gi is surjective, implying that every measure
in ∆(Θ × T j) is the image of some type in Ti. Mertens and Zamir (1985), Brandenburger and Dekel (1993)
and Mertens et al. (1994) showed that Harsanyi’s framework is sufficiently rich to model all instances of
interactive uncertainty, in that there is a type space model (Θ,T ∗a , T

∗
b , g

∗
a, g
∗
b), with T ∗a = T ∗b = T ∗ and

g∗a = g∗b = g∗, which is both complete and terminal. This construction is called the universal type space

6Our analysis can be directly generalized to any finite set of agents, in which case we obviously allow for correlated beliefs,
as usual.

7For a detailed presentation on how the entire belief hierarchy is derived from a type space model, we refer to Siniscalchi
(2007).

4



model.8

The first natural question arising at this point is whether we can extend their result to the case of rational
belief hierarchies. In other words, is there a universal type space model of rational belief hierarchies in the
same line as the standard result of Brandenburger and Dekel (1993)?

As usual, we further restrict rational belief hierarchies so that they satisfy, not only coherency, but also
common certainty in coherency. Let T Q denote the set of rational belief hierarchies satisfying coherency and
common certainty in coherency. Henceforth, whenever we write “rational belief hierarchies” or “rational
types”, we implicitly refer to elements of T Q, thus omitting to explicitly say that they satisfy coherency and
common certainty in coherency. Following Brandenburger and Dekel (1993), Tsakas (2012) proved the
existence of a terminal type space model of rational belief hierarchies, implying that every rational belief
hierarchy is identified by a Borel probability measure on Θ × T Q, via the injective function

g : T Q → ∆(Θ × T Q). (3)

It is rather easy to see that the function g is in fact the same as g∗ from Brandenburger and Dekel (1993),
but restricted to the domain of rational belief hierarchies. Throughout the paper, we treat g and g∗ as the
same function. Note that g is natural mapping, in the sense that every rational type is associated with a
probability measure over Θ × ∏∞k=0 ∆

Q(Θk) that has the property that its marginal distribution over Θk−1

coincides with the k-th order beliefs induced by this hierarchy, i.e., for every (π1, π2, . . . ) ∈ T Q

margΘk−1
g(π1, π2, . . . ) = πk. (4)

Obviously, this type space model is not complete, as there are Borel probability measures in ∆(Θ × T Q)
which are not the image of any rational type. The latter is not surprising, as one can easily see that there
exist probability measures π ∈ ∆(Θ× T Q) with margΘ π < ∆

Q(Θ), e.g., a measure with π({θ} × T Q) =
√

2/2.
More interestingly, Tsakas (2012) showed that there exist types that are mapped via g to non-rational

probability measures over Θ × T Q. Throughout the paper, we call the rational types that do not exhibit this
property universally rational, i.e., a type t ∈ T Q is universally rational if and only if g(t) ∈ ∆Q(Θ × T Q).

Proposition 2 (Tsakas, 2012). There exists some t ∈ T Q which is not universally rational.

In fact, the types t ∈ T Q that are not universally rational, attach a non-rational probability to Borel events
that are expressible if the agent’s language is countably generated.9 This implies that in the existence of a
countable generated language modeled by the Borel σ-algebra, agents may not be able to avoid using non-
rational beliefs for some event in their language even if their entire belief hierarchy contains only rational
beliefs. In this paper we identify the conditions under which a rational type does not exhibit this property.
In other words, we characterize the set of universally rational types.

8Heifetz (1993) generalized this representation result to cases where the underlying space of uncertainty is Hausdorff and
beliefs are modeled by tight probability measures, while Heifetz and Samet (1998) considered a purely measurable underlying
space of uncertainty. Finally, Pintér (2010) studied the existence of a universal type space for arbitrary topological spaces.

9In fact Tsakas (2012, Section 5.1) discusses the case of a finitely generated language.
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3. N-rational probability measures

Recall from Proposition 1 that every rational measure has a finite support. Hence, for every rational
measure there exists some finite N ⊆ N such that the probability assigned to every Borel event can be
written as fraction with the denominator belonging to N. Formally, let

QN :=
{

m/n ∈ Q : m = 0, . . . , n ; n ∈ N
}
,

contain all rational numbers with this property. Then, define the set of all rational probability measures that
take values only in QN .

Definition 2. We define the set of N-rational probability measures by

∆N(X) :=
{
µ ∈ ∆(X) : µ(B) ∈ QN ,∀B ∈ B

}
. (5)

Obviously, if N ⊆ M ⊆ N, then ∆N(X) ⊆ ∆M(X) ⊆ ∆N(X) = ∆Q(X), implying that N-rational probability
measures are in fact rational. Recall that a rational probability measure describes the beliefs of an agent
who avoids to use complex beliefs, such as the ones that attach a non-rational probability to some Borel
event E, even though her language allows her to understand what it means for instance to put probability√

2/2 to E. Thus, N-rational probability measures describe the beliefs of an agent who forms even simpler
beliefs, in the sense that she only divides with a finite set of denominators. For instance, consider an agent
who expresses her beliefs only in terms of percentages. In this case, the agent’s beliefs can be modeled with
an N-rational measure, where N = {100}. Similarly, if the agent expresses beliefs in terms of decimals with
up to 3 digits, then N = {1000}.10

Proposition 3. ∆N(X) is closed in ∆(X).

4. N-rational belief hierarchies and universally rational belief hierarchies

In the previous section, we introduced the notion of N-rational probability measures. Now, we consider
agents who form N-rational beliefs for some finite N ⊆ N at every order of their hierarchy. In this case we
say that the belief hierarchy is N-rational.

Notice that in principle we do not require the agent to believe that everybody else’s beliefs are restricted
by the same N, i.e., agent i’s belief hierarchy may be N-rational and still attach positive probability to the
opponent’s beliefs being M-rational for some M ) N, or even believe that her opponent’s beliefs are just
rational.

Formally, for some finite N ⊆ N, consider a sequence (π1, π2, . . . ) ∈
∏∞

k=0 ∆
N(Θk), where each πk ∈

∆N(Θk−1) denotes the N-rational k-th order beliefs. In other words, the agent forms N-rational beliefs about
Θ (first order N-rational beliefs), N-rational beliefs about the opponent’s first order rational beliefs (second

10Recent experimental evidence indicates that subjects have a tendency to rely on decimal approximations of non-rational
numbers (Sirotic and Zazkis, 2007b).
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N-rational order beliefs), and so on. As we have already mentioned above, observe that the second order
beliefs may attach positive probability to the opponent holding some rational, but not necessarily N-rational
first order beliefs, e.g., though the agent expresses her beliefs in terms of percentages, she may still assign
positive probability to her opponent believing some Borel event E ⊆ Θ with probability 1/3.

Let T N
0 :=

∏∞
k=0 ∆

N(Θk) denote the space of N-rational belief hierarchies. Then, impose the usual
restriction of coherency and common certainty in coherency,

T N := T N
0 ∩ T Q. (6)

Types in T N are called N-rational.11

The following result provides a type space model of N-rational belief hierarchies. That is, if an agent’s
rational belief hierarchy is further restricted by some finite N ⊆ N, then the agent attaches an N-rational
probability to every Borel event in Θ × T Q conditional on her own type. Moreover, every N-rational proba-
bility measure on Θ × T Q is the image of some N-rational type.

Theorem 1. g : T N → ∆N(Θ × T Q) is homeomorphic.

The previous result implies that a rational belief hierarchy is universally rational if and only if it is N-
rational for some finite N ⊆ N. To see this, let U :=

{
N ⊆ N : 0 < |N| < ∞ } denote the collection of all

non-empty finite subsets of N,12 and observe that for every separable and metrizable space X it is the case
that ∆Q(X) =

∪
N∈U ∆

N(X). Therefore it follows that

∆Q(Θ × T Q) =
∪
N∈U
∆N(Θ × T Q)

=
∪
N∈U

g(T N).

That is, a rational type assigns to every Borel event in Θ × T Q a rational probability if and only if this type
is N-rational for some N ⊆ N.

The following example presents a rational belief hierarchy that is not universally rational, and illustrates
that this type is not N-rational for any N ∈ U.

Example 1. This example is taken from the proof of Theorem 1 in Tsakas (2012): Take two arbitrary
θ1, θ2 ∈ Θ, and consider the following sequence:

P1 :=
{

p1 ∈ ∆Q(Θ0) : p1(θ) = 1, for some θ ∈ {θ1, θ2}
}

P2 :=
{

p2 ∈ ∆Q(Θ1) : p2(θ, p1) = 1, for some (θ, p1) ∈ {θ1, θ2} × P1
}

...

Pk :=
{

pk ∈ ∆Q(Θk−1) : pk(θ, p1, . . . , pk−1) = 1, for some (θ, p1, . . . , pk−1) ∈ {θ1, θ2} × P1 × · · · × Pk−1
}

...

11Throughout the paper, we use the term N-rational belief hierarchies (N-rational types) to refer to elements of T N rather than
T N

0 , thus implicitly considering only hierarchies that satisfy coherency and common certainty in coherency.
12Notice thatU is countable.
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Let Tp be the set of types (p1, p2, . . . ) ∈
∏

k>0 Pk that satisfy coherency and common certainty in coherency.
Observe that Tp has the same cardinality as {0, 1}N, implying that it is uncountable. Now, consider a be-
lief hierarchy (π1, π2, . . . ) such that πk is uniformly distributed over Θ × projP1×···×Pk−1

Tp for every k > 0.
Notice that (π1, π2, . . . ) satisfies coherency and common certainty in coherency. Moreover, by construction
(π1, π2, . . . ) ∈ T Q, and therefore g(π1, π2, . . . ) ∈ ∆(Θ × T Q). However, observe that g(π1, π2, . . . ) has an
infinite support, and therefore by Proposition 1, g(π1, π2, . . . ) < ∆Q(Θ × T Q), implying that (π1, π2, . . . ) is
not universally rational.

Now, notice that (π1, π2, . . . ) is not N-rational for any finite N, since π1 ∈ ∆{1}(Θ0), π2 ∈ ∆{2}(Θ1),
π3 ∈ ∆{4}(Θ2), and so on. In fact, at every order of beliefs the agent uses a denominator that has not been
used in lower order beliefs. Hence, there is no finite N ⊆ N such that πk ∈ ∆N(Θk−1) for all k > 0. ▹

Appendix A. Proofs

Proof of Proposition 3. It suffices to show that an arbitrary convergent sequence {µk} of elements of ∆N(X)

has its limit in ∆N(X), i.e., if µk
w∗→ µ, then µ ∈ ∆N(X). Let n̄ := maxn∈N n. Let also d : X × X → R be a

metric compatible with the topology on X, and for every x ∈ X and δ > 0, define an open neighborhood
of x as B(x, δ) := {x′ ∈ X : d(x, x′) < δ}. Consider an arbitrary x ∈ X, and suppose there is some
δ > 0 such that there are finitely many k > 0 with µk

(
B(x, δ)

)
> 0. Then, obviously, there are infinitely

many k > 0 such that µk
(
B(x, δ)

)
= 0, implying that lim inf µk

(
B(x, δ)

)
= 0. Hence, it follows from

µk
w∗→ µ that µ

(
B(x, δ)

) ≤ lim inf µk
(
B(x, δ)

)
= 0 (Aliprantis and Border, 1994, Thm. 15.3), implying that

x < supp(µ). If, on the other hand, for every δ > 0 there are infinitely many k > 0 such that µk
(
B(x, δ)

)
>

0, it follows from µk ∈ ∆N(X) that there are infinitely many k > 0 such that µk
(
B(x, δ)

) ≥ 1/n̄, where
B(x, δ) := {x′ ∈ X : d(x, x′) ≤ δ} is the closure of B(x, δ). Therefore, µ

(
B(x, δ)

) ≥ lim sup µk
(
B(x, δ)

) ≥ 1/n̄
(Aliprantis and Border, 1994, Thm. 15.3). Now, consider a sequence of positive reals {δn} with δn ↓ 0,
which induces a sequence of Borel events {B(x, δn)} such that lim supn>0 B(x, δn) = {x}. Then, it follows
from µ

(
lim supn>0 B(x, δn)

) ≥ lim supn>0 µ
(
B(x, δn)

) ≥ 1/N̄ (Billingsley, 1995, Thm. 4.1) that µ({x}) ≥ 1/n̄.
Hence, x ∈ supp(µ) if and only if µ({x}) ≥ 1/n̄, implying that supp(µ) is finite. Let x ∈ supp(µ). It follows
from Aliprantis and Border (1994, Thm. 15.3) that for every δ > 0,

µ
(
B(x, δ)

) ≥ lim sup µk
(
B(x, δ)

)
≥ lim sup µk

(
B(x, δ)

)
≥ lim inf µk

(
B(x, δ)

)
≥ µ(B(x, δ)

)
. (A.1)

Since supp(µ) is finite, there is some ρ > 0 such that x′ < B(x, ρ) for any x′ ∈ supp(µ) \ {x}, imply-
ing that µ

(
B(x, δ)

)
= µ
(
B(x, δ)

)
= µ({x}) for every δ < ρ. Hence, it follows from (A.1) that µ({x}) =

lim µk
(
B(x, δ)

)
. Finally, since the sequence {µk

(
B(x, δ)

)} contains only elements of the finite set QN , it
follows that lim µk

(
B(x, δ)

) ∈ QN .
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Proof of Theorem 1. Showing that ∆N(Θ × T Q) ⊆ g(T N) follows directly by construction. Then, we show
that g(T N) ⊆ ∆N(Θ × T Q). Consider an arbitrary (π1, π2, . . . ) ∈ T N . Since T N ⊆ T Q, it follows from
Kolmogorov Extension Theorem that there is some π ∈ ∆(Θ× T Q) such that g(π1, π2, . . . ) = π. It suffices to
show that π ∈ ∆N(Θ × T Q). For each k ≥ 0, let Bk denote the Borel σ-algebra in Θk. Since π extends every
πk+1, it follows that for every Bk ∈ Bk,

πk+1(Bk) = π
(
Bk ×

∞∏
ℓ=k

∆Q(Θℓ)
)
. (A.2)

Observe that every Borel event B ⊆ Θ × T Q is also Borel in Θ ×∏∞k=0 ∆
Q(Θk), and

B =
∞∩

k=0

(
projΘk

B ×
∞∏
ℓ=k

∆Q(Θℓ)
)
. (A.3)

Then, it follows from Billingsley (1995, Thm. 4.1), together with Eq. (A.3), that

π(B) = lim
k→∞
π
(
projΘk

B ×
∞∏
ℓ=k

∆Q(Θℓ)
)

(A.2)
= lim

k→∞
πk+1
(
projΘk

B
)
. (A.4)

Since (projΘk
B) ∈ Bk and πk+1 ∈ ∆N(Θk), it follows that πk+1

(
projΘk

B
) ∈ QN . Since {πk+1(projΘk

B)}k>0 is a
convergent sequence taking finitely many values, it follows that the limit converges to one of these values.
Therefore, π(B) ∈ QN , which proves that π ∈ ∆N(Θ × T Q). Thus, g : T N → ∆N(Θ × T Q) is bijective.

In order to prove that g is continuous, consider a sequence {(πn
1, π

n
2, . . . )}n>0 of elements of T N that

weakly converges to (π1, π2, . . . ) which by Proposition 3 also belongs to T N , and let πn := g(πn
1, π

n
2, . . . ) and

π := g(π1, π2, . . . ). Then, it suffices to show that the sequence {πn}n>0 weakly converges to π. Consider an
arbitrary closed set B ⊆ Θ × T Q, and notice that Bk := projΘk

B is closed in Θk. Hence, it follows from the
Portmanteau Theorem (e.g., see Aliprantis and Border, 1994, Thm. 15.3) that

lim sup
n>0
πn

k+1(Bk) ≤ πk+1(Bk) (A.5)

for all k ≥ 0. Observe that for every k ≥ 0, it is the case that B ⊆ Bk ×
∏∞
ℓ=k ∆

Q(Θℓ), and therefore we obtain
that for every k ≥ 0,

lim sup
n>0
πn(B) ≤ lim sup

n>0
πn(Bk ×

∞∏
ℓ=k

∆Q(Θℓ)
)

= lim sup
n>0
πn

k+1(Bk)

(A.5)
≤ πk+1(Bk).

Since the latter is true for every k ≥ 0, it follows that

lim sup
n>0
πn(B) ≤ lim

k→∞
πk+1(Bk)

(A.4)
= π(B).
9



Therefore, it follows again from the Portmanteau Theorem that πn w∗→ π.
Proving that g−1 is continuous is straightforward: Consider a sequence {πn}n>0 of elements of ∆N(Θ×T Q)

such that πn w∗→ π, and notice that margΘk
πn w∗→ margΘk

π for all k ≥ 0. Hence, it follows that g−1(πn)
w∗→

g−1(π) which completes the proof.
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