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Disclaimer: The coordinator reserves the right to make changes during the teaching period to deal
with unforeseen circumstances. Any such changes will be clearly communicated to the students.

1 Introduction

1.1 Aim of the course

The aim of the course is to provide an overview of the standard analytical tools that are used
for modelling decision making. Decision Theory focuses on individual decision problems, and the
general purpose is twofold. On the one hand, it provides us with a framework within which common
choice patterns and individual characteristics can be identified and studied. For instance, it allows
us to formally define and measure risk attitudes. On the other hand, it provides us with a natural
benchmark to study Game Theory, which in turn focuses on decisions in environments with strategic
interactions among several agents. The course mainly focuses on rational agents with unlimited
reasoning abilities. These agents are used as a benchmark in most economic models.

1.2 Prerequisites

It is expected that the students who take this course have a minimum level of familiarity with
undergraduate mathematics and statistics. As an indication, students are expected to be familiar with
the concepts discussed in Chapter 19 (Mathematical Appendix) of Game Theory: An Introduction
by Steven Tadelis, and in the online Appendix A of Rational Choice by Itzhak Gilboa. Although no
prior knowledge in microeconomic theory or game theory is necessary, as the course is self-contained,
it is recommended (especially for students with no background in economics) to read Chapters 1–3
of Economics by Daron Acemoglu, David Laibson and John List, in order to get an idea of the main
purposes and the methological underpinnings of economics research.

1.3 Expectations

Though the course is demanding, it is structured in a way such that a student can be successful by
regularly attending the scheduled meetings, and studying according to the recommendations below.
A rough estimate of the self-study time needed for the course is approximately 20 hours per week
(for an average student to master the material at an average level). In order to pass the course, the
students will need to complete certain tasks (final exam, participation, problem sets, self-evaluation).
Some of these tasks will be undertaken in working groups that will be formed at the beginning of
the first lecture. Each working group will coincide with the subgroups that the scheduling office has
formed.

2 Course structure

2.1 Description

The course consists of 14 meetings (7 theory meetings and 7 exercise tutorials). Lectures have been
already recorded in videos that will be provided to the students at the beginning of the course,
together with the corresponding notes.
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• Theory meetings: These take place once a week, every Monday. Before each theory meeting,
you are expected to have watched the corresponding lectures and to have read the corresponding
literature. During the meeting, you can ask questions on points that you do not understand.
In order to make use of these meeting in an optimal way, you should not show up unprepared.
Participation in these meetings is not formally mandatory, but nevertheless strongly advised.

All theory meetings will take place online.

• Exercise tutorials: These take place once a week, every Thursday. Before each tutorial you
are expected to have worked on the designated problem set, together with the fellow students
from your subgroup. The answers should be typewritten and sent by midnight on Wednesday
before the session to ebc4197@gmail.com. Solutions must be submitted in working groups.
During the tutorial, you will spend some time with the tutor to solve these problems together.
Subsequently, the subgroup is expected to go back to their own solutions and grade them. You
may be asked to also grade (anonymous) solutions of other working groups. Participation in
the tutorials is mandatory.

Some tutorials will take place online, according to the schedule.

2.2 Schedule

The precise schedule of the course is as follows:

1. Theory meeting on preferences and utility

Instructor: Elias Tsakas

Literature: Appendix A; Osborne & Rubinstein (Ch. 1); Bonanno (Decision Making; Ch. 1,2)

Videos: 1–8

2. Tutorial on preferences and utility

Instructor: Eveline Vandewal/Toygar Kerman

Problems: A.1 and A.2

3. Theory meeting on choice theory

Instructor: Elias Tsakas

Literature: Appendix B; Osborne & Rubinstein (Ch. 2)

Videos: 9–15

4. Tutorial on choice theory

Instructor: Eveline Vandewal/Toygar Kerman

Problems: B.1 and B.2

5. Theory meeting on decision theory under uncertainty

Instructor: Elias Tsakas

Literature: Appendix C; Osborne & Rubinstein (Ch. 3); Bonanno (Decision Making; Ch. 3,5)

Videos: 16–28
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6. Tutorial on decision theory under uncertainty

Instructor: Eveline Vandewal/Toygar Kerman

Problems: C.1 and C.2

7. Theory meeting on ordinal strategic-form games

Instructor: Elias Tsakas

Literature: Appendix D.1; Bonanno (Game Theory; Ch. 1,2); Osborne & Rubinstein (Ch. 15)

Videos: 29–34

8. Tutorial on on ordinal strategic-form games

Instructor: Eveline Vandewal/Toygar Kerman

Problems: D.1 and D.2

9. Theory meeting on cardinal strategic-form games

Instructor: Elias Tsakas

Literature: Appendix D.2; Bonanno (Game Theory; Ch. 6); Osborne & Rubinstein (Ch. 15)

Videos: 35–39

10. Tutorial on cardinal strategic-form games

Instructor: Eveline Vandewal/Toygar Kerman

Problems: D.3 and D.4

11. Theory meeting on on extensive-form games with perfect information

Instructor: Elias Tsakas

Literature: Appendix E.1; Bonanno (Game Theory; Ch. 3), Osborne & Rubinstein (Ch. 16)

Videos: 40–44

12. Tutorial on extensive-form games with perfect information

Instructor: Eveline Vandewal/Toygar Kerman

Problems: E.1 and E.2

13. Theory meeting on extensive-form games with imperfect information

Instructor: Elias Tsakas

Literature: Appendix E.2; Bonanno (Game Theory; Ch. 4), Osborne & Rubinstein (Ch. 16)

Videos: 45–46

14. Tutorial on extensive-form games with imperfect information

Instructor: Eveline Vandewal/Toygar Kerman

Problems: E.3 and E.4
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2.3 Literature

Throughout the course we will be using various textbooks. For the theory sessions the students are
expected to have read the corresponding chapters.

• Main textbooks (used throughout the course):

◦ Bonanno, G. (2015). Game Theory . Open access textbook (free download).

◦ Bonanno, G. (2018). Decision Making . Open access textbook (free download).

◦ Osborne, M. & Rubinstein, A. (2020). Models in Microeconomic Theory . Open
access textbook (free download).

• Additional textbooks (recommended for further reading):

◦ Gilboa, I. (2009). Theory of Decision under Uncertainty. Econometric Society Mono-
graphs.

◦ Rubinstein, A. (2012). Lecture Notes in Microeconomic Theory: The Economic Agent .
Princeton University Press (free download).

◦ Tadelis, S. (2013). Game Theory: An Introduction. Princeton University Press.

3 Performance assessment

The final grade will be calculated based on the performance in the following tasks (with the corre-
sponding weights in parenthesis):

• Final exam (72%): The final exam will be an oral exam, consisting of both theoretical
questions and problems. You will receive more questions on the exact format of the exam.

• Problem sets (21%): There are 7 problem sets, one for each tutorial meeting. Your answers to
the problem sets should be typewritten in a clear and professional way. Handwritten answers
will not be accepted. The answers should be sent in pdf format to ebc4197@gmail.com by
midnight before the corresponding exercise tutorial (with the name of the tutor on the subject
line of the email and the names of all the group members on the front page of your answer
sheet). The deadline is strict and late submissions will not be accepted. The answers should
be submitted in working groups. Individual answers will not be accepted. If a member of
the group has zero contribution to solving a problem set, it should be reported to the course
coordinator.

• Self-evaluation (7%): Using the answers discussed in class with the tutor, you must go back
to your submitted answers (i.e., the ones you sent by midnight the day before) and grade your
own problem set on a scale 0 − 10. Your self-evaluation will be compared to the grade that
your tutor gives you (which will also be on a scale 0− 10), and if the two are at most 1 point
apart from each other, then you will receive a bonus of 1% of the full score to your final grade.
Note that in order to be eligible for the bonus, your actual grade (i.e., the one you receive
from your tutor) must be at least 5/10. It is always possible that you are asked to justify
your self-evaluation, by means of explaining why you graded your problem set the way you did.
Failure to do so, may result in loosing your bonus. You may furthermore be asked to evaluate
another subgroup’s problem set on top of your own. In this case, a double-blind procedure will
be followed.
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• Participation (pass/fail): You are expected to be present (physically and mentally) in at
least 5 of the 7 tutorials. If you miss more than 2 tutorials, you fail the course. In extenuating
circumstances, you may be allowed to compensate more than 2 absences with some additional
assignment. Whether this will be the case, and which the extra assignment will be, is entirely
at the discretion of the course coordinator.

The final grade will be on a scale 1 − 10, rounded to the nearest half point. To pass the course
one needs at least 55 points. That is, 53 points and 54 points are downgraded to 5 and therefore
do not suffice to pass the course. For the students who fail the course, there will be a resit exam.
The students who take the resit carry with them the grades received for the other tasks. Note that
partial grades obtained in this course remain valid for a period of three years, i.e., the academic year
in which the grades were obtained plus two subsequent academic years.

4 Contact information

Elias Tsakas (coordinator)
Department of Microeconomics and Public Economics (MPE)
Maastricht University
E-mail: e.tsakas@maastrichtuniversity.nl
Homepage: www.elias-tsakas.com
Office hours: only by appointment

Eveline Vandewal (tutor)
Department of Microeconomics and Public Economics (MPE)
Maastricht University
E-mail: e.vandewal@maastrichtuniversity.nl
Office hours: only by appointment

Toygar Kerman (tutor)
Department of Microeconomics and Public Economics (MPE)
Maastricht University
E-mail: t.kerman@maastrichtuniversity.nl
Office hours: only by appointment
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Part I

Decision Theory

A Preferences and Utility

Outcomes: We begin with an arbitrary set X ⊆ Rn of (sure) outcomes. For instance, outcomes
can be thought as monetary outcomes (in which case X = R+) or as consumption bundles (in which
case X = Rn+ where n is the number of goods in the bundle). The set of outcomes is assumed to be
known both to the decision maker and to the economist.

Preferences: The decision maker has preferences over the outcomes. Importantly, these pref-
erences are in principle known only to the decision maker and not to the economist. Preferences
are formally modelled with a binary relation � ⊆ X × X over pairs of outcomes. We write x � y
whenever (x, y) ∈ �. Intuitively, think of a decision maker who takes every single pair of outcomes
(x, y) and asks himself “do I find x to be at least as good as y”. Obviously the answer will be positive
for some pairs and negative for some other pairs. Then, � is the subset of pairs for which the answer
to the previous question was positive.

Strict preference: a binary relation � ⊆ X × X defined by x � y if and only if x � y and
y � x. The interpretation is that the individual finds x to be strictly better than y.

Indifference: a binary relation ∼ ⊆ X ×X defined by x ∼ y if and only if x � y and y � x.

Question A.1. Explain the following relations: (a) � ⊆ �, (b) ∼ ⊆ �, (c) � ∪ ∼ = �.

Axioms: they are natural assumptions we impose on the preferences of the individual. They provide
structure (i.e., internal consistency) to the preferences, which is needed in order to be able to build a
systematic theory and form testable hypotheses. From now onwards we assume the following axioms:

(A1) Completeness: for all x, y ∈ X, it is the case that x � y or y � x.

(A2) Transitivity: for all x, y, z ∈ X, if x � y and y � z then x � z.

Problem A.1. Prove that a preference relation � over X satisfies completeness and transitivity
if and only if the corresponding strict preference relation � satisfies

(A′1) Asymmetry: For any two outcomes x, y ∈ X it cannot be the case that x � y and y � x
hold simultaneously.

(A′2) Negative transitivity: For every three outcomes x, y, z ∈ X with x � y, it is the case that
x � z or z � y.

Question A.2 (Challenging). Prove the following statement and provide some intuition: if X is
a finite set and � satisfies completeness and transitivity, then there exists a most-preferred and a
least-preferred outcome (not necessarily unique).
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Utility representation of �: a function u : X → R such that, for all x, y ∈ X

x � y ⇔ u(x) ≥ u(y).

Intuitively a utility representation is an (unambiguous) translation from the language of the prefer-
ences to the language of mathematics.

Question A.3. Prove the following statement and provide some intuition: if u : X → R is a utility
representation of � and f : R → R is a strictly increasing function, then the function v : X → R
which is defined by v(x) = f(u(x)) is also a utility representation of �.

Problem A.2. Let � be a complete and transitive preference relation on X. Then, prove that
u : X → R is a utility representation of � if and only if the following two conditions hold:

(i) For all x, y ∈ X with x � y, it is the case that u(x) > u(y).

(ii) For all x, y ∈ X with x ∼ y, it is the case that u(x) = u(y).

Properties of utility: each utility function has some (mathematical) properties, e.g., increasing,
convex, continuous, etc. As there are multiple utility functions representing the same preferences
(Question A.3), different utility functions may satisfy different properties. Utility functions are
characterized by its relevant properties, i.e, those properties that we actually use to draw some
conclusions about the decision maker’s behavior. For instance, if the utility function is convex but
we never (explicitly or implicitly) use convexity to make any statement about this decision maker’s
behavior, then convexity is not a relevant property. We classify properties in two types:

• Ordinal utility: Properties shared by all utility representations of � are called ordinal.
In this sense, whether an ordinal property is satisfied by some utility representation of �
depends only on the preferences. We say that a utility function is ordinal if we only use ordinal
properties. Ordinal utilities do not have any meaning and are usually employed when X is
discrete (e.g., when X = N).

• Cardinal utility: Properties satisfied only by some utility representations of � are called
cardinal properties. In this sense, whether a cardinal property is satisfied by a utility function
or not does not depend only on the preferences. We say that a utility function is cardinal if
we also use cardinal properties. Cardinal utilities typically carry some meaning and are often
employed when X is a continuum (e.g., when X = R+)

Question A.4. Take the functions u(x) = ln(1 + x) and v(x) = x2. Verify that both are represen-
tations of the same preferences over R+, and that these preferences satisfy (A1)− (A2). Relate your
answer to the one of Question A.3. Is the property “the utility function is strictly increasing with
respect to money” ordinal or cardinal? How about the property “the utility function is convex with
respect to money”? Explain.

(A0) Monotonicity: for all x = (x1, . . . , xn) ∈ X and y = (y1, . . . , yn) ∈ X, if xk ≥ yk for all
k = 1, . . . , n then x � y.

Question A.5. Suppose that the preference relation � is represented by the utility function u : X →
R. Then, prove the following statement and provide some intuition: � satisfies monotonicity if and
only if u is an increasing function.

9



Question A.6 (Challenging). Prove and provide intuition for the following statement: A property
satisfied by u : X → R is ordinal if and only if it is satisfied by v : X → R where v(x) = f(u(x)) for
arbitrary strictly increasing function f : R→ R.

Question A.7. Take the function u(x) = 20, 000x − x2. Is this a utility representation of some
preferences over R+ that satisfy (A1)−(A2)? If yes, do these preferences satisfy (A0)? Draw the graph
of u and describe in words a decision maker with this utility function. In your intuitive description,
which statements that you used correspond to ordinal properties and which ones to cardinal properties?
Now, provide an alternative utility function that represents the same preferences, but has different
some of the cardinal properties that you have identified.

Theorem A.1. If X is a finite set and � satisfies completeness and transitivity, then there exists a
utility representation.

Question A.8. Prove the previous theorem and provide some intuition.

Example A.1. (Lexicographic preferences). Take X = R2
+ to be the set of all (non-negative)

consumption bundles of two goods. Let the preference relation � be defined as follows: For each pair
of alternatives x = (x1, x2) and y = (y1, y2) the agent first compares the first coordinate and prefers
the alternative with the highest value, completely disregarding the second coordinates. The agent will
use the second coordinates only to break the ties resulted when comparing the first coordinates. In
other words, the agent cares infinitely more about the first coordinate than the second one. Formally,

x � y ⇔ either x1 > y1 or simultaneously x1 = y1 and x2 ≥ y2. (A.1)

We call these preferences lexicographic. /

Question A.9. Verify that the lexicographic preferences of the previous example satisfy completeness,
transitivity and monotonicity.

Question A.10 (Really challenging). Explain the following statement (by means of an intuitive
argument): The lexicographic preferences of the previous example do not have a utility representation.

Hint: it is not possible to fit uncountably many disjoint intervals in R. Formally, suppose
that to every number z ∈ R+ you associate some interval [az, bz]. Then, it will necessarily
be the case that you can find z, z′ ∈ R+ such that [az, bz] ∩ [az′ , bz′ ] 6= ∅.
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B Choice theory

Choice problem: the set of available choices (sometimes called actions). Each choice yields one
outcome (with certainty), which is why we identify each choice problem with some nonempty A ⊆ X.1

In this sense, two choices that induce the same outcome, essentially constitute the same choice. We
denote the set of all choice problems by A.

Rational choice: a choice a ∈ A such that a � b for all b ∈ A. Obviously, whether a choice is
rational or not depends on both what is available (i.e., the set A) and what is preferred (i.e., the
relation �). If the preference relation is represented by a utility function u, then a choice is rational
if it maximizes u in A, i.e., formally if it is one of the choices in {a ∈ A : u(a) ≥ u(b) for all b ∈ A}.

Question B.1. Prove the following statement and provide intuition: if X is finite and � satisfies
completeness and transitivity, then there exists an optimal choice in every choice problem A ∈ A.

Question B.2. Suppose that the function v(x) = x2 represents � over R+. Provide an example of
some choice problem that does not have an optimal choice.

Aim: The economist does not know the decision maker’s preferences, and instead makes some
assumptions (in the form of axioms) about how these look like. These assumptions should be tested.

Experiment: a sequence of choice problems E ⊆ A. An experiment is complete if it contains all
choice problems (i.e., E = A), and it is incomplete otherwise (i.e., E ( A).

Datasets: data may come in two forms. In particular, the economist observes all the choices that
the decision maker picks from each choice problem A ∈ E (e.g., we have many observations from each
choice problem) or the economist observes only one choice from each choice problem A ∈ E (e.g., we
have one observation from each choice problem). Then, accordingly we define the following:

• Choice correspondence: C(A) ⊆ A for each A ∈ E

• Choice function: c(A) ∈ A for each A ∈ E

Obviously, a choice correspondence contains more information than a choice function. In fact, you
can take c(A) ∈ C(A), i.e., c(A) is one of the choices that the decision maker makes when facing A.

Rationalizing choice: Irrespective of what type of data we have in our hands (i.e., whether the
data set is complete or not, and whether we observe a choice function or a choice correspondence),
we would like to use this data to test our decision-theoretic model. Formally, we are asking:

Is there a preference relation � satisfying the axioms we have assumed, which is consistent
with the choices that we observe in our dataset?

If we cannot find such a preference relation, then we reject the hypothesis that this model describes
the decision-maker’s preferences (and a fortiori her behavior). On the other hand, if there is a such a
relation, then we cannot reject our model, and we can continue operating under the assumption that
the decision maker’s behavior is driven by these preferences. It is very important to stress that we
are not claiming that these are indeed the decision maker’s preferences, but rather that her observed
behavior is consistent with such preferences. Perhaps, if we get more data, we will then reject this
model, but for the time being, this model still does a good job. This is called the “as if approach” in
economics, and the methodology that we will use to test our models agains the data is called revealed
preference.

1Throughout this section, unless explicitly stated otherwise, we assume that X is finite.
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B.1 Choice correspondence

Rationalizing a choice correspondence: Given an experiment E , the choice correspondence
C is rationalized by the preference relation �, if for each A ∈ E ,

C(A) = {a ∈ A : a � b for all b ∈ A}.

In other words, � rationalizes C if C(A) is the set of rational choices from A given �.

Direct revealed preference: given the choice correspondence C, choice a is said to be directly
revealed-preferred to b whenever

there exists some A ∈ E with both a, b ∈ A, such that a ∈ C(A).

In this case we write a �C b. The idea is that a is observed to be chosen while b is also available.
Crucially, we need to remember that �C is not necessarily the same as the decision maker’s true
preferences. It is only an inference we make about the true preferences, based on the data.

(Direct) strict revealed preference: given the choice correspondence C, choice a is said to
be strictly revealed-preferred to b whenever

there exists some A ∈ E with both a, b ∈ A, such that a ∈ C(A) and b /∈ C(A).

In this case we write a �C b. The idea is that while both a and b are available, only a is chosen.

Question B.3. Provide an example of an experiment E and a choice correspondence C such that
a �C b and b �C a.

Weak Axiom of Revealed Preference (WARP): for every A,B ∈ E with a, b ∈ A ∩B,

if a ∈ C(A) and b ∈ C(B), then b ∈ C(A) and a ∈ C(B).

Question B.4. Write formally the following statement: WARP is violated.

Problem B.1. Prove that the choice correspondence C satisfies WARP if and only if it is not
the case that a �C b and b �C a for any a, b ∈ X.

Theorem B.1. For an experiment E and a choice correspondence C, the following hold:

(i) If C violates WARP, then C cannot be rationalized by any complete and transitive �.

(ii) If C satisfies WARP and E is complete, then C can be rationalized by a (unique) complete and
transitive �.

Question B.5. Take X = {a, b, c} and E = {{a, b}, {b, c}, {a, c}}. Prove that the choice correspon-
dence C({a, b}) = {a}, C({b, c}) = {b} and C({a, c}) = {c} satisfies WARP. Moreover, prove that
C cannot be rationalized by any complete and transitive �.

Question B.6. If we enrich the experiment of Question B.5 by also adding {a, b, c} to E, is there
some C({a, b, c}) such that the choice correspondence still satisfies WARP?

Question B.7 (Challenging). Prove that if the choice correspondence C satisfies WARP, then for
every A,B ∈ E with B ⊆ A it also satisfies the following:

12



(i) (Sen’s) property α : if a ∈ B and a ∈ C(A), then a ∈ C(B),

(ii) (Sen’s) property β : if a, b ∈ C(B) and a ∈ C(A), then b ∈ C(A).

Moreover, prove that the converse is true for a complete experiment E, i.e., if properties α and β
hold, then so does WARP.

Question B.8. Using Theorem B.1 and Question B.7, prove the following statements:

(i) If C violates violates property α or property β, then C cannot be rationalized by any complete
and transitive �.

(ii) If C satisfies both properties α and β in a complete experiment E, then C can be rationalized
by a (unique) complete and transitive �.

Indirect revealed preference: given the choice correspondence C, choice a is said to be
indirectly revealed-preferred to b whenever

there exists a sequence {a1, . . . , aN} in X, such that a �C a1 �C · · · �C aN �C b.
In this case we write a �∗C b. The idea is that even if a is not observed to be preferred to b, it is
observed to be preferred to some other choice, which is preferred to some other choice, and so on,
which is preferred to b.

Generalized Axiom of Revealed Preference (GARP): for every a, b ∈ X,

it is not the case that a �∗C b and b �C a.

The intuition is that it cannot be the case that revealed preference about two choices is conflicting.
The only difference is that WARP postulates that direct revealed preferences are not conflicting
(Problem B.1), whereas GARP generalizes this requirement to indirect revealed preference too.

Theorem B.2. For an experiment E and a choice correspondence C, the following hold:

(i) If C violates GARP, then C cannot be rationalized by any complete and transitive �.

(ii) If C satisfies GARP, then C can be rationalized by some complete and transitive �.

Question B.9. Prove that the choice correspondence C from Question B.5 violates GARP.

B.2 Choice function

Rationalizing a choice function: Given an experiment E , the choice function c is rationalized
by the preference relation �, if for each A ∈ E ,

c(A) ∈ {a ∈ A : a � b for all b ∈ A}.

In other words, � rationalizes c if c(A) is one of rational choices from A given �.

Question B.10. Show that every choice function c is rationalized by a complete and transitive �.

So, we test completeness and transitivity together with an additional axiom:

(NI) No-indifference: for any x, y ∈ X, either x � y or y � x.

That is, we ask whether the choice function c can be rationalized by a complete and transitive
preference relation � that does not make the decision maker indifferent between any two choices. By
the way, such a preference would be called a linear order.
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Problem B.2. Prove that a choice function c is rationalized by a preference relation � that
satisfies completeness, transitivity and no-indifference if and only if � rationalizes the choice
correspondence C such that C(A) = {c(A)} for each A ∈ E. What is the intuition?

Property α (for choice functions): for every A,B ∈ E with B ⊆ A,

if c(A) ∈ B, then c(A) = c(B).

Question B.11. Explain how property α for choice correspondences relates to property α for choice
functions.

Theorem B.3. For an experiment E and a choice function c, the following hold:

(i) If c violates property α, then c cannot be rationalized by any � that satisfies completeness,
transitivity and no-indifference.

(ii) If c satisfies property α and E is complete, then c can be rationalized by a (unique) � that
satisfies completeness, transitivity and no-indifference.

Question B.12. Take X = {a, b, c} and E = {{a, b}, {b, c}, {a, c}}, like in Question B.5. Prove
that the choice function c({a, b}) = {a}, c({b, c}) = {b} and c({a, c}) = {c} satisfies property α.
Moreover, prove that c cannot be rationalized by any � that satisfying completeness, transitivity and
no-indifference.
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C Decision theory under uncertainty

General aim: understand how people choose under uncertainty. Interesting questions of economic
relevance that we want to answer are for instance: “how can we identify an individual’s risk attitudes”
or “how do we elicit an individual’s (latent) subjective beliefs”?

Choice domain: we use two different domains of alternatives, depending on the type of uncertainty
the individual faces. In particular, we use the set of lotteries to study decisions under objective
uncertainty (risk) and the set of acts to study decisions under subjective uncertainty. In both cases,
the set of outcomes is assumed to be monetary, i.e., X ⊆ R.

Question C.1. What is the difference between objective uncertainty and subjective uncertainty?

C.1 Objective uncertainty

Lottery: a random experiment p that yields each monetary outcome x ∈ X ⊆ R with some known
probability p(x). Even when X is infinite, only finitely many outcomes receive positive probability.
So, a lottery p is identified by the probabilities it assigns to each outcome, and it is typically denoted
by p = (p(x1)×x1, . . . , p(xK)×xK) where x1, . . . , xK ∈ X and p(x1)+ · · ·+p(xK) = 1. The set of all
lotteries is denoted by L(X), and this will be our set of alternatives. Whenever the set of outcomes
(over which the lotteries are defined) is clear from the context, we omit X and we simply write L.
Each outcome x ∈ X can also be seen as the (degenerate) lottery (1× x). In this sense, with slight
abuse of notation, with sometimes write X ⊆ L.

Question C.2. Explain the following statement: A lottery is a probability distribution over R. In
this sense, only the underlying probabilities matter and not the actual random experiment. Provide
an example of two different random experiments that induce the same lottery.

Preferences over lotteries: complete and transitive preferences � over L. Strict preferences
and indifference are defined as above. Since X ⊆ L, preferences over lotteries also induce preferences
over sure outcomes, i.e., we obtain x � y if and only if (1 × x) � (1 × y). The induced preferences
over sure outcomes are (strictly) monotonic, i.e., the decision maker prefers higher monetary payoffs
over lower ones.

Question C.3 (Expected payoff). Consider a decision maker that compares any two lotteries p =
(p(x1)×x1, . . . , p(xK)×xK) and q = (q(y1)×y1, . . . , q(yL)×yL) on the basis of the expected monetary
payoff that they induce, i.e.,

p � q ⇔
K∑
k=1

p(xk)xk ≥
L∑
`=1

q(y`)y`.

Verify that this preference relation is complete and transitive. Verify that the induced preferences
over X are monotone.

Question C.4 (Pesimist). Consider a decision maker that compares any two lotteries p = (p(x1)×
x1, . . . , p(xK)× xK) and q = (q(y1)× y1, . . . , q(yL)× yL) on the basis of the worst case scenario, i.e.,

p � q ⇔ min{x1, . . . , xK} ≥ min{y1, . . . , yL}.

Verify that this preference relation is complete and transitive. Verify that the induced preferences
over X are monotone.
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Utility representation: the preferences over lotteries are represented by a function u : L → R
such that, for every pair of lotteries p, q ∈ L,

p � q ⇔ u(p) ≥ u(q).

Expected Utility: We are particularly interested in utility functions that can be written as
expectations. Formally, this is done by first assigning utilities to the sure outcomes via the function
u : X → R (called Bernoulli utilities), and then assigning to each lottery p = (p(x1)×x1, . . . , p(xK)×
xK) ∈ L the expected utility

Ep(u) =
K∑
k=1

p(xk)u(xk).

Obviously, once we have assigned Bernoulli utility to every sure outcome, the expected utility of each
lottery follows automatically, and we do not have any flexibility in adjusting it. Then, the question
is whether we can always find Bernoulli utilities in a way such that for every p, q ∈ L,

p � q ⇔ Ep(u) ≥ Eq(u).

If this is indeed possible, we say that the preferences � have a vNM expected utility representation.

Question C.5. Do the preferences in Questions C.3 and C.4 have an expected utility representation?
If yes, identify appropriate Bernoulli utilities.

First-order stochastic dominance: Lotteries p = (p(x1) × x1, . . . , p(xK) × xK) first-order
stochastically dominates lottery q = (q(y1)× y1, . . . , q(yL)× yL), if for every payoff α ∈ R,∑

xk≥α

p(xk) ≥
∑
y`≥α

q(y`).

That is, for any α ∈ R, the probability of receiving at least α is greater under p than it is under q.

Theorem C.1 (First-order stochastic dominance). The lottery p first-order stochastically dominates
the lottery q if and only if Ep(u) ≥ Eq(u) for all (weakly increasing) Bernoulli utility functions.

Question C.6 (Very challenging). Prove the previous theorem. Then, explain the following state-
ment: not all lotteries can be compared with each other on the basis of FOSD (i.e., formally speaking
FOSD is an incomplete relation).

vNM axioms: There are four simple axioms that guarantee the existence of a vNM EU represen-
tation. These are completeness and transitivity that we have already discussed, plus two additional
ones, (A3) continuity and (A4) independence.

Theorem C.2 (vNM EU Theorem). The preferences � over L have a vNM expected utility repre-
sentation if and only if they satisfy completeness, transitivity, continuity and independence.

Question C.7. Assume that the preferences � over L have a vNM EU representation. Then, prove
formally and provide intuition for the following statement: If x > y and α > β, then

(
α × x, (1 −

α)× y
)
�
(
β × x, (1− β)× y

)
.
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Problem C.1. Assume that the preferences � over L have a vNM EU representation, and
consider five monetary payoffs x1 > x2 > x3 > x4 > x5. Prove formally and provide intuition
for the following statements:

(a) There exist real numbers α ∈ (0, 1) and β ∈ (0, 1) such that(
α× x1, (1− α)× x5

)
∼
(
β × x2, (1− β)× x4

)
.

(b) For any two real numbers α ∈ (0, 1) and β ∈ (0, 1) it is the case that(
α× x1, (1− α)× x2

)
�
(
β × x3, (1− β)× x2

)
.

Question C.8. Prove formally and provide intuition for the following statement: Suppose that u :
X → R is a Bernoulli utility function. Then, v : X → R is also a Bernoulli utility function if and
only if v(x) = α + βu(x) for all x ∈ X, where α ∈ R and β > 0.

Question C.9 (Challenging). Explain the following statement: the property that “the utility function
has an expected utility form” is cardinal, i.e., there are also utility representations of � that cannot
be written as an expectation. Provide an example.

Risk Attitudes: Why are we so keen in using expected utility representations, even though there
are other utility functions representing the same vNM preferences? One advantage of expected
utility (besides its intuitive appeal) is that it allows us to identify risk attitudes. Let us first provide
a following classification of decision makers, depending on how they treat risk. We first take an
arbitrary sure outcome x ∈ X and a lottery p = (p(x1) × x1, . . . , p(xK) × xK) ∈ L with the same
expected monetary payoff, i.e.,

x =
K∑
k=1

p(xk)xk.

Then, we consider the following three types:

• Risk averse: a decision maker who prefers the sure outcome, i.e., x � p. The decision maker
is strictly risk averse if for all such pairs of sure outcomes and (expected-payoff-equivalent)
lotteries the preference is strict, i.e., x � p.

• Risk seeking: a decision maker who prefers the lottery, i.e., p � x. The decision maker
is strictly risk seeking if for all such pairs of sure outcomes and (expected-payoff-equivalent)
lotteries the preference is strict, i.e., p � x.

• Risk neutral: a decision maker who is indifferent between the two, i.e., x ∼ p.

Now, expected utility representations are useful, because they allow us to classify decision makers
depending on their risk attitudes.

Theorem C.3. If � has an expected utility representation, the following hold:

(i) The decision maker is (strictly) risk averse if and only if the Bernoulli utility function is
(strictly) concave.
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(ii) The decision maker is (strictly) risk seeing if and only if the Bernoulli utility function is
(strictly) convex.

(iii) The decision maker is risk neutral if and only if the Bernoulli utility function is linear.

Question C.10. Prove and provide intuition for the following statement: even if � has an expected
utility representation, the decision maker is not necessarily classified into one of the three types of
risk attitudes. Provide an example.

Question C.11. Prove that the decision maker described in Question C.3 is risk neutral.

Question C.12. Prove and provide intuition for the following statements: the property that “the
decision maker is risk averse” is ordinal. This is despite the fact that we characterize risk attitudes
in terms of a cardinal representation (Theorem C.3).

Second-order stochastic dominance: Using our definition of risk aversion, we compare lot-
teries in terms of how risky they are, using the following criterion. We say that p second-order
stochastically dominates q, if p is preferred to q by every risk averse decision maker, i.e., formally,
this is the case if Ep(u) ≥ Eq(u) for every concave Bernoulli function u : X → R.

Question C.13. Prove that lottery p = (0.5 × 30, 0.5 × 10) second-order stochastically dominates
lottery q = (0.25× 40, 0.5× 20, 0.25× 0).

Remark: q is called a mean-preserving spread of p, i.e., q is obtained by adding noise
to each possible outcome that can be obtained under p. In this sense, q involves more
uncertainty than p (which is why q is more risky than p).

Question C.14. Prove and provide intuition for the following statement: if p first-order stochas-
tically dominates q, then it is also the case that p second-order stochastically dominates q. The
converse is not necessarily true. Explain why and provide an example.

Rationalizing choice under uncertainty: The revealed preference methodology can be used
to test the vNM axioms. In particular, a choice correspondence C is rationalized by vNM preferences,
if there exists a Bernoulli function u : X → E such that, for each choice problem A ∈ E ,

C(A) = {p ∈ A : Ep(u) ≥ Eq(u) for all q ∈ A}.

And of course, in a similar way we can define rationalizing a choice function.

Question C.15. (Allais Paradox). Consider the following lotteries p1 = (0.25 × 3000, 0.75 ×
0), p2 = (0.2 × 4000, 0.8 × 0), q1 = (1 × 3000) and q2 = (0.8 × 4000, 0.2 × 0). An experimental
subject participates in the experiment E = {{p1, p2}, {q1, q2}} and chooses according to the choice
correspondence C({p1, p2}) = {p2} and C({q1, q2}) = {q1}. Can this data be rationalized by vNM
preferences? What do you think most subject choose?

Question C.16. Consider the experiment E = {{p1, p2}, {q1, q2}, {r1, r2}}, where p1 = (1×10), p2 =
(0.5×20, 0.5×0), q1 = (1×20), q2 = (1

3
×80, 2

3
×10), r1 = (1×80) and r2 = (1

3
×160, 2

3
×20). Suppose

that the experimental subject chooses according to the choice correspondence C({p1, p2}) = {p1, p2},
C({q1, q2}) = {q1, q2} and C({r1, r2}) = {r1, r2}. Can this data be rationalized by vNM preferences?
If yes, provide an appropriate Bernoulli utility function.
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C.2 Subjective uncertainty

Set of states: (finitely many) contingencies that the individual is uncertain about. There are
no objective probabilities describing this uncertainty. Each state is denoted by ω and the set of all
states is denoted by Ω = {ω1, . . . , ωN}.

Act: it is a contract f : Ω → L that pays one lottery at each state. Thus, f(ω) is the lottery that
the individual will receive (according to the act f) if the state ω is realized. Acts can also be written
as vectors of lotteries, i.e., f = (p1, . . . , pN) where pn = f(ωn) for each n = 1, . . . , N . Overall, the
idea is that the act is a two-stage procedure: first the state is realized and then an outcome from
the corresponding lottery is drawn. The set of all acts is denoted by F . Each lottery p can be seen
as a constant act that pays f(ω) = p at every state ω ∈ Ω, i.e., in other words, from the decision
maker’s point of view the act (p, . . . , p) ∈ F and the lottery p ∈ L are essentially the same thing. In
this sense, with slight abuse of notation, we sometimes write L ⊆ F .

Preferences over acts: complete and transitive preferences over F . Strict preferences and
indifference are defined as above. Since L ⊆ F , preferences over acts induce vNM preferences over
lotteries, i.e., p � q if and only if (p, . . . , p) � (q, . . . , q). The induced preferences over L are assumed
to be vNM, i.e., they have a vNM EU representation. Thus, the act f ∈ F yields expected utility
Ef(ω)(u) at each state ω ∈ Ω. Finally, induced preferences over X are assumed to be monotonic.

Question C.17 (Maxmin preferences). There are two states identified by the party that wins the
next american presidential elections, i.e., Ω = {Democrat (ω1),Republican (ω2)}. A decision maker
compares any two acts f and g on the basis of the worst case scenario, i.e.,

f � g ⇔ min{Ef(ω1)(u),Ef(ω2)(u)} ≥ min{Eg(ω1)(u),Eg(ω2)(u)}.

Verify that this preference relation is complete and transitive.

Question C.18 (Only one state matters). There are two states identified by the party that wins the
next american presidential elections, i.e., Ω = {Democrat (ω1),Republican (ω2)}. A decision maker
compares any two acts f and g on the basis of the lottery they induce in the Democrat wins, i.e.,

f � g ⇔ f(ω1) � g(ω1).

Verify that this preference relation is complete and transitive. Verify that the induced preferences
over L are vNM.

Utility representation: the preferences over acts are represented by a function u : F → R such
that, for every pair of acts f, g ∈ F ,

f � g ⇔ u(f) ≥ u(g).

Subjective Beliefs: a probability distribution µ over Ω, with µ(ω) denoting the probability that
the individual attaches to the state ω ∈ Ω. These probabilities are not objectively given (unlike for
instance the probabilities involved in a lottery). Rather they can be seen as a representation of how
likely the decision maker deems each state. Such beliefs are of course unobservable by the economist.

Subjective Expected Utility: Once again, we are particularly interested in utility functions
that can be written as expectations. Formally, this is done by first assigning Bernoulli utilities to
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the sure outcomes via the function u : X → R, then assigning beliefs to each state via probability
distribution µ, and only then assign to each act f = (p1, . . . , pN) ∈ L (subjective) expected utility

Eµ(u(f)) =
∑
ω∈Ω

µ(ω)Ef(ω)(u) =
N∑
n=1

µ(ωn)Epn(u).

The idea is that we first compute the expected utility of the lottery at each state ω, and then we
take the expectation of these expected utilities with respect to the subjective beliefs. Note that once
we have assigned Bernoulli utilities to the different outcomes in X and subjective probabilities to
the different states in Ω, the subjective expected utility of each act follows automatically, and we
do not have any flexibility in adjusting it. Then, the question becomes whether we can always find
Bernoulli utilities and beliefs, in a way such that for every f, g ∈ F ,

f � g ⇔ Eµ(u(f)) ≥ Eµ(u(g)).

If this is the case, we say that the preferences� have an Anscombe-Aumann (AA) subjective expected
utility representation.

Question C.19. Do the preferences in Questions C.17 and C.18 have a subjective expected utility
representation? If yes, identify appropriate Bernoulli utilities and subjective beliefs.

AA axioms: There are axioms that guarantee the existence of a SEU representation, viz., the vNM
axioms that we have already discussed, plus two new axioms, called (A5) AA monotonicity and (A6)
non-triviality (we will elaborate on AA monotonicity later on).

Theorem C.4 (AA SEU Theorem). The preferences � over F have an AA SEU representation if
and only if they satisfy completeness, transitivity, continuity, independence, AA monotonicity and
non-triviality.

Dominance relations: There are two forms of dominance, both based on the idea of statewise
comparing the lotteries of f with those of g.

• Strict dominance: f strictly dominates g whenever f(ω) � g(ω) for every ω ∈ Ω.

• Weak dominance: f weakly dominates g whenever f(ω) � g(ω) for every ω ∈ Ω with the
preference being strict in at least one state.

Note that both notions of dominance depend on the induced preferences over L, without making
explicit reference to the beliefs. It is also not difficult to verify that both dominance relations are
incomplete, i.e., not all pairs of acts can be ordered on the basis of one dominating the other.

Question C.20. Prove the following statement: if f strictly dominates g, then f � g. Explain
why this is true irrespective of the decision maker’s beliefs. Show by means of an example that the
converse is not true.

Question C.21. Prove the following statement: for any full-support belief (i.e., µ such that µ(ω) > 0
for all ω ∈ Ω) if f weakly dominates g, then f � g. Show by means of an example that the converse
is not true.
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Mixed act: For any two acts f, g ∈ F and any α ∈ (0, 1), we define the mixed act (α×f, (1−α)×g)
yields at each state ω ∈ Ω the lottery that draw each x ∈ X with probability αf(ω)(x) + (1 −
α)g(ω)(x). The idea is that the decision maker randomizes at each state between the lottery induced
by f and the lottery induced by g.

Question C.22 (Challenging). Consider the following three acts that pay different amounts depend-
ing on whether a Democrat or a Republican candidate wins the next american presidential elections.

act Democrat Republican
f $10 $0
g $0 $10
h $5 $5

Consider an individual with preferences over acts that have a SEU representation. Note that we do
not know the individual’s beliefs over the set of states. Prove formally and provide intuition for the
following statements:

(a) If the individual is risk-seeking, then there exists some α ∈ (0, 1) such that the mixed act
(α× f, (1− α)× g) strictly dominates h.

(b) If the individual is risk-averse, then there exists a belief µ such that h is a rational choice in
the decision problem A = {f, g, h}.

Problem C.2 (Very challenging). A forecaster is asked to report his subjective belief of the
Democratic candidate winning the next american presidential elections, and reports a probability
r ∈ [0, 1], which of course we do not know if it is the same as his true belief. The forecaster is
compensated depending on his reported belief and the realized state (i.e., based on what he said
and who won). In particular, if the Democrat is elected then he wins $10,000 with probability
1− (1− r)2, whereas if the Republican is elected then wins $10,000 with probability 1− r2.

(a) Write each report r ∈ [0, 1] as an act.

(b) If his preferences over acts have a SEU representation, prove that his unique optimal choice
is to report his true belief. Which is the implication of this result?

Rationalizing choice under uncertainty: The revealed preference methodology can be used
to test the AA axioms. In particular, a choice correspondence C is rationalized by AA preferences, if
there exists a Bernoulli function u : X → E and a belief µ such that, for each choice problem A ∈ E ,

C(A) = {f ∈ A : Eµ(u(f)) ≥ Eµ(u(g)) for all g ∈ A}.

And of course, in a similar way we can define rationalizing a choice function.

Question C.23. (Ellsberg Paradox). Consider an urn containing three balls. An experimental
subject is told that exactly one ball is red and the remaining two balls are either (i) both black, or (ii)
one is black and the other one is yellow, or (iii) both yellow. A ball will be randomly drawn from the
earn. Consider the following alternatives:

f1 : if the ball is red you get 10 Euros

f2 : if the ball is black you get 10 Euros

g1 : if the ball is red or yellow you get 10 Euros

g2 : if the ball is black or yellow you get 10 Euros
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First, define the states and write the acts that correspond to the four alternative aboves. Then, take
the experiment E = {{f1, f2}, {g1.g2}}, and consider a subject who chooses according to the choice
correspondence C({f1, f2}) = {f1} and C({g1, g2}) = {g2}. Can this dataset be rationalized by AA
preferences? What do you think most subject choose?
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Part II

Game Theory

D Strategic-form games

Games: This is a term that we use for decision problems with interacting decision makers, i.e., there
are multiple decision makers and the outcome depends on the choices of all of them. This type of
interaction is called strategic interaction. Throughout the course, unless explicitly stated otherwise
we will consider games with only two decision makers. We classify games in two categories, strategic-
form games (where everybody acts simultaneously) and extensive-form games (where decision makers
act sequentially). The essential difference between the two pertains in the information that decision
makers have when the choose actions.

Strategic-form game: It is modelled by a tuple 〈I, (Ai)i∈I , (oi)i∈I〉, where I = {Ann (a), Bob (b)}
is the finite set of players, Ai is player i’s finite set of actions, and oi : Aa ×Ab → X induces an out-
come for each player i and for each action profile (aa, ab). For simplicity, we will continue assuming
that outcomes are monetary payoffs, i.e., X ⊆ R. Hence, each action profile (aa, ab) yields a pair(
oa(aa, ab), ob(aa, ab)

)
∈ R2 of monetary payoffs.

Example D.1. Consider the following strategic form game, where Aa = {T,M,B} and Ab = {L,R}.

T

M

B

L R

$10 , $5 $0 , $0

$0 , $5 $10 , $0

$5 , $0 $5 , $5

Each action profile yields a pair of monetary payoffs. The first number refers to Ann’s payoff and
the second one to Bob’s. For instance,

(
oa(M,L), ob(M,L)

)
= ($0, $10). /

Games as decision problems under subjective uncertainty: From player i’s point of view,
each of the opponent’s actions aj ∈ Aj can be seen as a state, and each own action ai ∈ Ai can be
seen as an act that yields a pair of payoffs at each state. In this sense, a game can be seen as a
decision problem under subjective uncertainty. This type of uncertainty is called strategic, because
what i believes about what j is going play (i.e., i’s beliefs about the state space Aj) typically depends
on how i thinks that j reasons about what i is going to do.

Preferences: Each player i ∈ I has AA preferences �i over the set of acts. Recall that a SEU
representation of i’s preferences over acts consists of a Bernoulli utility function over pairs of monetary
payoffs (ui : X×X → R) and a belief over j’s actions (µi). Like in decision theory under uncertainty,
the preferences over acts induce preferences over pairs of payoffs X × X. To simplify notation, we
will henceforth write

(ai, aj) �i (a′i, a
′
j)⇔

(
oi(ai, aj), oj(ai, aj)

)
�i
(
oi(a

′
i, a
′
j), oj(a

′
i, a
′
j)
)
,

i.e., player i prefers the action profile (ai, aj) over (a′i, a
′
j) if and only if she prefers the monetary

payoffs associated with (ai, aj) over those associated with (a′i, a
′
j).
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Question D.1. In the game of Example D.1, assume that both players are selfish. Then, provide three
Bernoulli utility representations, one where they are both risk-neutral, one where they are both risk-
averse and one where they are both risk-seeking. Do the three profiles of Bernoulli utility functions
induce the same preferences over action profiles?

Subjective Expected Utility: it is defined analogously to our models of decision theory under
subjective uncertainty. Namely, given a Bernoulli utility function ui and a belief µi, player i’s SEU
from an action ai is equal to

Eµi(ui(ai)) :=
∑
aj∈Aj

µi(aj)ui(ai, aj).

This utility representation suggest that

ai �i a′i ⇔ Eµi(ui(ai)) ≥ Eµi(ui(ai, )),

i.e., i prefers ai to a′i if and only if the SEU of the former is greater than the one of the latter. Clearly,
which action is preferred over which depends in general on both the Bernoulli utility functions and
on the beliefs about the opponent’s actions.

Rationality: given a belief µi, the action ai of player i is a rational choice if, for all a′i ∈ Ai,

Eµi(ui(ai)) ≥ Eµi(ui(a′i)).

That is, ai is the most preferred actions among all those available in Ai. Again, notice that rationality
is a relative concept in the sense that it depends on both the Bernoulli utilities and on the beliefs of
player i. In this sense, figuring out which actions can be rationally chosen depends on the information
that we have about the AA preferences. If we knew both the Bernoulli utility functions and the beliefs,
we could pin down exactly the rational actions. If we only know only the Bernoulli utility functions
but not the beliefs, we get more rational actions. And of course, if we know only the induced ordinal
utilities, we end up with even more rational actions.

Question D.2. Using each of the three Bernoulli utility functions from Question D.1 separately,
find the actions of Ann that can be rationally be played for some belief in the game of Example D.1.

Methodological approach: it is not necessarily the case that others (i.e., the opponent or even
the game-theorist who studies the game) can observe the Bernoulli utility functions or the beliefs of
the players. So, we will distinguish two cases:

• Ordinal games: Only the induced preferences over allocations of monetary payoffs are com-
monly known.

• Cardinal games: The Bernoulli utility functions are also commonly known.

In neither of the two cases, do others know anything about the player’s beliefs.

Solution concept: it is a blackbox that takes as input the structure of the game (i.e., 〈I, (Ai)i∈I ,
(ui)i∈I〉 and returns a collection of action profiles (i.e., a subset of Aa × Ab) as prediction of what
could be played. Importantly the prediction does not need to be unique. Solution concepts that we
study in this course are classified as follows:
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Elimination Equilibrium
Ordinal games Iterated Strict/Weak/Börgers Dominance Nash Equilibrium
Cardinal games Iterated Strict Dominance Mixed Nash equilibrium

The row classification distinguishes games on the basis of the information that is available on the
players’ preferences, i.e., based on whether ui is an ordinal or a Bernoulli utility function. So,
the difference here is simply on the input side of the solution concept. The column classification
distinguishes solution concepts on the basis of the players’ strategic reasoning. So, the difference here
lies in what happens inside the blackbox. All solution concepts assume that players are rational, and
differ in the additional assumptions that they make.

D.1 Ordinal games

Ordinal utility function: The only information that we have is the players’ preferences over
allocations of payoff pairs, or equivalently over Aa × Ab. These preferences are represented by an
ordinal utility function ui : Aa × Ab → R.

Elimination solution concepts: Our approach will be to start eliminating actions that are
not likely to be rational, given our (limited) information about the players’ preferences. There are
different ways to do this, corresponding to different assumptions on the players’ beliefs, and eventually
leading to different solution concepts.

Strict Dominance: The action ai ∈ Ai strictly dominates the action a′i ∈ Ai in the game Ai×Aj,
whenever for all aj ∈ Aj,

ui(ai, aj) > ui(a
′
i, aj).

The idea ai is strictly preferred to a′i irrespective of what the opponent does. Note that dominance is
a notion which is relative to the game Ai ×Aj. Whenever it is obvious which game we are referring
to, we will omit explicit reference. Otherwise, we will have to explicitly mention it. If there is an
action ai that strictly dominates a′i, we say that a′i is strictly dominated. If there is an action ai
that strictly dominates every other a′i, we say that ai is strictly dominant. Obviously, if a′i is strictly
dominated (by some ai), it cannot be rationally chosen irrespective of the Bernoulli utility function
and the beliefs that player i has (which are both unobservable). In this sense, we can be sufficiently
certain that a′i will not be chosen.

Question D.3. Explain the following statement: A strictly dominated action is not rational (i.e.,
rationality is a sufficient condition for ruling out all strictly dominated actions).

Question D.4. Prove and provide intuition for the following statement: A strictly dominant action
is the only rational action.

Question D.5. (Public good game). Ann and Bob are initially endowed with 10 Euros each.
Each of them independently chooses an amount from the set {0, 1, . . . , 10} to put into a common
account. The remaining of their endowment will go into a private account. The public account has
an interest rate of 50%, i.e., the total amount that goes into the public account is multiplies by 1.5.
On the other hand, the private accounts do not have any interest. Each individual’s total payoff will
be equal to the amount in their private account plus half the amount in the public account. Assuming
that both are selfish and rational, what do we expect them to play? Explain formally and intuitively.
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Iterated Strict Dominance (ISD): For each step k ≥ 0 and each player i ∈ I:

S0
i := Ai

S1
i := {ai ∈ S0

i : ai is not strictly dominated in S0
i × S0

j }
S2
i := {ai ∈ S1

i : ai is not strictly dominated in S1
i × S1

j }
...

Ski := {ai ∈ Sk−1
i : ai is not strictly dominated in Sk−1

i × Sk−1
j }

...

Then, the actions of player i that survive ISD are those in Si :=
⋂∞
k=0 S

k
i . The predictions of ISD

are the action profiles in ISD := Sa × Sb.

Weak Dominance: The action ai ∈ Ai weakly dominates the action a′i ∈ Ai in the game Ai ×Aj,
whenever

ui(ai, aj) ≥ ui(a
′
i, aj)

for all aj ∈ Aj, with at least one of the inequalities being strict. If there is an action ai that weakly
dominates a′i, we say that a′i is weakly dominated. If there is an action ai that weakly dominates
every other a′i, we say that ai is weakly dominant. If a′i is weakly dominated (by some ai), it cannot
be rationally chosen irrespective of the Bernoulli utility function, as long as the beliefs that player
i are full-support. However, the converse is not necessarily true (Question C.21). In this sense, we
can be sufficiently certain that a′i will not be chosen, as long as we are confident that the players do
not discard ex ante any of the opponents’ strategies.

Question D.6. Explain the following statement: A weakly dominated action may be rational (i.e.,
rationality is not a sufficient condition for ruling out weakly dominated actions, unless of course we
assume that beliefs are full support).

Question D.7. (Second-price auction). Ann and Bob participate in an auction for painting.
Each of them has a budget of $100k. Ann’s private value for the object is $40k and Bob’s private
value is $30k. The rules of the auction are as follows: (a) each participant can bid multiples of $1k,
(b) the winner is the participant with the highest bid, and in case of a tie Ann is the winner, (c)
the winner pays a price equal to the bid of the other participant (i.e., the second price). Explain the
following statement: it is a weakly dominant action for Ann to bid $40k. Then, provide an example
of some action (other than bidding her own private value) which can be rationally played by Ann.

Question D.8. Prove and provide intuition for the following statement: A weakly dominant action
is always rational (irrespective of the Bernoulli utility function and the beliefs).

Iterated Weak Dominance (IWD): For each step k ≥ 0 and each player i ∈ I:

W 0
i := Ai

W 1
i := {ai ∈ W 0

i : ai is not weakly dominated in W 0
i ×W 0

j }
W 2
i := {ai ∈ W 1

i : ai is not weakly dominated in W 1
i ×W 1

j }
...

W k
i := {ai ∈ W k−1

i : ai is not weakly dominated in W k−1
i ×W k−1

j }
...
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Then, the actions of player i that survive IWD are those in Wi :=
⋂∞
k=0W

k
i . The predictions of IWD

are the action profiles in IWD := Wa ×Wb.

Question D.9. Explain the following statement: If a player has a strictly dominant strategy, we
do not need to impose any assumption about her strategic reasoning. On the other hand, solution
concepts that are based on iteratively eliminating dominated strategies, make implicit assumptions
about the players’ strategic reasoning.

Question D.10. (Guessing game). This is one of the very few instances where we will have games
with more than two players. There are n experimental subjects, and each of them is asked to chooses
an number from the set {1, 2, . . . , 100}. We then compute the average, and whoever is closer to 2/3
of the average wins a prize of $100. If there are several winners, they split the prize. If everybody is
selfish, what does IWD predict? What do you think most subject do? What do we conclude then?

Börgers Dominance: As we have discussed, strict dominance is too permissive, i.e., it eliminates
some actions that are not rational (Question D.3), but there may exist additional actions that cannot
be rationally chosen. On the other hand, weak dominance is too restrictive, i.e., it may eliminate
actions that are rational (Question D.6). Thus, we naturally ask, is there an elimination concept
(in between the two) that eliminates exactly those actions that cannot be rationally chosen for any
Bernoulli utility function and any belief. In other words, we are looking for an elimination procedure
that constitutes a necessary and sufficient condition for rationality. This is exactly what Börgers
dominance does: The action ai ∈ Ai is Börgers dominated in the game Ai × Aj, whenever for
every nonempty A′j ⊆ Aj there exists some a′i ∈ Ai (which may depend on A′j) such that a′i weakly
dominates ai in Ai × A′j.

Theorem D.1. For an action ai ∈ Ai the following statements are equivalent:

(a) ai is Börgers dominated in Ai × Aj.

(b) There is no Bernoulli utility function (inducing the ordinal preferences over Ai×Aj) and belief
µi such that ai is rational given µi.

Problem D.1. In the following game, assume that both players are selfish.

T

M

B

L R

$10 , $5 $0 , $0

$0 , $5 $1 , $0

$9 , $0 $0 , $5

Show that action B is Börgers dominated, while M is not Börgers dominated. Then, prove that
there is no Bernoulli utility function ua and no belief µa such that B is rational in {T,M,B} ×
{L,R}, but there exists a Bernoulli utility function ua and a belief µa such that M is rational in
{T,M,B} × {L,R}.
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Iterated Börgers Dominance (IBD): For each step k ≥ 0 and each player i ∈ I:

B0
i := Ai

B1
i := {ai ∈ B0

i : ai is not Börgers dominated in B0
i ×B0

j }
B2
i := {ai ∈ B1

i : ai is not Börgers dominated in B1
i ×B1

j }
...

Bk
i := {ai ∈ Bk−1

i : ai is not Börgers dominated in Bk−1
i ×Bk−1

j }
...

Then, the actions of player i that survive IBD are those in Bi :=
⋂∞
k=0 B

k
i . The predictions of IBD

are the action profiles in IBD := Ba ×Bb.

Question D.11. Prove formally that IWD ⊆ IBD ⊆ ISD. Explain what it says.

Equilibrium solution concepts: The nice thing with elimination solution concepts is that each
player can run the algorithm in their head and come up with the solution without needing any prior
information about the opponent’s play. This makes them reasonable (from a logical point of view)
but oftentimes quite demanding (in terms of the reasoning that they require players to undertake).
On the other hand equilibrium concepts, implicitly assume that each player can correctly predict the
opponent’s action, and respond rationally to it. This can be often justified as the steady state of
some learning process.

Best response: This is the main notion used to define an equilibrium concept. The action ai ∈ Ai
is a best response to aj ∈ Aj, if for all a′i ∈ Ai,

ui(ai, aj) ≥ ui(a
′
i, aj).

Importantly, we do not compare ai with a′i for every action of the opponent, but only for aj. There
may exist multiple best responses to aj. The set of all best responses to aj will be denoted by
BRi(aj). So, if ai is a best response to aj we write ai ∈ BRi(aj).

Question D.12. Prove and provide intuition for the following statements:

(a) If ai is a best response to some aj then it is not Börgers dominated (and a fortiori not strictly
dominated), but it may still be weakly dominated.

(b) If ai is strictly dominant then it is the only best response to each aj ∈ Aj.

(c) If ai is weakly dominant then it is the one of the (perhaps multiple) best responses to each
aj ∈ Aj.

Nash Equilibrium: the action profile (aa, ab) is a Nash equilibrium if ai ∈ BRi(aj) for both i ∈ I.
That is, none of the players has an incentive to unilaterally deviate from this action profile. Another
interpretation is that both players are choose a rational action and at the same time they can correctly
guess the opponent’s action. The set of all Nash Equilibria is denoted by NE ⊆ Aa × Ab.

Question D.13. There are two firms that serve a market, one owned by Ann and one by Bob. The
two firms simultaneously choose a price each (pa and pb respectively) from the set {1, 2, 3, 4}. If one
of the two firms charges a lower price than the opponent, this firm will serve the entire market, i.e.,
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the market price will be p = min{pa, pb} and the firm with the lowest price will sell Q(p) := 16− 4p
units of the product whereas the other firm will sell 0 units. If the two firms charge the same price,
the market price is p = pa = pb and they share the market, i.e., each of the two firms sells Q(p)/2
units. Suppose that the cost per unit for Ann is equal to ca = 1 and for Bob is equal to cb = 2. Both
firms are selfish in the sense that they want to maximize their own profits. Find the Nash Equilibria
of this game.

Question D.14. Take the following three very well-known games, assuming that the utilities are
Bernoulli. Nevertheless, only ordinal the preferences over action profiles are commonly known.

D

C

D C

2 , 2 7 , 0

0 , 7 5 , 5

Prisoner’s Dilemma

O

B

O B

3 , 1 0 , 0

0 , 0 1 , 3

Battle of the Sexes

H

T

H T

1 , -1 -1 , 1

-1 , 1 1 , -1

Matching Pennies

Find the Nash Equilibria in each of the corresponding ordinal games.

Problem D.2. (First-price auction). Ann and Bob participate in an auction for a painting.
Each of them has a budget of $100k. Ann’s private value for the object is $40k and Bob’s private
value is $30k. The rules of the auction are as follows: (a) each participant can bid multiples
of $1k, (b) the winner is the participant with the highest bid, and in case of a tie Ann is the
winner, (c) the winner pays a price equal to his/her own bid (i.e., the first price). Is it a Nash
Equilibrium if both players bid their own private value? Find a Nash Equilibrium where one of
the players bids above his/her private value.

Question D.15. Prove and provide intuition for the following statement: Every Nash Equilibrium
survives IBD (and a fortiori it also survives ISD). The converse is not necessarily true, i.e., not all
action profiles surviving IBD are always NE (and a fortiori not all action profiles surviving ISD are
always NE).

Question D.16. The previous statement does not extend to IWD, i.e., a Nash Equilibrium may not
survive IWD. Provide an example where a Nash Equilibrium is eliminated by IWD.

D.2 Cardinal games

Bernoulli utility function: We now have information about the players’ vNM preferences for
lotteries over allocations of payoffs, i.e., we know the Bernoulli utility function ui : Aa × Ab → R of
each player i ∈ I.

Mixed action: The fact that we can now attach a Bernoulli utility to each payoff allocation means
that we can introduce probabilities and take expectations. A mixed action σi is a probability distri-
bution over the player’s actions, which attaches probability σi(ai) to each ai ∈ Ai. The probability
distribution σi is chosen by player i herself. Intuitively, the player delegates her action to a random-
izing device, whose probabilities are objectively known. Obviously, an action ai ∈ Ai can be seen
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as a (degenerate) mixed strategy σi such that σi(ai) = 1. The set of all mixed actions of player i is
denoted by L(Ai).

Expected utility from a mixed action: Following the interpretation that from i’s point of
view the game can be seen as a decision problem under subjective uncertainty, a mixed action is then
seen as a contract that pays a lottery (of payoff allocations) at each state (i.e, for each action of the
opponent). Thus, a mixed action induces an vNM expected utility for each action of the opponent.
Formally, for a mixed action σi ∈ L(Ai) and each action aj ∈ Aj, player i’s expected utility is

ui(σi, aj) :=
∑
ai∈Ai

σi(ai)ui(ai, aj).

Recall that player i has AA preferences over acts, which are represented by the Bernoulli utility
function (which we can observe) and the beliefs µi over Aj (which we cannot observe). Hence, from
i’s point of view, the subjective expected utility from a mixed action σi is equal to

Eµi(ui(σi)) :=
∑
aj∈Aj

µi(aj)ui(σi, aj).

Of course, as we have mentioned, each action ai can be seen as a degenerate mixed action that puts
probability 1 to ai, and therefore the subjective expected utility from the action ai is given by simply
replacing σi with ai in the previous formula (see formula for Eµi(ui(ai)) in the beginning of this
section).

Question D.17. Using each of the three vNM utility functions from Question D.1 separately, find
the Ann’s expected utilities from a mixed action σa such that puts probability 1/2 to T and probability
1/4 to M and 1/4 to B.

Rational choice: The introduction of mixed actions essentially enlarges the decision problem of
player by introducing additional acts, i.e., formally, instead of presenting player i with the choice
problem Ai, we are now presenting her with the choice problem L(Ai). Obviously, a choice σi is
rational in this enlarged choice problem if it maximizes the player’s subjective expected utility given
her beliefs, i.e., if for all σ′i ∈ L(Ai),

Eµi(ui(σi)) ≥ Eµi(ui(σ′i)).

Then of course, if the rational choice σi is picked, an action from supp(σi) will be observed, i.e.,
an action that receives positive probability by σi. Thus, we naturally ask: are there any serious
consequences for the rational choices that we may observe, if we enlarge the game by allowing for
mixed actions? As it turns out, not really!

Theorem D.2. For any belief µi and mixed action σi, the following statements are equivalent:

(a) σi is rational in L(Ai), i.e., Eµi(ui(σi)) ≥ Eµi(ui(σ′i)) for all σ′i ∈ L(Ai).

(b) every ai ∈ supp(σi) is rational in Ai, i.e., Eµi(ui(ai)) ≥ Eµi(ui(a′i)) for all a′i ∈ Ai.

What the previous theorem says is that we can first simply look for the rational choices in the original
problem Ai. Then, the mixed actions σi’s that distribute probability only to these rational actions
that you have just identified are the rational choices in the enlarged choice problem L(Ai). In this
sense, whether you allow for mixed actions or not does not really matter, as in the end the rational
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choices that you might observe are exactly the same. So, why do we need to introduce mixed actions?
There are two reasons. First, the game theorist does not really know whether the player has access
to a randomizing device or not. But fortunately, the previous theorem tells us that this lack of
knowledge is not a major problem. Second, as we are going to see in a bit, mixed actions provide us
with a very useful computational tool that allows us to identify the rational actions even when we
do not now the player’s beliefs.

Strict Dominance: A mixed action σi ∈ L(Ai) strictly dominates the action ai ∈ Ai in the game
Ai × Aj whenever for all aj ∈ Aj,

ui(σi, aj) > ui(ai, aj).

The idea is exactly the same as the one we introduced in the section on decision theory under
subjective uncertainty, i.e., σi induces at every state a lottery that is strictly preferred to the lottery
that is induced by ai. In other words, all statewise comparisons of σi and ai yield a result strictly in
favor of σi. If there exists a mixed action σi that strictly dominates ai then we say that ai is strictly
dominated.

Question D.18 (Challenging). Using each of the three Bernoulli utility functions from Question
D.1 separately, find the actions of Ann that are strictly dominated in the game of Example D.1.

The following important result identifies exactly the actions that can be rationally chosen from Ai
by a rational player with (the known) Bernoulli utility function ui and (some unknown) beliefs µi.

Theorem D.3. For an action ai ∈ Ai and a known Bernoulli utility function ui, the following two
statements are equivalent:

(a) There exists some mixed action σi that strictly dominates ai (given ui).

(b) There is no belief µi such that ai is rational given µi (and ui).

This clarifies the second reason why mixed actions are useful, i.e., they can help the game theorist
to find the actions that can be expected to be played when the beliefs of the player are unknown.

Question D.19. Rewrite the previous theorem in the following form: the negation of (a) is equivalent
to the negation of (b).

Question D.20. Using Theorem D.3, explain that Question D.2 is equivalent to Question D.18.

Question D.21 (Challenging, but conceptually very important!). Explain the following statement:
If an action ai is strictly dominated in an ordinal game, then it is also strictly dominated in every
cardinal game with the same induced preferences over Ai×Aj. The converse is not necessarily true.
This means that when we eliminate a strictly dominated action in the ordinal game, we are sure that
this action is not rational in the cardinal game, but at the same time we may keep too many actions
(i.e., we may keep actions that are not rational for any belief in the cardinal game). In particular,
the following logical relations hold:

ai is strictly dominated in the cardinal game ⇔ ai is not rational (Theorem D.3)

ai is strictly dominated in the ordinal game ⇒ ai is not rational (Question D.3)

That is, strict dominance in the cardinal game provides us with more refined information on what
we should expect to see from a SEU maximizer, which is of course natural to expect given that in the
cardinal game we know more about the player (i.e., we know the Bernoulli utilities).
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Question D.22 (Challenging, but conceptually very important!). Explain the following statement:
When we eliminate a Börgers dominated action in the ordinal game, we are sure that this action
is not rational in the cardinal game, but at the same time we may keep too many actions (i.e., we
may keep actions that are rational given some other Bernoulli utility function). In particular, the
following logical relations hold:

ai is strictly dominated in the cardinal game⇔ ai is not rational (known ui) (Theorem D.3)

ai is Börgers dominated in the ordinal game⇔ ai is not rational (unknown ui) (Theorem D.1)

Once again, this is because the cardinal game contains more information about the player’s preferences
(i.e., we know the Bernoulli utilities).

Problem D.3. Take the game from Example D.1 and assume that Ann is selfish. For starters,
prove that B is not Börgers dominated (and a fortiori it is not strictly dominated in the ordinal
game). Then, for each of the Bernoulli utility functions from Question D.1, find Ann’s actions
that can be rationally played. Relate your answers to Questions D.21 and D.22.

Iterated Strict Dominance (ISD): The definition is identical to the one for ordinal games,
except for the fact that the notion of strict dominance is now adjusted to allow for mixed strategies.
For each step k ≥ 0 and each player i ∈ I:

S0
i := Ai

S1
i := {ai ∈ S0

i : ai is not strictly dominated in S0
i × S0

j }
S2
i := {ai ∈ S1

i : ai is not strictly dominated in S1
i × S1

j }
...

Ski := {ai ∈ Sk−1
i : ai is not strictly dominated in Sk−1

i × Sk−1
j }

...

Then, the actions of player i that survive ISD are those in Si :=
⋂∞
k=0 S

k
i . The predictions of ISD

are the action profiles in ISD := Sa × Sb.
Question D.23 (Traveller’s dilemma). An airline loses two identical suitcases belonging to two
different risk-neutral travellers. The airline manager explains that the airline is liable for a maximum
of $6 per suitcase, and in order to determine the actual value of the suitcase he asks them to write
down the amount of their value at no less than $2 and no larger than $6 (only whole amounts are
allowed). If both write down the same number, he will treat that number as the true value of both
suitcases and reimburse both travellers that amount. If one writes down a smaller number than the
other, this smaller number will be taken as the true value, and both travellers will receive that amount
along with a bonus/malus: $2 extra will be paid to the traveler who wrote down the lower value and
a $2 deduction will be taken from the person who wrote down the higher amount. Find the action
profiles that survive ISD in this game.

Best response: The notion of equilibrium is entirely analogous to the one in ordinal games. The
only difference is that now we allow for mixed actions. A mixed action σi is a best response to σj, if
for all σ′i ∈ L(Ai)

Eσj(ui(σi)) ≥ Eσj(ui(σ′i)).
The set of all best responses to σj will be denoted by BRi(σj).
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Question D.24. Using Theorem D.2, prove that σi ∈ BRi(σj) if and only if

Eσj(ui(ai)) ≥ Eσj(ui(a′i))

for every ai ∈ supp(σi) and every a′i ∈ Ai.

Nash Equilibrium: The action profile (σa, σb) is a (mixed) Nash equilibrium if σi ∈ BRi(σj) for
both i ∈ I. A pure Nash Equilibrium is a degenerate (σa, σb) ∈ NE such that σa(aa) = σb(ab) = 1
for a profile of actions (aa, ab). The set of all Nash Equilibria is denoted by NE ⊆ L(Aa) × L(Ab).
The following result provides a third (historical) reason for using mixed actions.

Theorem D.4. At least one mixed Nash Equilibrium always exists.

Question D.25. Explain the following statement: if (σi, σj) is a mixed Nash Equilibrium, then every
ai ∈ Ai such that σi(ai) > 0 survives ISD.

Question D.26. Find the Mixed Nash Equilibria of “Battle of the Sexes” and “Matching Pennies”
from Question D.14.

Problem D.4. Find the Mixed Nash Equilibria in the following game:

T

M

B

L M R

7 , 1 0 , 1 6 , 0

0 , 1 10 , 1 4 , 0

4 , 0 3 , 0 5 , 5

Question D.27. Mixed Nash Equilibrium is often tested using aggregate data. This means that we
observe n independent plays of the same game, and we check if the empirical frequency of play for
the role of player a versus the empirical frequency of play for the role of player b form a Mixed
Nash Equilibrium. What is the implicit underlying assumption that we make here if all observations
come from the same pair of subjects playing against each other? Which is the additional implicit
assumption that we make when the different observations come from different pairs of subjects?

Question D.28. Explain the following statements intuitively: in a cardinal game, if we take a strictly
increasing linear transformation of the Bernoulli utilities, both ISD and NE remain unchanged. On
the other hand in an ordinal game, if we take any strictly increasing transformation (not necessarily
linear) of the ordinal utility functions, ISD, IWD, IBD and NE remain all unchanged.
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E Extensive-form games

Game tree: a finite (directed) graph (H̄, E), where H̄ is the set of all nodes and E := {(h, h′) ∈
H̄ × H̄ : h′ is a direct successor of h}. We say that h′′ is a successor of h if there is a directed path
from h to h′′, i.e., if there exists a sequence of nodes (h1, . . . , hN) such that (a) h1 = h, (b) hN = h′′,
and (c) (hn, hn+1) ∈ E for all n = 1, . . . , N − 1. The set of weak successors of h contains all its
successors plus h itself. Whenever h′ is a direct successor of h, we say that h is a direct predecessor
of h′. The root h0 ∈ H̄ is the only node that does not have any direct predecessor. Every other node
has exactly one direct predecessor. Those nodes that do not have any direct successor are called
terminal nodes and are denoted by Z ⊆ H̄. All non-terminal nodes are denoted by H := H̄ \ Z.

Active players: The set of players is still assumed to be I = {Ann (a), Bob (b)}. There is a
function p : H → I, assigning a player p(h) to every non-terminal node. This is the player who
decides to which direct successor of h we will move if h is reached. The set of nodes where player i
is active is denoted by Hi.

Actions: At a non-terminal node h ∈ Hi, the active player’s set of actions are identified by the
direct successors, and are denoted by Ai(h). That is, each ai ∈ Ai(h) leads to some h′ ∈ H̄ such that
(h, h′) ∈ E . For simplicity, we assume that Ai(h) has at least two actions.

Outcomes: There is an outcome function oi : Z → X for each player i ∈ I. For simplicity, we keep
assuming that X ⊆ R.

Preferences and Utilities: Each player i ∈ I is assumed to have preferences �i over allocations
of playoffs (oa(z), ob(z)) ∈ R2. Similarly to strategic-form games. For the most part, we will consider
ordinal preferences over allocations of payoffs. Hence, for each player i ∈ I there is an ordinal utility
function ui : Z → R representing �i. We will say that a game is without ties if, for every player
i ∈ I and every two terminal nodes z, z′ ∈ Z it is the case that ui(z) 6= ui(z

′). Very importantly,
these preferences remain stable throughout the game.

Example E.1. Ann starts by proposing a way to split of $2. She can offer $0 or $1 or $2 to Bob.
If she offers $1 or $2, Bob can either accept or reject Ann’s proposal. If he rejects they both receive
$0. If on the other hand she offers $0 to Bob, then he can accept or reject or counteroffer. In the
first two cases, the game proceeds identically as with

h0(a)

h1(b) h2(b) h3(b)

h4(a)

0 1 2

A R C A R A R

A R

($2,$0)
z1

($0,$0)
z2

($0,$2)
z3

($0,$0)
z4

($1,$1)
z5

($0,$0)
z6

($0,$2)
z7

($0,$0)
z8
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other two offers, whereas in case of a counteroffer, the choice goes back to Ann who either accepts
to give all the money to Bob or rejects and they both get nothing. Both players are selfish. /

Question E.1. Identify the different elements of an extensive-form game (i.e., nodes, active players,
actions, outcomes, preferences) in the game of Example E.1.

Strategies: a strategy is a complete plan of action that specifies what the player does at every
node that she is active. Formally, a strategy si assigns an action si(h) ∈ Ai(h) to each h ∈ Hi. The
set of all strategies is denoted by Si := ×h∈Hi

Ai(h). A strategy is typically assumed to be devised
by the player at the beginning of the game, i.e., before the first move at h0 takes place. Oftentimes
a strategy si prescribes an action to some node h ∈ Hi that rules out a node h′ ∈ Hi. Nevertheless,
si still prescribes an action to h′. This is done so that player i is prepared to act following possible
mistakes that she may make herself. The importance of being prepared for some mistakes will become
clear later on.

Question E.2. Which are the strategies of each of the two players in the game of Example E.1?

Nodes consistent with a strategy: For a strategy si ∈ Si, the non-terminal nodes that can be
reached are H(si). By Hi(si) := H(si)∩Hi we denote the ones where i is active and can be reached
by si.

Question E.3. In the game of Example E.1, for each strategy si ∈ Si of each player i ∈ I find the
sets H(si) and Hi(si).

Question E.4. Explain the following statement: Each strategy profile uniquely identifies a terminal
node. Hence, from the preferences over the set of terminal nodes, we obtain preferences over the set
of strategy profiles, Sa × Sb. However, for each terminal node we cannot necessarily identify which
strategy profile has been played. Illustrate your answer in the game of Example E.1.

Information: we distinguish extensive-form games on the basis of what players observe about past
actions that have already taken place. There are two classes of games we consider:

• Perfect information games: The active player at each node knows which are the nodes
that have been previously visited, and can therefore deduce what exactly has been previously
played.

• Imperfect information games: The active player at some node does not know which are
the nodes that have been previously visited. The interpretation is that some of the past actions
have not been observed by the player.

For imperfect information games, we will later on slightly refine the notion of a strategy.

Solution concept: Similarly to strategic-form games, it is a blackbox that takes as input the
structure of the game (i.e., the tuple 〈I,H, Z, p, (�i)i∈I〉 for perfect information games) and returns
as output either a collection of strategy profiles (i.e., a subset of Sa×Sb). The solution concepts that
we will study are classified as follows (for perfect information games):

Elimination Equilibrium
Beginning of the game – Nash Equilibrium

Throughout the whole game Backward Induction Subgame Perfect Equilibrium

The row classification distinguishes solution concepts on the basis of whether each player revisits the
rationality of her strategies at every node where she is active. The column classification is the same
as in the case of strategic-form games. For imperfect information games, we will focus only on Nash
Equilibrium and Subgame Perfect Equilibrium.
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Question E.5. Sometimes we only consider the outcomes (i.e., the terminal nodes) that the solution
concept predicts rather than the strategy profiles. This is because, it is difficult to obtain data on
the strategies that players choose. What does this mean? What is the strategy method in a lab
experiment?

E.1 Perfect information games

Corresponding strategic form: This is the (ordinal) game 〈I, (Si)i∈I , (�i)i∈I〉 that is obtained
by describing the strategies of the respective players after having removed all information about the
order according to which players move. In this sense, it provides a decent but yet incomplete picture
of the game as it does not take the dynamic structure of the game seriously.

Question E.6. Write the corresponding strategic form of the game in Example E.1.

Question E.7. Consider the following game:

h0(a)

h1(b)
L R

L R($1,$1)

($1,$1) ($2,$0)

Write the corresponding strategic form. Then, provide an example of a different dynamic game with
the same strategic form.

Nash Equilibrium: This is the Nash Equilibrium of the corresponding strategic form of the game.
The idea is that players simultaneously choose a strategy each at the beginning of the game in a way
such that they best respond to each other. But at the same time all the analysis is carried out in
the corresponding strategic form, meaning that the dynamic structure of the game is irrelevant.

Question E.8. Find the Nash Equilibria of the game in Example E.1. Are there Nash Equilibria
that do not make intuitive sense? Explain.

Question E.9. Find the Nash Equilibria in the two games of Question E.7 (i.e., the original game
and the one that you constructed with the same strategic form). Are the two sets of Nash Equilibria
the same? Is this surprising?

Question E.10. Consider the following very well-known game:

h0(a)

h1(b)
L R

L R($1,$5)

($2,$2) ($0,$0)

Chain-store paradox

Write the corresponding strategic form and find the Nash Equilibria. Are there Nash Equilibria that
do not make intuitive sense?
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Corresponding strategic form at arbitrary node: Once a node h ∈ H has been reached,
it becomes common knowledge that certain strategies have not been chosen. The strategies of player
i that are consistent with h being reached are denoted by Si(h). Then, the corresponding strategic
form of the game at some h ∈ H is the reduced game 〈I, (Si(h))i∈I , (�i)i∈I〉.

Problem E.1. Explain the following statement: If h is a direct predecessor of h′ then Si(h
′) ⊆

Si(h) for all i ∈ I, with equality holding if p(h) 6= i. Illustrate this statement in the context of
Example E.1.

Backward Induction (BI): This is the most common solution concept for extensive form games,
and it is perhaps the most intuitive solution concept in game theory. As opposed to Nash Equilibrium,
it takes the dynamic structure of the game seriously, but making sure that the players are happy with
the strategy they have chosen throughout the entire game, including at nodes with at first sight are
irrelevant. Formally, at each step k, Backward Induction eliminates strategies at each node h ∈ Hi

and for every i ∈ I:

S0
i (h) := Si(h)

S1
i (h) := {si ∈ S0

i (h) : si is not strictly dominated in S0
i (h
′)× S0

j (h
′)

for any h′ ∈ Hi(si) that weakly succeeds h}
S2
i (h) := {si ∈ S1

i (h) : si is not strictly dominated in S1
i (h
′)× S1

j (h
′)

for any h′ ∈ Hi(si) that weakly succeeds h}
...

Ski (h) := {si ∈ Sk−1
i (h) : si is not strictly dominated in Sk−1

i (h′)× Sk−1
j (h′)

for any h′ ∈ Hi(si) that weakly succeeds h}
...

Then, the strategies of player i that survive BI are those in S∞i :=
⋂∞
k=0 S

k
i (h0). The predictions of

BI are the strategy profiles in BI := S∞a × S∞b . The BI algorithm described above is equivalent to
the following procedure, which can be directly applied on the extensive form of the game. The nodes
that are followed only by terminal nodes are called Nodes of Group 1. The nodes that are direct
predecessors to Nodes of Group 1 are called Nodes of Group 2, and inductively the nodes that are
direct predecessors to Nodes of Group k are called Nodes of Group k+1. Then, begin by eliminating
the actions that are not optimal at the Nodes of Group 1. Then, eliminate the actions that are never
optimal at the Nodes of Group 2, given that the Nodes of Group 1 have been deleted. Continue
inductively. In the end take the strategy profiles that use only the remaining actions.

Question E.11. Apply Backward Induction in the game of Example E.1 as well as those of Questions
E.7 and E.10. Compare the predictions of BI with those of NE. In the game of Question E.7 compare
the predictions of BI in the original game with those of BI in the game that you constructed with the
same strategic form.

Question E.12. Explain why the two BI procedures that we describe above are equivalent. Illustrate
your answer in the context of Example E.1.

Theorem E.1. If the game has no ties, there is a unique strategy profile surviving BI.
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Question E.13. In the context of Example E.1 illustrate that BI * NE and NE * BI. Provide
intuition. Nevertheless, if the game does not have ties, it will be the case that BI ⊆ NE. Illustrate
your answer in the context of Question E.10.

Question E.14. Consider the following very well-known game:

h0(a)

h1(b)

h2(a)

h3(b)

L R

L R

L R

L R

($1,$1)

($0,$5)

($6,$4)

($5,$9) ($8,$8)

Centipede game

What does BI predict? What do you think most subjects do? Provide an explanation.

Continuation strategies: Here it will become clear why strategies prescribe actions also at nodes
that are precluded by previous own actions. For a strategy si ∈ Si, define the strategy shi ∈ Si(h)
as follows: at all nodes h′ that precede h take shi (h

′) to be the action that leads from h′ towards h,
while at all other nodes h′′ take shi (h

′′) = si(h
′′). Of course, if h ∈ H(si) then shi = si.

Question E.15. In the game of Example E.1 take the strategy sa := 1R. Which are the continuation
strategies at every node where Ann is active?

Subgame Perfect Equilibrium (SPE): It is a strategy profile which is a Nash Equilibrium at
every h ∈ H. Formally, (sa, sb) is a Subgame Perfect Equilibrium, if (sha, s

h
b ) is a Nash Equilibrium

in the game Sa(h) × Sb(h) for every h ∈ H. In other words, a Subgame Perfect Equilibrium is
a Nash Equilibrium which is robust to mistakes that players may make in the implementation of
their strategies. The set of Subgame Perfect Equilibria is denoted by SPE ⊆ Sa × Sb. In perfect
information games, at least one SPE always exists.

Question E.16. Compute the SPE in the games of Example E.1 and Questions E.7 and E.10.

Theorem E.2. A Subgame Perfect Equilibrium survives Backward Induction.

Problem E.2. Not all Nash Equilibria that survive Backward Induction are necessarily Subgame
Perfect Equilibria. Illustrate the previous statement in the following example:
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h0(a)

h1(b)

h2(a)

h3(b)

L R

L R

L R

L R

($3,$3)

($1,$1)

($1,$0)

($0,$2) ($2,$2)

In particular, find a Nash Equilibrium which survives Backward Induction, but is not a Subgame
Perfect Equilibrium.

Question E.17. Prove the following statement: In perfect information games without ties, the Sub-
game Perfect Equilibrium gives a unique prediction.

Question E.18. Consider the following well-known games:

• Ultimatum game: Ann proposes a split of $10 into integer amounts between herself and Bob.
If Bob accepts, the proposed allocation is implemented. If he rejects, they both receive $0.

• Trust game: Ann chooses a split of $10 into integer amounts between herself and Bob. The
amount that Bob receives is doubled. Then, Bob decided how to split his (doubled) amount into
integer amounts between himself and Ann.

In the previous two games, find the Nash Equilibria and the Subgame Perfect Equilibria.

E.2 Imperfect information games

Information sets: We often take some non-terminal nodes that are controlled by i and we bundle
them together. Intuitively, Ii ⊆ Hi is an information set whenever the following holds: every time
time some h ∈ Ii is reached, player i does not know that h has been indeed reached, and instead
considers possible all the nodes in Ii. As a consequence, if h, h′ ∈ Ii then Ai(h) = Ai(h

′). Formally,
Ii is the collection of all information sets of player i.

Example E.2. Consider the following variant of the game from Example E.1: everything remains
the same as before, except for the fact that Bob does not observe
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h0(a)

h1(b) h2(b) h3(b)

h4(a)

0 1 2

A R C A R A R

A R

($2,$0)
z1

($0,$0)
z2

($0,$2)
z3

($0,$0)
z4

($1,$1)
z5

($0,$0)
z6

($0,$2)
z7

($0,$0)
z8

whether Ann has chosen 1 or 2 at h0. Bob’s failure to observe Ann’s past action in these cases is
modelled by bundling together h2 and h3 into one information set. This is graphically illustrated by
connecting these two nodes with a dashed line. /

Question E.19. Which are the information sets in the perfect information game of Example E.1?

Question E.20. Explain the following statement: whenever h, h′ ∈ Ii it must necessarily be the case
that i chooses the same action at h and at h′.

Strategies: a strategy is still a complete plan of action that specifies what the player does at every
node that she is active, subject to the restriction discussed in Question E.20. Formally, a strategy
si assigns an action si(h) ∈ Ai(h) to each h ∈ Hi, such that si(h) = si(h

′) for all h, h′ ∈ Ii and
all Ii ∈ Ii. In this sense, si can be rewritten as a function that assigns an action si(Ii) to each
information set Ii ∈ Ii. The set of all strategies is thus denoted by Si := ×Ii∈IiAi(Ii).

Question E.21. Which are the strategies of each of the two players in the game of Example E.2?

Knowledge: Each information set Ii is identified by a subset of Sa×Sb, i.e., by the strategy profiles
that are consistent with reaching this information set. The same is true for every other relevant event
in the game, e.g., player i choosing action ai ∈ Ai(h) is identified by the collection of all strategy
profiles that prescribe ai to h. Then, we say that an event E is known at the information set Ii, if
the collection of profiles that identifies Ii is a subset of the collection of profiles that identifies the
event E.

Problem E.3. In the game of Example E.2, identify by means of a subset of Sa × Sb Bob’s
information set {h2, h3}. Similarly, identify the event that Ann has picked the action R ∈ Aa(h4).

(a) Does Bob know at {h2, h3} that Ann has picked R at h4?

(b) Does Bob know at {h2, h3} what Ann has played in the past? Explain using the formal way
of representing knowledge.

Perfect recall: Each player remembers what she did in the past and what she knew in the past.
Henceforth, we assume that the information sets satisfy the following conditions:
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• Recall of past own actions: if h precedes h′, and the corresponding information sets are
h ∈ Ii and h′ ∈ Ii, then player i knows at h′ which action she took herself at h.

• Recall of past own knowledge: if h precedes h′, and the corresponding information sets
are h ∈ Ii and h′ ∈ Ii, then player i knows at h′ every event she knew at h′.

Question E.22. Suppose that player i is absentminded, i.e., there are two succeeding nodes h, h′ ∈ Ii.
Provide an example with an absentminded player, and show that recall of past actions is violated.

Question E.23. Provide an example where recall of past knowledge is violated.

Subgame: It a reduced extensive-form game (obtained by deleting parts of the tree) which satisfies
the following conditions: (a) it has a unique root h ∈ H, (b) if h ∈ Ii belongs to the subgame, so
does every other h′ ∈ Ii, (c) if h belongs to the subgame, so does every succeeding (non-terminal or
terminal) node. Every subgame is identified by its root. Obviously, in a perfect information game,
every non-terminal node is the root of a subgame.

Question E.24. Which are the subgames in Example E.2?

Corresponding strategic form at a subgame: The root h of a subgame has been reached, take
the strategies of each player i that are consistent with h and define them by Si(h). Then, similarly to
the perfect information case, the corresponding strategic form of the game at this subgame becomes
Si(h)× Sj(h).

Nash Equilibrium: Identically to perfect information games, it is the Nash Equilibrium of the
corresponding normal form at h0.

Subgame Perfect Equilibrium: It is a strategy profile which is a Nash Equilibrium at every
subgame. Formally, (sa, sb) is a Subgame Perfect Equilibrium, if (sha, s

h
b ) is a Nash Equilibrium in the

game Sa(h)× Sb(h) for every node h that identifies some subgame, where the continuation strategy
shi is defined identically to the perfect information case. The set of Subgame Perfect Equilibria is
again denoted by SPE ⊆ Sa × Sb.

Question E.25. Find the Nash Equilibria and the Subgame Perfect Equilibria in Example E.2.

Problem E.4. In imperfect information games, if we only know the ordinal utilities, we cannot
always find a Subgame Perfect Equilibrium. Illustrate the previous statement in the following
example:

h0(a)

h1(b)h2(b)

($2,$0) ($0,$2) ($0,$2) ($2,$0)

L R

L R L R
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In particular, show that this game does not have any Subgame Perfect Equilibrium.
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Part III

Mathematical Appendix

F Set theory

We start with a grand set X. For a typical element of X is denoted by x. A subset of X is a
collection of some (perhaps all) of the elements of X. Whenever an element x belongs to a subset A,
we write x ∈ A. Otherwise, we write x /∈ A. The empty set is denoted by ∅ and it does not contain
any element.

Inclusion: We say that A is a subset of B, and we write A ⊆ B, whenever x ∈ A implies x ∈ B.
Obviously, ∅ ⊆ A ⊆ X for every subset A.

Union: x ∈ A ∪B if and only if x ∈ A or x ∈ B.

Intersection: x ∈ A ∩ B if and only if x ∈ A and x ∈ B. We say that A and B are disjoint
whenever A ∩B = ∅.

Complement: A and B are complements whenever A ∪B = X and A ∩B = ∅.

Set difference: x ∈ A \B if and only if x ∈ A and x /∈ B.

G Calculus

A function f : X → Y is a mapping that takes each element x ∈ X and associates it with an element
f(x) ∈ Y .

Strictly increasing function: a function f : R→ R such that x > y implies f(x) > f(y).

Linear function: a function f : R→ R such that f(x) = α + βx for α, β ∈ R. Whenever β > 0,
it is obviously strictly increasing.

Transformation: take a function u : R→ R, and another function f : R→ R. Then, the function
f(u) is a transformation of u, and it assigns to each x ∈ R value f(u(x)).

H Probability theory

We start with a (finite) state space, which is a set X. Each element x ∈ X is called a state, and it is
interpreted as a full description of everything that is relevant, i.e., once we know which state is the
true one, all relevant uncertainty has been resolved. A subset A ⊆ X is called an event.

Random variable: it is a real-valued function u : X → R that specifies a value to an object of
interest at each state.

Probability distribution: it assigns to each x ∈ X a probability µ(x) ∈ [0, 1] in a way such that∑
x∈X µ(x) = 1. The probability of an event A ⊆ X is then equal to

∑
x∈A µ(x). The probability of

the empty set is 0.
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Expected value: for a random variable u and probability distribution µ, the expected value is

Eµ(u) =
∑
x∈X

µ(x)u(x).
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